EP1305391B1 - Compositions nettoyantes - Google Patents

Compositions nettoyantes Download PDF

Info

Publication number
EP1305391B1
EP1305391B1 EP01959008A EP01959008A EP1305391B1 EP 1305391 B1 EP1305391 B1 EP 1305391B1 EP 01959008 A EP01959008 A EP 01959008A EP 01959008 A EP01959008 A EP 01959008A EP 1305391 B1 EP1305391 B1 EP 1305391B1
Authority
EP
European Patent Office
Prior art keywords
composition
perfume
less
methyl
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01959008A
Other languages
German (de)
English (en)
Other versions
EP1305391A1 (fr
Inventor
Peter Robert Foley
Howard David Hutton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2000/019619 external-priority patent/WO2002008370A2/fr
Priority claimed from PCT/US2000/020255 external-priority patent/WO2002008371A2/fr
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1305391A1 publication Critical patent/EP1305391A1/fr
Application granted granted Critical
Publication of EP1305391B1 publication Critical patent/EP1305391B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1266Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0043For use with aerosol devices
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/261Alcohols; Phenols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/263Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/264Aldehydes; Ketones; Acetals or ketals
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3227Ethers thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/16Metals

Definitions

  • the present invention is in the field of hard surface cleaning compositions, in particular it relates to products and methods suitable for the removal of cooked-, baked- and burnt-on soils from cookware and tableware.
  • Cooked-, baked- and burnt-on soils are amongst the most severe types of soils to remove from surfaces. Traditionally, the removal of cooked-, baked- and burnt-on soils from cookware and tableware requires soaking the soiled object prior to a mechanical action. Consequently, the automatic dishwashing process alone does not provide a satisfactory removal of cooked-, baked- and burnt-on soils. Manual dishwashing process requires a tremendous rubbing effort to remove cooked-, baked- and burnt-on soils and this can be detrimental to the safety and condition of the cookware/tableware.
  • US-A-5,102,573 provides a method for treating hard surfaces soiled with cooked-on, baked-on or dried-on food residues comprising applying a pre-spotting composition to the soiled article.
  • the composition applied comprises surfactant, builder, amine and solvent.
  • US-A-5,929,007 provides an aqueous hard surface cleaning composition for removing hardened dried or baked-on grease soil deposits.
  • the composition comprises nonionic surfactant, chelating agent, caustic, a glycol ether solvent system, organic amine and anti-redeposition agents.
  • WO-A-94/28108 discloses an aqueous cleaner concentrate composition, that can be diluted to form a more viscous use solution comprising an effective thickening amount of a rod micelle thickener composition, lower alkyl glycol ether solvent and hardness sequestering agent.
  • the application also describes a method of cleaning a food preparation unit having at least one substantially vertical surface having a baked food soil coating.
  • none of the art has been found to be very effective in removing baked-on, polymerized soil from metal and other substrates. coating.
  • none of the art has been found to be very effective in removing baked-on, polymerized soil from metal and other substrates.
  • compositions effective for the removal of cooked-, baked- or burnt-on soils can contain chemicals that in certain circumstances can affect the user's skin. Furthermore, these compositions are sometimes perceived as having an unpleasant odor. Accordingly, it is an object of the present invention to provide cleaning compositions that are easy to apply in order to reduce the amount of effort required from the user and to avoid or minimise the contact of the user with the cleaning composition and reduce the malodor impression of the composition.
  • compositions can be easy and very convenient to use.
  • such composition should be in the form of a low viscosity fluid.
  • it is desirable that the product has a viscosity sufficiently high in order to maintain a substantial concentration of cleaning composition on vertical or inclined surfaces for a time long enough to allow soil swelling to take place and to enable the product to work.
  • Another object is to provide sprayable compositions effective for the removal of cooked-, baked- or burnt-on soils with minimum malodor.
  • a hard surface cleaning composition for removing cooked-, baked- or burnt-on soils (such as grease, meat, dairy, fruit, pasta and any other food especially difficult to remove after the cooking process) from cookware and tableware (including stainless steel, glass, plastic, wood and ceramic objects), wherein the composition comprises a soil swelling agent and a thickening system comprising synthetic smectite type clay thickening agent having an average platelet size of less than 100 nm.
  • the thickening system provides low viscosity when the composition is under stress such as during spraying and a high viscosity when the composition is essentially at rest such as on a vertical or inclined surface.
  • Synthetic smectites are synthesised from a combination of metallic salts such as salts of sodium, magnesium and lithium with silicates, especially sodium silicates, at controlled ratios and temperature. This produces an amorphous precipitate which is then partially crystallised by any known method, such as high temperature treatment. The resultant product is then filtered, washed, dried and milled to give a powder containing platelets which have an average platelet size of less than 100 nm.
  • the platelet size as used herein refers to the longest lineal dimension of a given platelet.
  • the thickening system for use herein contain a mixture of synthetic smectite type clay thickening agent and a natural gum such as xanthan gum, locust beam gum, guar gum and the like, this being valuable from the viewpoint both of product rheology and of providing optimum spray droplet dimensions, the latter having been found important for controlling the odor properties of the product in use.
  • a natural gum such as xanthan gum, locust beam gum, guar gum and the like
  • the soil swelling agent is present in the compositions herein in effective amounts, i.e., in amounts effective to provide the necessary soil swelling functionality.
  • a soil swelling agent is understood herein to be a substance or composition capable of swelling cooked-, baked- or burnt-on soil deposited on a substrate after treating said substrate with the soil swelling agent without the application of external mechanical forces. Soil swelling effect can be quantified by the soil swelling index.
  • compositions herein comprise an organic solvent system including at least one solvent component acting as soil swelling agent.
  • composition of the invention preferably has a pH, as measured in a 10% solution in distilled water, from at least about 10.5, preferably from about 11 to about 14 and more preferably from about 11.5 to about 13.5.
  • low level of surfactant selected from anionic, amphoteric, zwitterionic, nonionic and semi-polar surfactants and mixtures thereof, to the composition of the invention aids the cleaning process and also helps to care for the skin of the user.
  • level of surfactant is from about 0.05 to about 10%, more preferably from about 0.09 to about 5% and more preferably from 0.1 to 2%.
  • a preferred surfactant for use herein is an amine oxide surfactant.
  • the soil swelling agent penetrates and hydrates the soils.
  • the spreading auxiliary facilitates the interfacial process between the soil swelling agent and the soil and aids swelling of the soil.
  • the soil penetration and swelling is believed to weaken the binding forces between soil and substrate.
  • the resulting compositions are particularly effective in removing soils of a polymerized baked-on nature from metallic substrates.
  • the composition herein comprises a polymerised grease swelling agent and a spreading auxiliary and has a liquid surface tension of less than about 26 mN/m, preferably less than about 24.5 mN/m and more preferably less than about 24 mN/m and a pH, as measured in a 10% solution in distilled water, of at least 10.5.
  • compositions of the invention are also particularly effective in removing baked-on carbohydrate based soils from cookware/tableware, apparently by a mechanism including swelling and rehydration of the soils.
  • Spreading auxiliaries for use herein can be selected generally from organic solvents, wetting agents and mixtures thereof.
  • the liquid surface tension of the spreading auxiliary is less than about 30 mN/m, preferably less than about 28 mN/m, more preferably less than about 26 mN/m and more preferably less than about 24.5 mN/m.
  • Suitable organic solvents capable of acting as spreading auxiliaries include alcoholic solvents, glycols and glycol derivatives and mixtures thereof. Preferred for use herein are mixtures of diethylene glycol monobutyl ether and propylene glycol butyl ether.
  • Wetting agents suitable for use as spreading auxiliaries herein are surfactants and include anionic, amphoteric, zwitterionic, nonionic and semi-polar surfactants.
  • Preferred nonionic surfactants include silicone surfactants, such as Silwet copolymers, preferred Silwet copolymers include Silwet L-8610, Silwet L-8600, Silwet L-77, Silwet L-7657, Silwet L-7650, Silwet L-7607, Silwet L-7604, Silwet L-7600, Silwet L-7280 and mixtures thereof.
  • Preferred for use herein is Silwet L-77.
  • Suitable wetting agents include organo amine surfactants, for example amine oxide surfactants.
  • the amine oxide contains an average of from 12 to 18 carbon atoms in the alkyl moiety, highly preferred herein being dodecyl dimethyl amine oxide, tetradecyl dimethyl amine oxide, hexadecyl dimethyl amine oxide and mixtures thereof.
  • compositions comprising mixed solvent systems having soil swelling and spreading multi-functionality.
  • compositions comprising a solvent having a limited miscibility in water (herein referred to as a coupling solvent) preferably in combination with a fully-miscible solvent, both preferably at specific levels in composition.
  • the composition herein comprises from about 10% to about 40%, preferably from about 12% to about 20% of organic solvent including from about 1% to about 15% of solvent acting as soil swelling agent and from about 7% to about 30% of solvent acting as spreading auxiliary and which includes at least about 3.5% of a water-miscible solvent and at least about 3.5% of a coupling solvent having limited miscibility in water.
  • a water-miscible solvent herein is a solvent which is miscible with water in all proportions at 25°C.
  • a coupling solvent with limited miscibility is a solvent with is miscible with water in some but not all proportions at 25°C.
  • the solvent has a solubility in water at 25°C of less than about 30 wt%, more preferably less than about 20 wt%.
  • the solubility of water in the solvent at 25°C is less than about 30 wt%, more preferably less than about 20 wt%.
  • a preferred spreading auxiliary herein comprises a mixture of a fully water-miscible organic solvent and a coupling organic solvent having limited miscibility in water and wherein the ratio of water-miscible organic solvent to coupling organic solvent is in the range from about 4:1 to about 1:20, preferably from about 2:1 to about 1:6, more preferably from about 1.5:1 to about 1:3.
  • Other suitable spreading auxiliaries comprise a wetting agent having a liquid surface tension of less than about 30 mN/m, preferably less than about 28 mN/m, more preferably less than about 26 mN/m and more preferably less than 24.5 mN/m.
  • the wetting agent is an amine oxide.
  • Highly preferred spreading auxiliaries comprise a mixture of the coupling solvent and the wetting agent.
  • the composition herein comprises a soil swelling agent, a coupling solvent having limited miscibility in water and a wetting agent and wherein the composition has a liquid surface tension of less than about 26 mN/m and preferably less than about 24.5 mN/m.
  • compositions herein are further characterised by displaying surface tension lowering characteristics, which is believed is important for ensuring optimum soil removal performance on polymerised soils.
  • the composition herein comprises an organic solvent system and a wetting agent, wherein the organic solvent system includes at least one solvent component acting as soil swelling agent and wherein the wetting agent is effective in lowering the surface tension of the solvent system to at least 1 mN/m less than that of the wetting agent.
  • compositions of the present invention have a surface tension of less than about 24 mN/m and more preferably less than 23.5 mN/m.
  • Suitable soil swelling agents for use herein can be selected from organoamine solvents inclusive of alkanolamines, alkylamines, alkyleneamines and mixtures thereof.
  • compositions of the invention are characterized by excellent performance on polymerized grease and preferably the compositions of the present invention have a polymerised grease removal index of at least 25%, preferably at least 50%, more preferably at least 75%.
  • Polymerized grease removal index is a measure of how much soil is removed from a surface after treatment with the composition of the invention.
  • the soiled substrates are soaked in the invention composition at ambient temperature for about 45 min or less, preferably for about 30 min or less and more preferably for about 20 min or less and then washed in a dishwasher without detergent or rinsing agent.
  • the substrates are then dried and weighed and the soil removal is determined by gravimetric analysis.
  • the soiled substrates are prepared as follows: Stainless steel coupons/slides are thoroughly cleaned with the product of the invention and rinsed well with water. The slides are placed in a 50°C room to facilitate drying, if needed. The coupons/slides are allowed to cool to room temperature (about half an hour). The coupons/slides are weighed. Canola Oil, is sprayed into a small beaker or tri-pour (100 mL beaker, 20-30 mL of Canola Oil). A one inch paint brush is dipped into the Canola Oil. The soaked brush is then rotated and pressed lightly against the side of the container 4-6 times for each side of the brush to remove excess Canola Oil.
  • a thin layer of Canola Oil is painted onto the surface of the coupon/slide.
  • Each slide is then stroked gently with a dry brush in order to ensure that only a thin coating of Canola Oil is applied (two even strokes should sufficiently remove excess). In this manner 0.1-0.2g of soil will be applied to the coupon/slide.
  • the coupons/slides are arranged on a perfectly level cookie sheet or oven rack and placed in a preheated oven at 245°C. The slides/coupons are baked for 20 minutes. Coupons/slides are allowed to cool to room temperature (45 minutes). The cool coupons/slides are then weighed.
  • the organic solvent system includes at least one solvent component acting as soil swelling agent and desirably has a liquid surface tension of less than about 27 mN/m, preferably less than about 26 mN/m, more preferably less than about 25 mN/m.
  • the organic solvent system preferably comprises a plurality of solvent components in levels such that the solvent system has an advancing contact angle on polymerised grease-coated glass substrate of less than that of corresponding compositions containing the individual components of the solvent system.
  • Such solvent systems and compositions are formed to be optimum for the removal of baked-on soils having a high carbon content from cookware and tableware.
  • the compositions are preferably in the form of a liquid or gel having a pH of greater than about 9, preferably greater than 10.5 and preferably greater than about 11 as measured at 25°C.
  • compositions of the invention meet certain rheological and other performance parameter including both the ability to be sprayed and the ability to cling to surfaces.
  • the product sprayed on a vertical stainless steel surface has a flow velocity less than about 1 cm/s, preferably less than about 0.1 cm/s.
  • the product is in the form of a shear thinning fluid having a shear index n (Herschel-Bulkey model) of from about 0 to about 0.8, preferably from about 0.3 to about 0.7, more preferably from about 0.4 to about 0.6.
  • shear thinning liquids having a shear index of 0.5 or lower.
  • the fluid consistency index can vary from about 0.1 to about 50 Pa.s n , but is preferably less than about 1 Pa.s n . More preferably, the fluid consistency index is from about 0.20 to about 0.15 Pa.s n .
  • the product preferably has a viscosity from about 0.1 to about 200 Pa s, preferably from about 0.3 to about 20 Pa s as measured with a Brookfield cylinder viscometer (model LVDII) using 10 ml sample, a spindle S-31 and a speed of 3 rpm.
  • compositions having a viscosity greater than about 1 Pa s preferably from about 2 Pa s to about 4 Pa ⁇ s at 6 rpm, lower than about 2 Pa s, preferably from about 0.8 Pa s to about 1.2 Pa s at 30 rpm and lower than about 1 Pa s, preferably from about 0.3 Pa s to about 0.5 Pa s at 60 rpm.
  • Rheology is measured under ambient temperature conditions (25° C).
  • the hard surface composition of the present invention comprises a thickening system comprising synthetic smectite type clay thickening agent having a average platelet size of less then 10 nm.
  • Preferred synthetic clays include the synthetic smectite-type clay sold under the trademark Laponite by Southern Clay Products, Inc. Particularly useful are gel forming grades such as Laponite RD and sol forming grades such as Laponite RDS. Mixtures of clays and polymeric thickeners are also suitable for use herein.
  • Laponite has a layer structure which in dispersion in water, is in the form of disc-shaped crystals of about 1 nm thick and about 25 nm diameter. Small platelet size is valuable herein for providing a good sprayability, stability, rheology and cling properties as well as desirable aesthetic.
  • Suitable thickening agents for use herein include viscoelastic, thixotropic thickening agents at levels of from about 0.1% to about 10%, preferably from about 0.25% to about 5%, most preferably from about 0.5% to about 3% by weight.
  • Suitable thickening agents include polymers with a molecular weight from about 500,000 to about 10,000,000, more preferably from about 750,000 to about 4,000,000.
  • the preferred cross-linked polycarboxylate polymer is preferably a carboxyvinyl polymer. Such compounds are disclosed in U.S. Pat. No. 2,798,053, issued on Jul. 2, 1957, to Brown. Methods for making carboxyvinyl polymers are also disclosed in Brown. Carboxyvinyl polymers are substantially insoluble in liquid, volatile organic hydrocarbons and are dimensionally stable on exposure to air.
  • the cellulosic type thickeners: hydroxyethyl and hydroxymethyl cellulose (ETHOCEL and METHOCEL® available from Dow Chemical) can also be used.
  • Natural gums seem to influence the size of the droplets when the composition is being sprayed. It has been found that droplets having an average equivalent geometric diameter from about 3 ⁇ m to about 10 ⁇ m, preferably from about 4 ⁇ m to about 7 ⁇ m, as measured using a TSI Aerosizer, help in odor reduction.
  • Preferred natural gum for use herein is xanthan gum.
  • Laponite/ xanthan gum mixtures help the aesthetics of the product and at the same time control the spray droplet size and reduce the solvent odor.
  • the hard surface cleaning compositions comprise an organic solvent system including at least one solvent component acting as soil swelling agent and wherein the organic solvent system is selected from alcohols, amines, esters, glycol ethers, glycols, terpenes and mixtures thereof.
  • Suitable organic solvents can be selected from organoamine solvents, inclusive of alkanolamines, alkylamines, alkyleneamines and mixtures thereof; alcoholic solvents inclusive of aromatic, aliphatic (preferably C 4 -C 10 ) and cycloaliphatic alcohols and mixtures thereof; glycols and glycol derivatives inclusive of C 2 -C 3 (poly)alkylene glycols, glycol ethers, glycol esters and mixtures thereof; and mixtures selected from organoamine solvents, alcoholic solvents, glycols and glycol derivatives.
  • Highly preferred organoamine solvents include 2-aminoalkanol solvents as disclosed in US-A-5,540,846.
  • the organic solvent comprises organoamine (especially alkanolamine) solvent and glycol ether solvent, preferably in a weight ratio of from about 3:1 to about 1:3, and wherein the glycol ether solvent is selected from ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, ethylene glycol phenyl ether and mixtures thereof.
  • organoamine especially alkanolamine
  • Preferred organoamine for use herein are alkanolamines, especially monoethanol amine, methyl amine ethanol and 2-amino-2methyl-propoanol.
  • the glycol ether is a mixture of diethylene glycol monobutyl ether and propylene glycol butyl ether, preferably in a weight ratio of from about 1:2 to about 2:1.
  • a preferred organic solvent system for use herein has a volatile organic content above 1 mm Hg of less than about 50%, preferably less than about 20%, more preferably less than about 10%.
  • the organic solvent is essentially free of solvent components having a boiling point below about 150°C, flash point below about 50°C, preferably below 100°C or vapor pressure above about 1 mm Hg.
  • a highly preferred organic solvent system has a volatile organic content above 0.1 mm Hg of less than about 50%, preferably less than about 20%, more preferably less than about 10% and even more preferably less than about 4%.
  • the organic solvent can be selected from:
  • a problem generally associated with the use of organic solvents in cleaning compositions is that of solvent odor - an odor which many consumers do not like and which they perceive as "malodorous".
  • Such compositions can be made more attractive to consumers by using a high concentration of perfumes.
  • the addition of such high concentrations of perfumes can alter or reduce the overall offensive character of the compositions, but it often results in an undesirably overbearing perfume odor.
  • Even when the high perfume concentrations adequately modify, hide or otherwise mask the composition's malodors these high concentrations do not necessarily result in improved perfume substantivity or longevity, thus resulting in the recurrence of malodor after the perfume has volatilized.
  • these malodor problems can be exacerbated in compositions designed for spray-type applications.
  • the hard surface cleaning composition herein comprises organic solvent as hereinbefore described and additionally a solvent odor masking perfume or perfume base.
  • the odor-masking perfume or perfume base comprises a mixture of volatile and non-volatile perfume materials wherein the level of non-volatile perfume materials (boiling point above 250°C at 1 atmosphere pressure) is preferably greater than about 20% by weight and preferably lies in the range from about 25% to about 65%, more preferably from about 35% to about 55% by weight.
  • the perfume or perfume base comprises at least 0.001% by weight of an ionone or mixture of ionones inclusive of alpha, beta and gamma ionones.
  • Certain flowers e.g., mimosa, violet, iris
  • certain roots e.g., orris
  • ionones that can be used in the perfume formulations herein either in their natural forms or in speciality accords in amounts sufficient to provide the required level of ionones.
  • Preferred ionones are selected from gamma-Methyl Ionone, Alvanone extra, Irisia Base, naturally occurring ionone materials obtained, for example, from mimosa, violet, iris and orris, and mixtures thereof.
  • the composition herein comprises naturally occurring ionone materials.
  • the perfume or perfume base may additionally comprise a musk.
  • the musk preferably has a boiling point of more than about 250°C.
  • Preferred musks are selected from Exaltolide Total, Habonolide, Galaxolide and mixtures thereof.
  • the masking perfume or perfume base can further comprise a high volatile perfume component or mixture of components having a boiling point of less than about 250°C.
  • Preferred high volatile perfume components are selected from decyl aldehyde, benzaldehyde, cis-3-hexenyl acetate, allyl amyl glycolate, dihydromycenol and mixtures thereof.
  • the composition can additionally comprise a blooming perfume composition.
  • a blooming perfume composition is one which comprises blooming perfume ingredients.
  • a blooming perfume ingredient may be characterized by its boiling point and its octanol/water partition coefficient (P). Boiling point as used herein is measured under normal standard pressure of 1033 gramforce/cm 2 (760 mmHg). The boiling points of many perfume ingredients, at standard 1033 gramforce/cm 2 (760 mm Hg) are given in, e.g., "Perfume and Flavor Chemicals. (Aroma Chemicals),” Steffen Arctander, published by the author, 1969.
  • the octanol/water partition coefficient of a perfume ingredient is the ratio between its equilibrium concentrations in octanol and in water.
  • the partition coefficients of the preferred perfume ingredients for use herein may be more conveniently given in the form of their logarithm to the base 10, logP.
  • the logP values of many perfume ingredients have been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP" program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database.
  • ClogP The "calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990).
  • the fragment approach is based on the chemical structure of each perfume ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding.
  • the ClogP values which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of perfume ingredients which are useful herein.
  • the blooming perfume composition herein used comprises one or more perfume ingredients selected from two groups of perfumes.
  • the first perfume group is characterised by having boiling point of 250 °C or less and ClogP of 3.0 or less. More preferably ingredients of the first perfume group have boiling point of 240°C or less, most preferably 235 °C or less and a ClogP value of 2.5 or less.
  • the first group of perfume ingredients is preferably present at a level of at least about 7.5%, more preferably at least about 15% and most preferably about at least 25% by weight of the blooming perfume composition.
  • the second perfume group is characterised by having boiling point of 250 °C or less and ClogP of greater than 3.0. More preferably ingredients of the second perfume group have boiling point of 240 °C or less, most preferably 235 °C or less and a ClogP value of greater than 3.2.
  • the second perfume group is preferably present at a level of at least about 20%, preferably at least about 35% and most preferably at least about 40% by weight of the blooming perfume composition.
  • the blooming perfume composition comprises at least one perfume from the first group of perfume ingredients and at least one perfume from the second group of perfume ingredients. More preferably the blooming perfume composition comprises a plurality of ingredients chosen from the first group of perfume ingredients and a plurality of ingredients chosen from the second group of perfume ingredients.
  • the blooming perfume composition comprises at least one perfume ingredient selected from either the first and/or second group of perfume ingredients which is present in an amount of at least 7% by weight of the blooming perfume composition, preferably at least 8.5% of the perfume composition, and most preferably, at least 10% of the perfume composition.
  • compositions for use herein have a weight ratio of the odor masking perfume or perfume base to the blooming perfume from about 10:1 to about 1:10, preferably from about 4:1 to about 1:4 and more preferably from about 3:1 to about 1:2.
  • the overall odor-masking blooming perfume composition preferably comprises from about 0.5% to about 40%, preferably from about 2% to about 35%, more preferably from about 5% to about 30%, more preferably from about 7% to about 20% by weight of the overall composition of ionone or mixtures thereof.
  • composition can also comprise an organic solvent system and an odor-masking blooming perfume composition comprising:
  • compositions can additionally comprise a cyclodextrin, in order to help control solvent malodor.
  • Cyclodextrins suitable for use herein are those capable of selectively absorbing solvent malodor causing molecules without detrimentally affecting the odor masking or perfume molecules.
  • Compositions for use herein comprise from about 0.1 to about 3%, preferably from about 0.5 to about 2% of cyclodextrin by weight of the composition.
  • cyclodextrin includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof.
  • the alpha-cyclodextrin consists of six glucose units
  • the beta-cyclodextrin consists of seven glucose units
  • the gamma-cyclodextrin consists of eight glucose units arranged in a donut-shaped ring.
  • the specific coupling and conformation of the glucose units give the cyclodextrins a rigid, conical molecular structure with a hollow interior of a specific volume.
  • the "lining" of the internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms, therefore this surface is fairly hydrophobic.
  • the unique shape and physical-chemical property of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules which can fit into the cavity. Malodor molecules can fit into the cavity.
  • cyclodextrins are highly water-soluble such as, alpha-cyclodextrin and derivatives thereof, gamma-cyclodextrin and derivatives thereof, derivatised beta-cyclodextrins, and/or mixtures thereof.
  • the derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups.
  • Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a -CH 2 -CH(OH)-CH 3 or a -CH 2 CH 2 -OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3(dimethylamino)propyl ether, wherein R is CH 2 -CH(OH)-CH 2 -N(CH 3 ) 2 which is cationic at low pH; quaternary ammonium, e.g
  • Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature.
  • preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin.
  • Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution.
  • Methylated cyclodextrin derivatives typically have a degree of substitution of from about 1 to about 18, preferably from about 3 to about 16.
  • a known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl- ⁇ -cyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14.
  • a preferred, more commercially available methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin having a degree of substitution of about 12.6.
  • the preferred cyclodextrins are available, e.g., from American Maize-Products Company and Wacker Chemicals (USA), Inc. Hydroxypropyl beta-cyclodextrin, avalaible from Cerestar, is preferred for use herein.
  • compositions of the present invention are especially useful in direct application for pre-treatment of cookware or tableware soiled with cooked-, baked- or burnt-on residues (or any other highly dehydrated soils).
  • the compositions are applied to the soiled substrates in the form for example of a spray or foam prior to automatic dishwashing, manual dishwashing, rinsing or wiping.
  • the pre-treated cookware or tableware can feel very slippery and as a consequence difficult to handle during and after the rinsing process. This can be overcome using divalent cations such as magnesium and calcium salts, especially suitable for use herein is magnesium chloride.
  • compositions of the invention can also be used as automatic dishwashing detergent compositions or as a component thereof.
  • the invention provides a method of removing cooked-, baked- or burnt-on soils from cookware and tableware comprising treating the cookware/tableware with the hard surface cleaning composition of the invention.
  • a method of removing cooked-, baked- or burnt-on polymerised grease soils or carbohydrate soils from metallic cookware and tableware comprising treating the cookware/tableware with the hard surface cleaning of the present invention.
  • Preferred methods comprise the step of pre-treating the cookware/tableware with the composition of the invention prior to manual or automatic dishwashing.
  • the process of removing of cooked-, burnt- and baked-on soils can be facilitated if the soiled substrate is covered with cling film after the cleaning composition of the invention has been applied in order to allow swelling of the soil to take place.
  • the cling film is left in place for a period of about 1 hour or more, preferably for about 6 hours or more.
  • a hard surface cleaning product comprising the hard surface cleaning composition of the invention and a spray dispenser.
  • the physical properties of the composition and the geometrical characteristic of the spray dispenser in combination are such as to provide spray droplets with an average equivalent geometric diameter from about 3 ⁇ m to about 10 ⁇ m, preferably from about 4 ⁇ m to about 7 ⁇ m, as measured using a TSI Aerosizer, such droplet size range being optimum from the viewpoint of odor impression and reduced malodor characteristics.
  • Suitable spray dispensers include hand pump (sometimes referred to as "trigger") devices, pressurized can devices, electrostatic spray devices, etc.
  • the present invention envisages shear thinning hard surface cleaning compositions for the pre-treatment of cookware and tableware soiled with cooked-, baked- or burnt-on soils in order to facilitate the subsequent cleaning process. This is mainly achieved by sprayable compositions containing a soil swelling agent and a thickening system. The compositions are sprayable and have an adequate cling to provide soil swelling effect. The invention also envisages methods for the removal of the soils mentioned above.
  • Soil swelling agent is a substance or composition effective in swelling cooked-, baked- and burnt-on soils as disclosed above.
  • Preferred soil swelling agents for use herein include organoamine solvents.
  • Spreading auxiliary is a substance or composition having surface tension lowering properties as described above.
  • Suitable spreading auxiliaries for use herein include surfactants (especially those having a surface tension of less than about 25 mN/m) such as silicone surfactants and amine oxide surfactants, organic solvents and mixtures thereof.
  • organic solvents for use herein should be selected so as to be compatible with the tableware/cookware as well as with the different parts of an automatic dishwashing machine.
  • the solvent system should be effective and safe to use having a volatile organic content above 1.35 gramforce/cm 2 (1 mm Hg) (and preferably above 0.135 gramforce/cm 2 (0.1 mm Hg)) of less than about 50%, preferably less than about 30%, more preferably less than about 10% by weight of the solvent system. Also they should have very mild pleasant odors.
  • the individual organic solvents used herein generally have a boiling point above about 150°C, flash point above about 50°C, preferably below 100°C and vapor pressure below about 1.35 gramforce/cm 2 (1 mm Hg), preferably below 0.135 gramforce/cm 2 (0.1 mm Hg) at 25°C and atmospheric pressure.
  • the individual organic solvents preferably have a molar volume of less than about 500, preferably less than about 250, more preferably less than about 200 cm 3 /mol, these molar volumes being preferred from the viewpoint of providing optimum soil penetration and swelling.
  • Solvents that can be used herein include: i) alcohols, such as benzyl alcohol, 1,4-cyclohexanedimethanol, 2-ethyl-1-hexanol, furfuryl alcohol, 1,2-hexanediol and other similar materials; ii) amines, such as alkanolamines (e.g.
  • primary alkanolamines monoethanolamine, monoisopropanolamine, diethylethanolamine, ethyl diethanolamine, beta-aminoalkanols
  • secondary alkanolamines diethanolamine, diisopropanolamine, 2-(methylamino)ethanol
  • ternary alkanolamines triethanolamine, triisopropanolamine
  • alkylamines e.g.
  • primary alkylamines monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine, cyclohexylamine), secondary alkylamines: (dimethylamine), alkylene amines (primary alkylene amines: ethylenediamine, propylenediamine) and other similar materials; iii) esters, such as ethyl lactate, methyl ester, ethyl acetoacetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate and other similar materials; iv) glycol ethers, such as ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol
  • Preferred solvents to be used herein as soil swelling agents comprise alkanolamines, especially monoethanolamine, beta-aminoalkanols, especially 2-amine-2methyl-propanol (since it has the lowest molecular weight of any beta-aminoalkanol which has the amine group attached to a tertiary carbon, therefore minimize the reactivity of the amine group) and mixtures thereof.
  • Preferred solvents for use herein as spreading auxiliaries comprise glycols and glycol ethers, especially diethylene glycol monobutyl ether, propylene glycol butyl ether and mixtures thereof.
  • the hard surface cleaning compositions herein can comprise additional components inclusive of surfactants other that the wetting agents hereinbefore described, builders, enzymes, bleaching agents, alkalinity sources, thickeners, stabilising components, perfumes, abrasives, etc.
  • the compositions can also comprise organic solvents having a carrier or diluent function (as opposed to soil swelling or spreading) or some other specialised function.
  • the compositions can be dispensed from any suitable device, such as bottles (pump assisted bottles, squeeze bottles), paste dispensers, capsules, pouches and multi-compartment pouches.
  • the detergent surfactant is preferably low foaming by itself or in combination with other components (i.e. suds suppressers).
  • the detergent surfactant is preferably foamable in direct application but low foaming in automatic dishwashing use.
  • Surfactants suitable herein include anionic surfactants such as alkyl sulfates, alkyl ether sulfates, alkyl benzene sulfonates, alkyl glyceryl sulfonates, alkyl and alkenyl sulphonates, alkyl ethoxy carboxylates, N-acyl sarcosinates, N-acyl taurates and alkyl succinates and sulfosuccinates, wherein the alkyl, alkenyl or acyl moiety is C 5 -C 20 , preferably C 10 -C 18 linear or branched; cationic surfactants such as chlorine esters (US-A-4228042, US-A-4239660 and US-A-4260529) and mono C 6 -C 16 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups; low and
  • Surfactants suitable herein are disclosed, for example, in US-A-3,929,678 , US-A-4,259,217, EP-A-0414 549, WO-A-93/08876 and WO-A-93/08874.
  • Surfactants are typically present at a level of from about 0.2% to about 30% by weight, more preferably from about 0.5% to about 10% by weight, most preferably from about 1% to about 5% by weight of composition.
  • Preferred surfactant for use herein are low foaming and include low cloud point nonionic surfactants and mixtures of higher foaming surfactants with low cloud point nonionic surfactants which act as suds suppresser therefor.
  • Builders suitable for use in cleaning compositions herein include water-soluble builders such as citrates, carbonates and polyphosphates e.g. sodium tripolyphosphate and sodium tripolyphosphate hexahydrate, potassium tripolyphosphate and mixed sodium and potassium tripolyphosphate salts; and partially water-soluble or insoluble builders such as crystalline layered silicates (EP-A-0164514 and EP-A-0293640) and aluminosilicates inclusive of Zeolites A, B, P, X, HS and MAP.
  • the builder is typically present at a level of from about 1% to about 80% by weight, preferably from about 10% to about 70% by weight, most preferably from about 20% to about 60% by weight of composition.
  • compositions for use herein comprise silicate in order to prevent damage to aluminium and some painted surfaces.
  • Amorphous sodium silicates having an SiO 2 :Na 2 O ratio of from 1.8 to 3.0, preferably from 1.8 to 2.4, most preferably 2.0 can also be used herein although highly preferred from the viewpoint of long term storage stability are compositions containing less than about 22%, preferably less than about 15% total (amorphous and crystalline) silicate.
  • Enzymes suitable herein include bacterial and fungal cellulases such as Carezyme and Celluzyme (Novo Nordisk A/S); peroxidases; lipases such as Amano-P (Amano Pharmaceutical Co.), M1 Lipase R and Lipomax R (Gist-Brocades) and Lipolase R and Lipolase Ultra R (Novo); cutinases; proteases such as Esperase R , Alcalase R , Durazym R and Savinase R (Novo) and Maxatase R , Maxacal R , Properase R and Maxapem R (Gist-Brocades); and ⁇ and ⁇ amylases such as Purafect Ox Am R (Genencor) and Termamyl R , Ban R , Fungamyl R , Duramyl R , and Natalase R (Novo); and mixtures thereof. Enzymes are preferably added herein as prills, granulates, or cogranulates at
  • Bleaching agents suitable herein include chlorine and oxygen bleaches, especially inorganic perhydrate salts such as sodium perborate mono-and tetrahydrates and sodium percarbonate optionally coated to provide controlled rate of release (see, for example, GB-A-1466799 on sulfate/carbonate coatings), preformed organic peroxyacids and mixtures thereof with organic peroxyacid bleach precursors and/or transition metal-containing bleach catalysts (especially manganese or cobalt).
  • Inorganic perhydrate salts are typically incorporated at levels in the range from about 1% to about 40% by weight, preferably from about 2% to about 30% by weight and more preferably from abut 5% to about 25% by weight of composition.
  • Peroxyacid bleach precursors preferred for use herein include precursors of perbenzoic acid and substituted perbenzoic acid; cationic peroxyacid precursors; peracetic acid precursors such as TAED, sodium acetoxybenzene sulfonate and pentaacetylglucose; pemonanoic acid precursors such as sodium 3,5,5-trimethylhexanoyloxybenzene sulfonate (iso-NOBS) and sodium nonanoyloxybenzene sulfonate (NOBS); amide substituted alkyl peroxyacid precursors (EP-A-0170386); and benzoxazin peroxyacid precursors (EP-A-0332294 and EP-A-0482807).
  • Bleach precursors are typically incorporated at levels in the range from about 0.5% to about 25%, preferably from about 1% to about 10% by weight of composition while the preformed organic peroxyacids themselves are typically incorporated at levels in the range from 0.5% to 25% by weight, more preferably from 1% to 10% by weight of composition.
  • Bleach catalysts preferred for use herein include the manganese triazacyclononane and related complexes (US-A-4246612, US-A-5227084); Co, Cu, Mn and Fe bispyridylamine and related complexes (US-A-5114611); and pentamine acetate cobalt(III) and related complexes(US-A-4810410).
  • the suds suppressers suitable for use herein include nonionic surfactants having a low cloud point.
  • Cloud point is a well known property of nonionic surfactants which is the result of the surfactant becoming less soluble with increasing temperature, the temperature at which the appearance of a second phase is observable is referred to as the “cloud point” (See Kirk Othmer, pp. 360-362).
  • a “low cloud point” nonionic surfactant is defined as a nonionic surfactant system ingredient having a cloud point of less than 30° C., preferably less than about 20° C., and even more preferably less than about 10° C., and most preferably less than about 7.5° C.
  • Typical low cloud point nonionic surfactants include nonionic alkoxylated surfactants, especially ethoxylates derived from primary alcohol, and polyoxypropylene/polyoxyethylene/polyoxypropylene (PO/EO/PO) reverse block polymers.
  • low cloud point nonionic surfactants include, for example, ethoxylated-propoxylated alcohol (e.g., Olin Corporation's Poly-Tergent® SLF18) and epoxy-capped poly(oxyalkylated) alcohols (e.g., Olin Corporation's Poly-Tergent® SLF18B series of nonionics, as described, for example, in US-A-5,576,281).
  • Preferred low cloud point surfactants are the ether-capped poly(oxyalkylated) suds suppresser having the formula: wherein R 1 is a linear, alkyl hydrocarbon having an average of from about 7 to about 12 carbon atoms, R 2 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms, R 3 is a linear, alkyl hydrocarbon of about 1 to about 4 carbon atoms, x is an integer of about 1 to about 6, y is an integer of about 4 to about 15, and z is an integer of about 4 to about 25.
  • R I is selected from the group consisting of linear or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic hydrocarbon radicals having from about 7 to about 12 carbon atoms
  • R II may be the same or different, and is independently selected from the group consisting of branched or linear C 2 to C 7 alkylene in any given molecule
  • n is a number from 1 to about 30
  • R III is selected from the group consisting of:
  • suitable components herein include organic polymers having dispersant, anti-redeposition, soil release or other detergency properties invention in levels of from about 0.1% to about 30%, preferably from about 0.5% to about 15%, most preferably from about 1% to about 10% by weight of composition.
  • Preferred anti-redeposition polymers herein include acrylic acid containing polymers such as Sokalan PA30, PA20, PA15, PA10 and Sokalan CP10 (BASF GmbH), Acusol 45N, 480N, 460N (Rohm and Haas), acrylic acid/maleic acid copolymers such as Sokalan CP5 and acrylic/methacrylic copolymers.
  • Preferred soil release polymers herein include alkyl and hydroxyalkyl celluloses (US-A-4,000,093), polyoxyethylenes, polyoxypropylenes and copolymers thereof, and nonionic and anionic polymers based on terephthalate esters of ethylene glycol, propylene glycol and mixtures thereof.
  • Heavy metal sequestrants and crystal growth inhibitors are suitable for use herein in levels generally from about 0.005% to about 20%, preferably from about 0.1% to about 10%, more preferably from about 0.25% to about 7.5% and most preferably from about 0.5% to about 5% by weight of composition, for example diethylenetriamine penta (methylene phosphonate), ethylenediamine tetra(methylene phosphonate) hexamethylenediamine tetra(methylene phosphonate), ethylene diphosphonate, hydroxyethylene-1,1-diphosphonate, nitrilotriacetate, ethylenediaminotetracetate, ethylenediamine-N,N'-disuccinate in their salt and free acid forms.
  • diethylenetriamine penta methylene phosphonate
  • ethylene diphosphonate hydroxyethylene-1,1-d
  • compositions herein can contain a corrosion inhibitor such as organic silver coating agents in levels of from about 0.05% to about 10%, preferably from about 0.1% to about 5% by weight of composition (especially paraffins such as Winog 70 sold by Wintershall, Salzbergen, Germany), nitrogen-containing corrosion inhibitor compounds (for example benzotriazole and benzimadazole - see GB-A-1137741) and Mn(II) compounds, particularly Mn(II) salts of organic ligands in levels of from about 0.005% to about 5%, preferably from about 0.01% to about 1%, more preferably from about 0.02% to about 0.4% by weight of the composition.
  • a corrosion inhibitor such as organic silver coating agents in levels of from about 0.05% to about 10%, preferably from about 0.1% to about 5% by weight of composition (especially paraffins such as Winog 70 sold by Wintershall, Salzbergen, Germany), nitrogen-containing corrosion inhibitor compounds (for example benzotriazole and benzimadazole - see GB-A-11
  • Suitable components herein include colorants, water-soluble bismuth compounds such as bismuth acetate and bismuth citrate at levels of from about 0.01% to about 5%, enzyme stabilizers such as calcium ion, boric acid, propylene glycol and chlorine bleach scavengers at levels of from about 0.01% to about 6%, lime soap dispersants (see WO-A-93/08877), suds suppressors (see WO-93/08876 and EP-A-0705324), polymeric dye transfer inhibiting agents, optical brighteners, perfumes, fillers and clay.
  • enzyme stabilizers such as calcium ion, boric acid, propylene glycol and chlorine bleach scavengers at levels of from about 0.01% to about 6%
  • lime soap dispersants see WO-A-93/08877
  • suds suppressors see WO-93/08876 and EP-A-0705324
  • polymeric dye transfer inhibiting agents such as optical brighteners, perfumes, fillers
  • Liquid detergent compositions can contain water and other volatile solvents as carriers.
  • Low quantities of low molecular weight primary or secondary alcohols such as methanol, ethanol, propanol and isopropanol can be used in the liquid detergent of the present invention.
  • Other suitable carrier solvents used in low quantities includes glycerol, propylene glycol, ethylene glycol, 1,2-propanediol, sorbitol and mixtures thereof.
  • the odor masking base (which term includes fully-formulated odor-masking perfumes or a base composition for use therein) is preferably a mixture of ionones, musks and highly volatile perfumes. Concentrations of the odor masking base preferably range from about 0.001% to about 3%, more preferably from about 0.006% to about 2.5%, even more preferably from about 0.0075% to about 1%, by weight of the composition.
  • the ionones, musks and highly volatile perfumes of the odor masking base are 5 characterized in part by their respective boiling point ranges.
  • the ionones and musks preferably have a boiling point at (1.03 kgforce/cm 2 ) atmosphere of pressure of more than about 250° C whereas the highly volatile perfume components have a boiling point at 1.03 kg/force/cm 2 (atmosphere) of pressure of less than about 250° C.
  • the boiling point of many perfume materials are disclosed in, e.g., "Perfume and Flavor Chemicals (Aroma Chemicals)," S. Arctander, published by the author, 1969.
  • boiling point values can be obtained from different chemistry handbooks and databases, such as the Beilstein Handbook, Lange's Handbook of Chemistry, and the CRC Handbook of Chemistry and Physics.
  • the boiling point at normal or ambient pressure can be approximately estimated by using boiling point-pressure nomographs, such as those given in "The Chemist's Companion," A. J. Gordon and R. A. Ford, John Wiley & Sons Publishers, 1972, pp. 30-36.
  • the boiling point values can also be calculated by computer programs, based on molecular structural data, such as those described in "Computer-Assisted Prediction of Normal Boiling Points of Pyrans and Pyrroles," D.
  • the highly volatile perfume of the odor masking base comprises perfume materials which compete with the malodorous solvents to bind to the nasal receptor sites. These highly volatile perfumes are the first odors recognized and identified by the brain, and help inhibit or mask the olfactory recognition of the solvents. Concentrations of the highly volatile perfume range from about 15% to about 85%, preferably from about 20% to about 80%, more preferably from about 35% to about 75%, even more preferably from about 45% to about 65%, by weight of the odor masking base.
  • the highly volatile perfumes are more volatile than the ionone and musk components of the odor masking base, and have a boiling point of less than about 250° C, preferably less than about 230°C, more preferably less than about 220° C. under 1 atmosphere of pressure. These highly volatile perfumes are classified as either aldehydes having from about 2 to about 15 carbon atoms, esters having from about 3 to about 15 carbon atoms, alcohols having from about 4 to about 12 carbon atoms, ethers having from about 4 to about 13 carbon atoms, ketones having from about 3 to about 12 carbon atoms, or combinations thereof.
  • Nonlimiting examples of suitable aldehydes include n-decyl aldehyde, 10-undecen-1-al, dodecanal, 3,7-dimethyl-7-hydroxyoctan-1-al, 2,4-dimethyl-3-cyclohexene carboxaldehyde, benzaldehyde, anisic aldehyde, and mixtures thereof.
  • Nonlimiting examples of suitable esters include ethyl acetate, cis-3-hexenyl acetate, 2,6-dimethyl-2,6-octadien-8-yl acetate, benzyl acetate, 1,1-dimethyl-2-phenyl acetate, 2-pentyloxy allyl ester, allyl hexanoate, methyl-2-aminobenzoate, and mixtures thereof.
  • Nonlimiting examples of suitable alcohols include n-octyl alcohol, beta-gamma-hexenol, 2-trans-6-cis-nonadien-1-ol, 3,7-dimethyl-trans-2,6-octadien-1-ol, 3,7-dimethyl-6-octen-1-ol, 3,7-dimethyl-1,6-octadien-3-ol, 2,6-dimethyl-7-octen-2-ol, 2-phenylethyl alcohol, 2-cis-3,7-dimethyl-2,6-octadien-1-ol, 1-methyl-4-iso-propyl-1-cyclohexen-8-ol, and mixtures thereof.
  • Nonlimiting examples of suitable ethers include amyl cresol oxide, 4-ethoxy-1-methyl-benzol, 4-methoxy- 1-methyl benzene, methyl phenylethyl ether, and mixtures thereof.
  • ketones include dimethyl acetophenone, ethyl-n-amyl ketone, 2-heptanone, 2-octanone, 3-methyl-2-(cis-2-penten- 1-yl)-2-cyclopenten-1-one, 1-1-methyl-4-iso-propenyl-6-cyclohexen-2-one, para-tertiary-amyl cyclohexanone, and mixtures thereof.
  • Preferred highly volatile perfumes include 2-pentyloxy allyl ester sold under the tradename Allyl Amyl Glycolate (available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A.); benzaldehyde sold under the tradename Amandol (available from Rhone-Poulenc, Inc located in Princeton, N.J., U.S.A.); cis-3-hexenyl acetate sold under the tradename Verdural extra (available from International Flavors and Fragrances, Inc.
  • Allyl Amyl Glycolate available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A.
  • Amandol available from Rhone-Poulenc, Inc located in Princeton, N.J., U.S.A.
  • Verdural extra available from International Flavors and Fragrances, Inc.
  • Nonlimiting examples of suitable highly volatile perfumes and their respective boiling point values under 1 atmosphere of pressure are given in US-A-5,919,440.
  • the odor masking base preferably comprises an ionone perfume component (i.e. an ionone or mixture of ionones) at concentrations ranging from about 1% to about 80%, preferably from about 5% to about 70%, more preferably from about 10% to about 60%, more preferably from about 15% to about 40% by weight of the odor masking base.
  • Ionones are a well known class of perfume chemicals derived from natural oils or manufactured synthetically, which are typically colorless or pale yellow liquids exhibiting woody violet-like odors.
  • the ionone perfume for use in the odor masking base has a boiling point under 1 atmosphere of pressure of more than about 250° C., preferably more than about 255° C., even more preferably more than about 260° C., wherein the ionone perfume is preferably selected from methyl ionones, alpha ionones, beta ionones, gamma ionones, or combinations thereof.
  • Nonlimiting examples of suitable ionones include 1-(2,6,6-Trimethyl-2-cyclohexene-1-yl)-1,6-heptadien-3-one, 2-Allyl-para-menthene-(4(8))-ono-3, Pseudo-allyl-alpha-ionone, alpha-Citrylidene cyclopentanone, 5-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-4-methyl-4-penten-3-one, 6-(2,6,6-Trimethyl-2-cyclohexen-1-yl)-1-methyl-5-hexen-4-one, 2,6,6-Trimethyl cyclohexyl-1-butenone-3, Dihydro-alpha-ionone, 4-(2,6,6-Trimethylcyclohexen-1-yl)-butan-2-one, 4-(2-Methylene-6,6-dimethylcyclohexyl)-butan-2-one, 1-(2,5,6,6-Tetramethyl
  • Preferred ionones include 4-(2,6,6-Trimethyl-3-cyclohexen-1-yl)-3-methyl-3-buten-2-one sold under the tradename Isoraldeine (available from Givaudan Roure, Corp. located in Teaneck, N.J., U.S.A.); 5-(2-Methylene-6,6-dimethylcyclohexyl)-4-penten-3-one sold under the tradename gamma-Methyl Ionone (available from Givaudan Roure, Corp.
  • Isoraldeine available from Givaudan Roure, Corp. located in Teaneck, N.J., U.S.A.
  • 5-(2-Methylene-6,6-dimethylcyclohexyl)-4-penten-3-one sold under the tradename gamma-Methyl Ionone (available from Givaudan Roure, Corp.
  • Ionones may be incorporated into the odor masking base as one or more individual perfume chemicals or as a specialty perfume containing a combination of perfume chemicals including ionone perfume chemicals.
  • ionone specialty perfumes include Alvanone Extra available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A., Irisia Base available from Firmenich, Inc located in Princeton, N.J., U.S.A., Irival available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A., Iritone available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A., and mixtures thereof.
  • the musk and highly volatile perfumes for use in the odor masking base can also be incorporated into the base as one or more individual perfume chemicals, or as a specialty perfume containing a combination of perfume chemicals.
  • a nonlimiting example of a preferred highly volatile specialty perfume include Cassis Base 345-B available from Firmenich, Inc. located in Princeton, N.J., U.S.A..
  • suitable ionone perfumes and their respective boiling point values under 1 atmosphere of pressure are given in US-A-5,919,440.
  • the odor masking base preferably comprises a musk component at concentrations of from about 5% to about 70%, preferably from about 15% to about 50%, more preferably from about 20% to about 35%, by weight of the odor masking base.
  • Musk is a well known class of perfumes chemicals that is typically in the form of a colorless or light yellow material having a distinctive, musk-like odor.
  • the musk component for use in the odor masking base must have a boiling point under 1 atmosphere of pressure of more than about 250° C., preferably more than about 255° C., even more preferably more than about 260° C., wherein the musk component is preferably a polycyclic musk, macrocyclic musk, nitrocyclic musk, or combination thereof, each preferred musk component having more than about 12 carbon atoms, preferably more than about 13 carbon atoms, more preferably more than about 15 carbon atoms.
  • Suitable polycyclic musks include 5-Acetyl-1,1,2,3,3,6-hexamethylindan, 4-Acetyl-1,1-dimethyl-6-tertiary-butylindan, 7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene, 1,1,4,4-Tetramethyl-6-ethyl-7-acetyl-1,2,3,4-tetrahydronaphthalene, 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethyl-cyclopentagamma-2-benzopyran, and mixtures thereof.
  • Suitable macrocyclic musks include cyclopentadecanolide, cyclopentadecanolone, cyclopentadecanone, 3-Methyl-1-cyclopentadecanone, cycloheptadecen-9-one-1, cycloheptadecanone, cyclohexadecen-7-olide, cyclohexadecen-9-olide, cyclohexadecanolide, ethylene tridecane dioate, 10-oxahexadecanolide, 11-oxahexadecanolide, 12-oxahexadecanolide, and mixtures thereof.
  • Suitable nitrocyclic musks include 1,1,3,3,5-Pentamethyl-4,6-dinitroindan, 2,6-Dinitro-3-methoxy-1-methyl-4-tertiary-butylbenzene, 2,6-Dimethyl-3,5-dinitro-4-tertiary-butyl-acetophenone, 2,6-Dinitro-3,4,5-trimethyl-tertiary-butyl-benzene, 2,4,6-Triinitro-1,3-dimethyl-5-tertiary-butylbenzene, and mixtures thereof.
  • Preferred musks include 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethyl-cyclopentagamma-2-benzopyran sold under the tradename Galaxolide (available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A.); cyclopentadecanolide sold under the tradename Exaltolide (available from Firmenich, Inc. located in Princeton, N.J., U.S.A.); ethylene tridecane dioate sold under the tradename Ethylene Brassylate (available from Fragrance Resource, Inc.
  • Galaxolide available from International Flavors and Fragrances, Inc. located in New York, N.Y., U.S.A.
  • Exaltolide available from Firmenich, Inc. located in Princeton, N.J., U.S.A.
  • Ethylene Brassylate available from Fragrance Resource, Inc.
  • the first and second groups of perfume ingredients of the blooming perfume composition used herein are preferably selected from the group consisting of esters, ketones, aldehydes, alcohols, derivatives thereof and mixtures thereof.
  • Table 1 provides some examples of preferred first perfume group ingredients and table 2 provides some examples of preferred second perfume group ingredients.
  • the weight ratio of second blooming perfume group ingredients to first blooming perfume group ingredients is typically at least 1, preferably at least 1.3, more preferably 1.5, and even more preferably 2.
  • the blooming perfume compositions preferably comprises at least 42.5%, more preferably at least 50%, even more preferably at least 60% of the combined first and second perfume group ingredients.
  • the odor detection threshold of an odorous material is the lowest vapor concentration of that material which can be detected.
  • the odor detection threshold and some odor detection threshold values are discussed in, e.g., "Standardized Human Olfactory Thresholds", M. Devos et al, IRL Press at Oxford University Press, 1990, and "Compilation of Odor and Taste Threshold Values Data", F. A. Fazzalari, editor, ASTM Data Series DS 48A, American Society for Testing and Materials, 1978.
  • Non-limiting examples of perfume ingredients that have low odor detection threshold values useful in the present invention include coumarin, vanillin, ethyl vanillin, methyl dihydro isojasmonate, 3-hexenyl salicylate, isoeugenol, lyral, gamma-undecalactone, gamma-dodecalactone, methyl beta naphthyl ketone, and mixtures thereof. These materials are preferably present at low levels in addition to the blooming and optionally delayed blooming ingredients, typically less than 5%, preferably less than 3%, more preferably less than 2%, by weight of the blooming perfume compositions used herein.
  • Examples 1 to 12 illustrate pre-treatment compositions used to facilitate the removal of cooked-on, baked-on and burnt-on food soils prior to the dishwashing process.
  • the compositions of the examples are applied to a dishware load by spraying from a spray dispenser of trigger type.
  • the load comprises different soils and different substrates: lasagne baked for 2 hours at 140°C on Pyrex, lasagne cooked for 2 hours at 150°C on stainless steel, potato and cheese cooked for 2 hours at 150°C on stainless steel, egg yolk cooked for 2 hours at 150°C on stainless steel and sausage cooked for 1 hour at 120°C followed by 1 hour at 180°C.
  • the dishware load is allowed to soak for 10 minutes in the compositions of the examples, then the dishware is rinsed under cold tap water.
  • the dishware load is thereafter washed either manually or in an automatic dishwashing machine, for example in a Bosch 6032 dishwashing machine, at 55°C without prewash, using a typical dishwashing detergent compositions containing, for example, alkalinity source, builders, enzymes, bleach, bleach catalyst, non-ionic surfactant, suds- suppresser, silver corrosion inhibitor, soil suspending polymers, etc.
  • a typical dishwashing detergent compositions containing, for example, alkalinity source, builders, enzymes, bleach, bleach catalyst, non-ionic surfactant, suds- suppresser, silver corrosion inhibitor, soil suspending polymers, etc.
  • the dishware load treated with compositions of the examples and thereafter washed in the dishwashing machines present excellent removal of cooked-on, baked-on and burnt-on food soils.
  • Example 1 2 3 4 Pre-treatment composition Laponite clay 1.0 0.5 0.8 0.3 Sodium silicate 0.3 0.3 0.3 0.3 Sodium cumene sulfonate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.3 0.3 0.3 0.3 0.3 Sodium hydroxide 0.5 1.0 1.0 1.0 1.0 1.0 Butyl Carbitol 5.00 5.00 5.00 Dowanol PNB 5.00 5.00 5.00 MEA 5.00 5.00 5.00 5.00 Carbonate 2.00 2.00 2.00 2.00 MgCl
  • All the examples have a liquid surface tension at 25°C of below 24.5 mN/m, a pH of at least 12 and a 45 min soil swelling index on polymerized grease soil/stainless steel substrate of at least 200%.
  • Examples 1 to 12 are shear thinning as described herein above.
  • the masking perfume composition is given in the following table: Ingredient % Allyl amyl glycolate 0.5 Alvanone extra 2.0 Benzaldehyde 0.5 Cassis base 345 3.0 Cis-3-hexenyl acetate 1.0 Decyl aldehyde 01.0 Dihydro Myrcenol 63.0 Exaltolide 4.50 Habanolide 10.50 Ionone gamma methyl 3.0 Irisia base 10.00 Orivone 1.0
  • the blooming perfume composition is selected from one of the following examples numbered A to I (compositions given as % by weigh of the perfume).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Surgical Instruments (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Claims (10)

  1. Composition de nettoyage des surfaces dures pour enlever des salissures d'aliments cuits, cuits au four ou brûlés dessus des batteries de cuisine et plats, la composition comprenant un agent de gonflement des salissures et un système épaississant comprenant un agent épaississant à base d'argile de type smectite synthétique ayant une grosseur moyenne de plaquette inférieure à 100 nm.
  2. Composition selon la revendication 1, dans laquelle le système épaississant comprend un mélange d'un agent épaississant à base d'argile de type smectite synthétique ayant une grosseur moyenne de plaquette inférieure à environ 100 nm et une gomme naturelle.
  3. Composition selon la revendication 1 ou 2, comprenant un système de solvant organique comprenant au moins un composant de solvant agissant comme agent de gonflement des salissures.
  4. Composition de nettoyage des surfaces dures pour éliminer des salissures d'aliments cuits, cuits au four ou brûlés dessus des batteries de cuisine et plats selon l'une quelconque des revendications précédentes dans laquelle la composition comprend en outre un système de solvant organique.
  5. Composition selon l'une quelconque des revendications précédentes où la composition pulvérisée sur une surface verticale en acier inoxydable a une vélocité de flux inférieure à environ 1 cm/s, de préférence inférieure à environ 0,1 cm/s.
  6. Composition selon l'une quelconque des revendications précédentes ayant des propriétés de rhéofluidification.
  7. Composition selon l'une quelconque des revendications précédentes ayant une viscosité supérieure à environ 1 Pa.s, de préférence comprise entre environ 2 Pa.s et environ 4 Pa.s à 0,63 tr/min (6 rpm), inférieure à environ 2 Pa.s, de préférence comprise entre environ 0,8 Pa.s et environ 1,2 Pa.s à 3,14 tr/min (30 rpm) et inférieure à environ 1 Pa.s, de préférence comprise entre environ 0,3 Pa.s et environ 0,5 Pa.s à 6,28 tr/min (60 rpm), mesurée avec un viscosimètre à cylindre Brookfield (modèle LVDII) utilisant 10 mL d'échantillon, un tourillon S-31.
  8. Composition selon l'une quelconque des revendications précédentes dans laquelle la composition a un pH, tel que mesuré dans 10 % de solution dans de l'eau distillée, compris entre environ 11 et environ 14, de préférence entre environ 12 et environ 13.
  9. Composition selon l'une quelconque des revendications précédentes où la composition comprend d'environ 0,05 à environ 10 %, de préférence d'environ 0,1 à environ 2 % d'un agent tensioactif choisi parmi les agents tensioactifs anioniques, amphotères, zwittérioniques, non ioniques et semi-polaires et leurs mélanges.
  10. Produit de nettoyage des surfaces dures comprenant la composition de nettoyage des surfaces dures selon l'une quelconque des revendications 1 à 9 et un atomiseur, et où les gouttelettes d'aérosol ont un diamètre géométrique équivalent moyen compris entre environ 3 µm et environ 10 µm, de préférence entre environ 4 µm et environ 7 µm, tel que mesuré à l'aide d'un Aerosizer TSI.
EP01959008A 2000-07-19 2001-07-18 Compositions nettoyantes Expired - Lifetime EP1305391B1 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
PCT/US2000/019619 WO2002008370A2 (fr) 2000-07-19 2000-07-19 Composition de nettoyage
WOPCT/US00/19619 2000-07-19
WOPCT/US00/20255 2000-07-25
PCT/US2000/020255 WO2002008371A2 (fr) 2000-02-17 2000-07-25 Composition de lavage
PCT/US2000/034906 WO2002008374A1 (fr) 2000-07-19 2000-12-21 Composition de nettoyage
WOPCT/US00/34907 2000-12-21
WOPCT/US00/34906 2000-12-21
PCT/US2000/034907 WO2002008373A1 (fr) 2000-07-19 2000-12-21 Composition de nettoyage
US26848701P 2001-02-13 2001-02-13
US268487P 2001-02-13
PCT/US2001/022706 WO2002006436A1 (fr) 2000-07-19 2001-07-18 Compositions nettoyantes

Publications (2)

Publication Number Publication Date
EP1305391A1 EP1305391A1 (fr) 2003-05-02
EP1305391B1 true EP1305391B1 (fr) 2007-01-03

Family

ID=33479087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01959008A Expired - Lifetime EP1305391B1 (fr) 2000-07-19 2001-07-18 Compositions nettoyantes

Country Status (8)

Country Link
EP (1) EP1305391B1 (fr)
JP (1) JP2004519527A (fr)
AT (1) ATE350453T1 (fr)
AU (1) AU2001280605A1 (fr)
CA (1) CA2415302A1 (fr)
DE (1) DE60125775T2 (fr)
MX (1) MXPA03000487A (fr)
WO (1) WO2002006436A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038506A (zh) * 2015-08-03 2015-11-11 芜湖真空科技有限公司 Low-e玻璃用清洗剂及其制备方法和应用
WO2019102039A1 (fr) * 2017-11-27 2019-05-31 Bavariapool Thomas Emmerichs Gesellschaft Mit Beschränkter Haftung Nouvelle composition de nettoyage

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683036B2 (en) 2000-07-19 2004-01-27 The Procter & Gamble Company Cleaning composition
DE10136000A1 (de) * 2001-07-24 2003-02-13 Henkel Kgaa Maschinelles Geschirrspülmittel mit Tensiden niederer dynamischer Oberflächenspannung
US7008911B2 (en) 2002-09-06 2006-03-07 Ecolab, Inc. Non-surfactant solubilizing agent
GB0229501D0 (en) * 2002-12-19 2003-01-22 Unilever Plc Cleaning device
US6767881B1 (en) 2003-03-19 2004-07-27 Ecolab, Inc. Cleaning concentrate
US20050003975A1 (en) * 2003-06-18 2005-01-06 Browne Yvonne Bridget Blooming soap bars
US8814861B2 (en) 2005-05-12 2014-08-26 Innovatech, Llc Electrosurgical electrode and method of manufacturing same
GB0711992D0 (en) 2007-06-21 2007-08-01 Reckitt Benckiser Inc Alkaline hard surface cleaning composition
JP5985429B2 (ja) * 2013-03-27 2016-09-06 第一工業製薬株式会社 液体洗浄剤組成物
JP6158060B2 (ja) * 2013-12-10 2017-07-05 花王株式会社 半田フラックス残渣除去用洗浄剤組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102573A (en) * 1987-04-10 1992-04-07 Colgate Palmolive Co. Detergent composition
US4877544A (en) * 1987-04-17 1989-10-31 Lever Brothers Company Oxidation stable surfactants
WO1994028108A1 (fr) * 1993-06-01 1994-12-08 Ecolab Inc. Nettoyant epaissi pour surfaces dures
JPH08151597A (ja) * 1994-11-29 1996-06-11 Lion Corp 液体洗浄剤組成物
JPH08170099A (ja) * 1994-12-20 1996-07-02 Johnson Kk 油脂汚れ用洗浄方法及び洗浄剤
US5929007A (en) * 1996-05-24 1999-07-27 Reckitt & Colman Inc. Alkaline aqueous hard surface cleaning compositions
CA2220312C (fr) * 1997-11-10 1999-11-09 Murugesu Nandhakumaran Recepteur radio et reemetteur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105038506A (zh) * 2015-08-03 2015-11-11 芜湖真空科技有限公司 Low-e玻璃用清洗剂及其制备方法和应用
WO2019102039A1 (fr) * 2017-11-27 2019-05-31 Bavariapool Thomas Emmerichs Gesellschaft Mit Beschränkter Haftung Nouvelle composition de nettoyage

Also Published As

Publication number Publication date
EP1305391A1 (fr) 2003-05-02
MXPA03000487A (es) 2003-06-24
DE60125775T2 (de) 2007-10-18
ATE350453T1 (de) 2007-01-15
CA2415302A1 (fr) 2002-01-24
WO2002006436A1 (fr) 2002-01-24
AU2001280605A1 (en) 2002-01-30
DE60125775D1 (de) 2007-02-15
JP2004519527A (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
EP1305392B1 (fr) Compositions nettoyantes
EP1493803B1 (fr) Compositions de nettoyage
US6683036B2 (en) Cleaning composition
US6723692B2 (en) Cleaning composition
US20050233925A1 (en) Cleaning composition
EP1430106B1 (fr) Composition de nettoyage
US20020169090A1 (en) Cleaning composition
EP1409630B1 (fr) Composition de nettoyage de surface dure comprenant un systeme de solvant
EP1305391B1 (fr) Compositions nettoyantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030214

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040830

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60125775

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280389

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130624

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130709

Year of fee payment: 13

Ref country code: DE

Payment date: 20130731

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130712

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60125775

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140718

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60125775

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200610

Year of fee payment: 20