EP1301351B1 - Reglage du moment de declenchement d'une buse de tete d'impression - Google Patents
Reglage du moment de declenchement d'une buse de tete d'impression Download PDFInfo
- Publication number
- EP1301351B1 EP1301351B1 EP00938328A EP00938328A EP1301351B1 EP 1301351 B1 EP1301351 B1 EP 1301351B1 EP 00938328 A EP00938328 A EP 00938328A EP 00938328 A EP00938328 A EP 00938328A EP 1301351 B1 EP1301351 B1 EP 1301351B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzles
- printhead
- firing
- channel
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2132—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
- B41J2/2146—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
Definitions
- the invention relates to a method of controlling the timing of the firing of printhead nozzles and to a printhead chip and printer operating according to the method.
- the above Memjet printhead is a multi-segment printhead that is developed from printhead segments that are capable of producing, for example, 1600 dpi bi-level dots of liquid ink across the full width of a page. Dots are easily produced in isolation, allowing dispersed-dot dithering to be exploited to its fullest. Color planes might be printed in perfect registration, allowing ideal dot-on-dot printing.
- the printhead enables high-speed printing using microelectromechanical ink drop technology.
- PCT/AU00/00516, PCT/AU00/00517, PACT/AU00/00511, and PCT/AU00/00754, PCT/AU00/00756 and PCT/AU00/00757 describe a print engine/controller suited to driving the above referenced page wide printhead.
- a multi-segment printhead of the above kind may field 1280 nozzles. Firing all the nozzles together would consume too much power. It could give rise to problems in terms of ink refill and nozzle interference.
- Firing logic controls the firing of nozzles. Normally the timing of firing of nozzles in a printhead is controlled externally. A typical print head is disclosed in WO 00/27640. It is desirable to reduce the complexity that arises in external printhead controllers as a consequence of this. Further, at the printhead, each of the colored inks used has different characteristics in terms of viscosity, heat profile etc. Firing pulses should therefore be generated independently for each color.
- the invention resides in control of the firing of nozzles in a printhead, the nozzles being on rows for respective ink channels in the printhead.
- Print data is loaded to respective channel shift registers for respective channels. All the print data is transferred to nozzle enable bits provided one per nozzle and the nozzles in respective channels are fired in time independent manner using separate timing generators in each channel.
- the widths and profiles of firing pulses are generated externally to the printhead.
- the pulse widths of electrical pulses by which to fire the nozzles is programmable.
- the nozzles are fired by an electrical pulse.
- the profile of the pulse is programmed to suit the ink at the nozzle.
- the printhead includes ink nozzles in multiple rows, successive rows of nozzles defining respective ink channels and an electrical pulse train fires the nozzles. Pulse profiles in the pulse train are programmed to suit the ink in respective channels.
- programmed bits loaded to a timing generator adjust the pulse profile.
- the programmed bits exist in tables loaded to the printhead, one for each channel, the tables being programmed via the printhead serial interface.
- the nozzle rows are preferably in offset pairs for each channel and firing of the offset pairs is effected by out of phase pulse trains.
- the invention resides in a method of controlling a printhead including nozzle rows, successive rows of nozzles defining respective ink channels wherein the nozzles in respective channels are similarly grouped and groups are fired successively.
- respective rows of nozzles are organized in repeated pods of nozzles along the length of each row of nozzles, the nozzles in a pod being fired one after the other along the row; successive pods of respective channels are linked as a chromapod wherein the one after the other firing of nozzles in each channel is in step along the row of nozzles in the respective pods; and blocks of chromapods are operated as a firegroup, the firegroups firing together.
- the nozzles within a single segment are grouped physically to reduce ink supply complexity and wiring complexity. They are also grouped logically to minimize power consumption and to enable a variety of printing speeds, thereby allowing speed/power consumption trade-offs to be made in different product configurations.
- FIG. 1 is seen the arrangement of nozzles in a four color printhead segment 92.
- a single printhead segment in a multi-segment printhead is typically 21mm in length (93).
- the width of the segment is typically 80 ⁇ m for bond pads 94 and other logic, plus 116 ⁇ m (95) per color contained within the segment (in high speed applications an extra color channel may be required for fixative).
- Table 1 lists the printhead segment widths for the most common printhead types. Table 1. Printhead segment widths based on number of colors #Colors Color channels Application Segment width ( ⁇ m) 3 CMY Photographic 484 4 CMYK Desktop printers 600 5 CMYK-IR Netpage-enabled 716 6 CMYK-IR-F High-speed Netpage enabled 832
- each 116 ⁇ m color band is ideally two rows of 640 nozzles, such as 96,97 for the yellow nozzles, for a total of 1280 nozzles per color.
- the number of colors determines the total number of nozzles in the segment. Table 2 lists some examples. Table 2.
- Example nozzle counts # Colors Example application Total nozzles per segment 1 K 1280 3 CMY 3840 4 CMYK 5120 6 CMYK-IR-F 7680
- FIG. 2 is seen a more detailed view of the nozzle region of the printhead of FIG. 1.
- the nozzles are typically separated by 32 ⁇ m (99), while the two rows 98,100 are offset by 16 ⁇ m (101).
- the distance from one 1600 dpi dot to the next is actually 15.875 ⁇ m, but the segment will be placed at 7.167 degrees relative to the paper such that the horizontal distance between printed dots is 15.875 ⁇ m.
- This nozzle placement gives rise to interleaved nozzles for a single line of pixels - one row prints even dots and the other prints odd dots.
- row 1 of color C is dot-line: L ⁇ ( C ⁇ 1 ) D 2 and row 2 of color C is dot-line: L ⁇ ( C ⁇ 1 ) D 2 ⁇ D 1
- Each of the colored inks used in a printhead has different characteristics in terms of viscosity, heat profile etc. Firing pulses are therefore generated independently for each color. This are explained further below.
- fixative is required for high speed printing applications on plain paper. When fixative is used it should be printed before any of the other inks are printed to that dot position.
- the fixative represents an OR of the data for that dot position. Printing fixative first also preconditions the paper so that the subsequent drops will spread to the right size.
- a single segment contains a total of 1280C nozzles, where C is the number of colors in the segment.
- a print cycle involves the firing of up to all of these nozzles, dependent on the information to be printed.
- a load cycle involves the loading up of the segment with the information to be printed during the subsequent print cycle.
- Each nozzle has an associated NozzleEnable bit that determines whether or not the nozzle will fire during the print cycle.
- the NozzleEnable bits (one per nozzle) are loaded via a set of shift registers.
- each 1280 deep shift register is comprised of two 640-deep shift registers: one for the upper nozzles, and one for the lower nozzles. Alternate bits are shifted into the alternate internal registers. As far as the external interface is concerned however, there is a single 1-bit by 1280 deep shift register.
- the load cycle is concerned with loading the segment's shift registers with the next print cycle's NozzleEnable bits.
- Each segment has C 1-bit inputs directly related to the C shift registers (where C is the number of colors in the segment). These inputs are named Dn, where n is 1 to C (for example, a 4 color segment would have 4 inputs labeled D1 , D2, D3 and D4 ).
- Dn the number of colors in the segment.
- a single pulse on the segment's 'SClk line transfers C bits into the appropriate shift registers. Alternate pulses transfer bits to the lower and upper nozzles respectively. A total of 1280 pulses are required for the complete transfer of data. Once all 1280C bits have been transferred, a single pulse on the TEn line causes the parallel transfer of data from the shift registers to the appropriate NozzleEnable bits.
- Data can be clocked into a segment at a maximum rate of 80MHz, which will load the entire 1280C bits of data in 16 ⁇ s.
- a single Memjet printhead segment contains 1280 nozzles. To fire them all at once would consume too much power and has the potential for problems in terms of ink refill and nozzle interference. This problem is made more apparent when we consider that a typical Memjet printhead is composed of multiple segments, each with 1280 nozzles.
- Nozzles are therefore grouped logically within a segment to enable a variety of printing speeds. These groupings allow speed/power consumption trade-offs to be made in different product configurations.
- nozzles of each color are fired from the segment at a time.
- the exact number of nozzles fired depends on how many colors are present in the printhead. For example, in a six color (e.g. CMYK-IR-F) printing environment, 60 nozzles are fired simultaneously. To fire all the nozzles in a segment, 128 different sets of nozzles must be fired.
- nozzles of each color are fired from the segment at a time.
- the exact number of nozzles fired depends on how many colors are present in the printhead. For example, in a six color (e.g. CMYK-IR-F) printing environment, 480 nozzles are fired simultaneously. To fire all the nozzles in a segment, 16 different sets of nozzles must be fired.
- the power consumption in the lowest-speed mode is one eighth that of the highest-speed mode. Note, however, that the energy consumed to print a page is the same in both cases.
- Nozzles are grouped logically into pods, chromapods, phasegroups, firegroups, and finally the segment itself.
- a single pod consists of 8 contiguous nozzles from a single physical row. Each nozzle produces dots 22.5 ⁇ m in diameter spaced on a 15.875 ⁇ m grid to print at 1600 dpi.
- Figure 3 shows the arrangement of a single pod, with the nozzles numbered according to the order in which they should be fired.
- nozzles are fired in this order, the relationship of nozzles and physical placement of dots on the printed page is different.
- the nozzles within a pod are 2 dots apart, for the middle dot is printed by another row of nozzles. A single row therefore represents either the odd or even dots of a color.
- One pod of each color are logically grouped together into a chromapod.
- the number of pods in a chromapod will depend on the particular application. In a monochrome printing system (such as one that prints only black), there is only a single color and hence a single pod. Photo printing application printheads require 3 colors (cyan, magenta, yellow), so printhead segments used for these applications will have 3 pods per chromapod (one pod of each color).
- a desktop printer by contrast may contain 6 pods, one for each of cyan, magenta, yellow, black, infrared and fixative.
- a chromapod represents different color components of the same horizontal set of 8 dots on different lines.
- Figure 4 illustrates a single chromapod for a 4 color CMYK printing application.
- 8 chromapods are organized into a single firegroup .
- the firegroup is so named because groups of nozzles within a firegroup are fired simultaneously during a given firing phase (this is explained in more detail below).
- the formation of a firegroup from 8 chromapods is entirely for the purposes of multi-speed printing.
- During low-speed printing only one of the eight Chromapods fires nozzles in a given firing pulse.
- all eight Chromapods fire nozzles. Consequently the low-speed print takes eight times as long as a high-speed print, since the high-speed print fires eight times as many nozzles at once.
- a firegroup therefore contains 64 nozzles for each color.
- the arrangement is shown in Figure 5, with chromapods numbered 0-7 and using a CMYK chromapod as the example. Note that the distance between adjacent chromapods is exaggerated for clarity.
- Nozzle groupings for a single segment Name of Grouping Composition Replication Ratio Nozzle Count Nozzle Base unit 1:1 1 Pod Nozzles per pod 8:1 8 Chromapod Pods per chromapod C:1 8C Firegroup Chromapods per firegroup 8:1 64C Phasegroup Firegroups per phasegroup 10:1 640C Segment Phasegroups per segment 2:1 1280C
- the print speed is programmed into the Memjet printhead by means of the serial interface.
- the interpretation of the print speed relies on an understanding of the printhead internals, which are therefore described here.
- the nozzles to be fired in a given firing pulse are determined by:
- ChromapodSelect When one of the ChromapodSelect bits is set, only the specified chromapod's nozzles will fire as determined by ChromapodSelect and NozzleSelect. When all eight of the ChromapodSelect lines are set, all of the chromapods will fire their nozzles.
- the state machine inside the printhead simply runs through NozzleSelect from 0 to 7 for each valid set of ChromapodSelect values. To run through the valid set of ChromapodSelect values, ChromapodSelect is shifted a specified number of bits.
- the state machine For the high-speed printing mode, the state machine generates the firing order over 16 phases as listed in Table 8. Table 8. High speed printing firing order Chromapod Select Nozzle Select Phases 11111111 0 Even & Odd 11111111 1 Even & Odd 11111111 2 Even & Odd 11111111 3 Even & Odd 11111111 4 Even & Odd 11111111 5 Even & Odd 11111111 6 Even & Odd 11111111 7 Even & Odd
- the firing order is similar for slower printing modes. However, instead of setting all the bits of ChromapodSelect, we simply set 1, 2 or 4 of those bits. The fewer bits that are set the fewer nozzles will fire. When only 1 bit of ChromapodSelect is set, it takes 8 times as long as the high speed mode to fire all nozzles.
- the firing order for the slowest speed printing is shown in Table 9. Table 9.
- the EvenEnable and OddEnable are separate generated signals for each color in order that the firing pulses can overlap.
- the 128 phases of a low-speed print cycle consist of 64 Even phases and 64 Odd phases.
- the 16 phases of a high-speed print cycle consist of 8 Even phases and 8 Odd phases.
- Each timing generator uses its own programmable 200-bit entry pulse profile.
- the 200 1-bit entries define a total of 2 ⁇ s where each entry defines a 10ns time interval. Since the typical duration of a firing pulse is 1.3 - 1.8 ⁇ s a 2 ⁇ s duration is adequate.
- Two 200-bit tables are therefore required for each color present on the printhead. The tables are programmed via the printhead's serial interface. It is quite reasonable for the odd and even pulse profiles to be the same, but they will typically be offset from each other by 1 ⁇ s to take account of the fact that the pulses overlap.
- Figure 7 shows example EvenEnable and OddEnable lines for a single color during a typical print cycle where the pulse is very simple.
- the pulse profile for a given color depends on the viscosity of the ink (dependent on temperature and ink characteristics) and the amount of power available to the printhead.
- the viscosity curve of the ink can be obtained from the ink supply's QA chip.
- the line times then for the various print speeds are twice as fast as would first appear, since the two phases are overlapping.
- the print speeds are therefore as listed in Table 10.
- Table 10. Line times for various print speeds Speed # Phases Line Time # lines per second 1 128 128 ⁇ s 7812 2 64 64 ⁇ s 15,625 2 32 32 ⁇ s 31,250 16 16 ⁇ s 62,500
- the firing of a nozzle also causes acoustic perturbations for a limited time within the ink reservoir of that nozzle.
- the perturbations can interfere with the firing of that nozzle for the next line.
- the shortest time between a single nozzles firing is 32 ⁇ s (the fastest print speed).
- the resonant frequency of the ink channel is 2.5MHz.
- the high-speed mode allows 80 resonant cycles, which gives minimal acoustic interference.
- a segment produces several types of feedback, all of which can be used to adjust the timing of the firing pulses. Since multiple segments are collected together into a printhead, it is effective to share the feedback line as a tri-state bus, with only one of the segments placing the feedback information on the feedback line.
- a pulse on the segment's CCEn line ANDed with data on D1 selects if the particular segment will provide the feedback.
- the feedback sense line will come from that segment until the next CCEn pulse.
- the feedback is one of:
- the printing process has a strong tendency to stay at the equilibrium temperature. To ensure that the first section of the printed page has a consistent dot size, the equilibrium temperature must be met before printing any dots. This is accomplished via a preheat cycle.
- the preheat cycle involves a single load cycle to all nozzles of a segment with 1s (i.e. setting all nozzles to fire), and a number of short firing pulses to each nozzle. The duration of the pulse must be insufficient to fire the drops, but enough to heat up the ink. Altogether about 200 pulses for each nozzle are required, cycling through in the same sequence as a standard print cycle. Feedback during the preheat mode is provided by Tsense, and continues until equilibrium temperature is reached (about 30° C above ambient). The duration of the preheat mode is around 50 milliseconds, and depends on the ink composition. Preheat is performed before each print job. This does not affect performance as it is done while the data is being transferred to the printer.
- a cleaning cycle can be undertaken before each print job.
- Each nozzle is fired a number of times into an absorbent sponge.
- the cleaning cycle involves a single load cycle to all nozzles of a segment with 1s (i.e. setting all nozzles to fire), and a number of firing pulses to each nozzle.
- the nozzles are cleaned via the same nozzle firing sequence as a standard print cycle. The number of times that each nozzle is fired depends upon the ink composition and the time that the printer has been idle. As with preheat, the cleaning cycle has no effect on printer performance.
- the printhead segment is programmed via an I 2 C serial interface. This includes setting the following parameters:
- the combined printhead's characterization vector is read back via the serial interface.
- the characterization vector includes dead nozzle information as well as relative segment alignment data.
- Each printhead segment can be queried via its low speed serial bus to return a characterization vector of the segment.
- the characterization vectors from multiple printheads can be combined to construct a nozzle defect list for the entire printhead and allows the print engine to compensate for defective nozzles during the print. As long as the number of defective nozzles is low, the compensation can produce results indistinguishable from those of a printhead with no defective nozzles.
- Each segment has 384 bits for characterization vector, comprised of:
- the defective nozzle list is variable lengthed, with each set of defective nozzles having the following structure:
- a printhead segment has connections as defined in Table 11. Note that some of the connections are replicated when multiple colors present. Table 11. Printhead segment connections Name Repeat for multi-colored segment Function D[n] Yes Channel n of image data SClk No Serial data transfer clock NPSync No Nozzle Phase Synchronization PLL No Phase Locked Loop clock TEn No Parallel transfer enable Reset No Control Reset SCI No I 2 C serial clock for control SD No I 2 C serial data for control CCEn[n] No Control Chip Enable [n] Gnd No Analog ground Sense No Analog sense output V- Yes Negative actuator supply V+ Yes Positive actuator supply V ss Yes Negative logic supply V dd Yes Positive logic supply
- the 21 mm long printhead segment has 64 bond pads, on 300 ⁇ m centers. 24 of these bond pads are V-power supply to the actuators, and 20 are V+ power supply to the actuators. The remaining 20 connections are CMOS logic power, signal, and data connections. Table 12 details these connections. Table 12.
- V- Negative actuator supply 7 V ss Negative logic supply 8 D1 [n] Channel 1 of image data [n] (fixative in 6 channel printhead) 9 D2[n] Channel 2 of image data [n] (infrared in 6 channel printhead) 10 SClk Serial data transfer clock 11 V dd Positive logic supply 12-16 V+ Positive actuator supply 17-22 V- Negative actuator supply 23 NPSync Nozzle Phase Synchronization 24 D3[n] Channel 3 of image data [n] (black in 6 channel printhead) 25 D4[n] Channel 4 of image data [n] (yellow in 6 channel printhead) 26 PLL Phase Locked Loop clock 27 TEn Parallel transfer enable 28-32 V+ Positive actuator supply 33-38 V- Negative actuator supply 39 Reset Control Reset 40 D5[n] Channel 5 of image data [n] (magenta in 6 channel printhead) 41 D6[n] Channel 6 of image data [n] (cyan in 6 channel printhead) 42 SCI I 2 C serial clock for control
- a multi-segment printhead is ideally composed of a number of identical printhead segments. These are typically 21mm segments that are manufactured together, or placed together after manufacture, to produce a printhead of the desired length. The segments may be set with overlap, as desired, to allow for smooth transitions between segments. Each 21mm inch segments prints 1600 dpi bi-level dots over a different part of the page to produce the final image. Although each segment produces 1280 dots of the final image, each dot is represented by a combination of colored inks. For example, 15 segments can be combined side-by-side to produce a 12-inch printhead. Each segment can be considered to have a lead-in area, a central area, and a lead-out area.
- the lead-out of one segment corresponds to the lead-in of the next.
- FIG. 8 is seen the three areas of a segment by showing two overlapping segments 106, 107.
- the lead-out area 108 of segment S (110) corresponds to the lead-in area 109 of segment S+1 (107).
- the central area of a segment is that area that has no overlap at all (110 of 106 and 111 of 107).
- the segments vertically staggered, the segments are staggered at a slight angle so that they are aligned in the vertical dimension.
- a number of considerations must be made when wiring up a printhead. As the width of the printhead increases, the number of segments increases, and the number of connections also increases. Each segment has its own Dn connections (C of them), as well as SClk and other connections for loading and printing.
- the first SClk1 pulse will transfer the Dn bits for the next Print Cycle's dot 0,1280, 2560 and 3840.
- the first SClk2 pulse will transfer the Dn bits for the next Print Cycle's dot 5120, 6400, 7680, and 8960.
- the second SClk1 pulse will transfer the Dn bits for the next Print Cycle's dot 1,1281, 2561, and 3841.
- the second SClk2 pulse will transfer the Dn bits for the next Print Cycle's dot 5121, 6401, 7681 and 8961.
- 1280G SClk pulses (1280 to each of SClk1 and SClk2), the entire line has been loaded into the printhead, and the common TEn pulse can be given.
- 10C nozzles are printed from each segment in the lowest speed printing mode, and 80C nozzles from each segment in the highest speed printing mode.
- a segment produces an analog line of feedback, as defined above.
- the feedback is used to adjust the profile of the firing pulses. Since multiple segments are collected together into a printhead, it is effective to share the feedback lines as a tri-state bus, with only one of the segments placing the feedback information on the feedback lines at a time. Since the selection of which segment will place the feedback information on the shared sense line relies on D1, the groupings of segments for loading data can be effectively used for selecting the segment for feedback.
- G SClk lines a single line is shared between segments of the same segment group
- G CCEn lines shared in the same way. When the correct CCEn line is pulsed, the segment of that group whose D1 bit is set will start to place data on the shared feedback lines.
- the segment previously active in terms of feedback must also be disabled by having a 0 on its D1 bit, and this segment may be in a different segment group. Therefore when there is more than one segment group, changing the feedback segment requires two steps: disabling the old segment, and enabling the new segment.
- a printhead has been constructed from a number of segments as described above. It is assumed that for data loading purposes, the segments have been grouped into G segment groups, with L segments in the largest segment group. It is assumed there are C colors in the printhead. It is assumed that the firing mechanism for the printhead is that all segments fire simultaneously, and only one segment at a time places feedback information on a common tri-state bus. Assuming all these things, Table 14 lists the external connections that are available from a printhead: Table 14. Printhead connections Name #Pins Description Dn CL Inputs to C shift registers of segments 0 to L-1 SClk G A pulse on SClk[N] (ShiftRegisterClock N) loads the current values from Dn lines into the L segments in segment group N.
- NPSync 1 A pulse on NPSync starts the printing of a line for all segments.
- PLL 1 Phase Locked Loop clock for generation of timing signals in printhead Ten 1 Parallel transfer of data from the shift registers to the internal NozzleEnable bits (one per nozzle).
- Reset 1 Control reset SCl 1 I 2 C serial clock for control SD 1 I 2 C serial data for control CCEn G A pulse on CCEn N ANDed with data on D1[n] selects the sense lines for segment n in segment group N.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Ink Jet (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Claims (23)
- Procédé de commande du déclenchement de buses de rangées de canaux respectifs de couleurs dans une tête d'impression, le procédé comprenant :le chargement de données d'impression dans des registres à décalage des canaux respectifs de couleurs sur des segments respectifs de la tête d'impression, etle transfert de données d'impression à des bits d'autorisation de buses associés à raison d'un par buse, caractérisé par :le déclenchement des buses des canaux respectifs de couleurs d'une manière indépendante du temps à l'aide de générateurs séparés de synchronisation dans chaque canal.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 1, dans lequel un déclenchement de canal peut être lancé à un temps de consigne permettant l'impression avec un retard choisi pour une impression à lignes de points décalés et à point sur point.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 1, dans lequel les bases sont déclenchées par une impulsion électrique et le profil de l'impulsion est programmé afin qu'il convienne à l'encre de la buse.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 3, dans lequel le profil de l'impulsion est ajusté par des bits programmés chargés dans un générateur de synchronisation, les bits programmés étant chargés dans la tête d'impression à partir de tables à raison d'un par canal, par l'intermédiaire d'une interface en série de tête d'impression.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon l'une quelconque des revendications 3 et 4, dans lequel les rangées de buses de tête d'impression sont disposées par paires décalées pour chaque canal et le déclenchement des paires décalées est réalisé par des trains d'impulsions déphasés.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 1, dans lequel des buses et des canaux respectifs sont regroupés de manière simultanée et les buses contenues dans les groupes sont déclenchées successivement.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 6, dans lequel des rangées respectives de buses sont organisées en amas répétés de buses sur la longueur de chaque rangée de buses, les buses d'un amas étant déclenchées l'une après l'autre le long de la rangée, les amas successifs des canaux respectifs sont reliés sous forme d'un amas chromatique dans lequel le déclenchement l'une après l'autre des buses dans chaque canal est synchronisé le long de la rangée des buses des amas respectifs, et
des blocs d'amas chromatiques sont commandés sous forme d'un groupe de déclenchement, les groupes de déclenchement étant déclenchés ensemble. - Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 7, dans lequel le déclenchement des buses est commandé par réglage du motif de déclenchement des amas chromatiques dans leurs groupes de déclenchement.
- Procédé de commande du déclenchement de buses dans une tête d'impression selon la revendication 7, dans lequel les rangées de buses de tête d'impression sont en paires décalées pour chaque canal, et des blocs de groupes de déclenchement forment des groupes de phases, deux groupes de phases pilotant chaque segment d'une tête d'impression segmentée, avec un groupe de phases pour chaque ensemble de deux rangées décalées de buses.
- Tête d'impression comprenant des rangées de buses, des rangées successives de buses délimitant des canaux respectifs de couleurs comprenant :des registres à décalage respectifs de canaux de couleurs destinés à recevoir des données d'impression, etdes bits de validation de buses à raison d'un par buse pour la réception des données d'impression des registres à décalage respectifs des canaux de couleurs, caractérisée en ce que
elle comprend des générateurs séparés de synchronisation dans chaque canal de couleur pour réaliser le déclenchement des buses dans les canaux respectifs d'une manière indépendante dans le temps. - Tête d'impression selon la revendication 10, dans laquelle les buses sont déclenchées par un train d'impulsions électriques, le profil des impulsions étant programmable.
- Tête d'impression selon la revendication 11, dans laquelle le profil d'impulsion est déterminé par des bits programmés chargés dans un générateur de synchronisation.
- Tête d'impression selon la revendication 12, dans laquelle les bits programmés existent dans des tables chargées dans la tête d'impression à raison d'une par canal.
- Tête d'impression selon la revendication 13, les tables sont programmées par une interface série avec la tête d'impression.
- Tête d'impression selon l'une quelconque des revendications 10 à 14, dans laquelle les rangées de buses de la tête d'impression sont décalées par paires pour chaque canal et le déclenchement des paires décalées s'effectue à l'aide de trains d'impulsions déphasés.
- Tête d'impression selon l'une quelconque des revendications 10 à 14, comprenant une interface avec la tête d'impression par laquelle les paramètres de synchronisation peuvent être spécifiés à l'extérieur par l'intermédiaire d'une interface série lente.
- Tête d'impression selon la revendication 10, dans laquelle les buses des canaux respectifs sont regroupées de manière similaire et les groupes sont déclenchés successivement.
- Tête d'impression selon la revendication 17, dans laquelle les rangées respectives de buses sont organisées par amas répétés de buses sur la longueur de chaque rangée de buses, les buses d'un amas étant déclenchées l'une après l'autre le long de la rangée, et
des amas successifs de canaux respectifs sont reliés sous forme d'un amas chromatique dans lequel le déclenchement des buses l'une après l'autre dans chaque canal est synchronisé le long de la rangée de buses dans les amas respectifs, et le déclenchement des buses est commandé par réglage du motif de déclenchement des amas chromatiques. - Tête d'impression selon la revendication 18, dans laquelle chaque canal est formé par deux rangées décalées de buses et des amas chromatiques sont organisés en blocs sous forme de groupes de déclenchement dont les amas chromatiques sont déclenchés simultanément pour former deux groupes de phases pilotant chacun toutes les buses de l'une des rangées décalées d'un segment d'une tête d'impression segmentée.
- Imprimante ayant une tête d'impression selon la revendication 10.
- Imprimante selon la revendication 20, dans laquelle les buses sont déclenchées par un train d'impulsions électriques, le profil des impulsions étant programmable et déterminé par des bits programmés chargés dans un générateur de synchronisation.
- Imprimante selon la revendication 21, dans laquelle les bits programmés existent dans les tables chargées dans la tête d'impression à raison d'une canal par l'intermédiaire d'une interface avec la tête d'impression.
- Tête d'impression selon la revendication 20, dans laquelle des rangées respectives de buses sont organisées en amas répétés de buses sur la longueur de chaque rangée de buses, les buses d'un amas étant déclenchées l'une après l'autre le long de la rangée, et
des amas successifs et des canaux respectifs sont reliés sous forme d'un amas chromatique dans lequel le déclenchement des buses l'une après l'autre dans chaque canal est synchronisé le long de la rangée de buses dans les amas respectifs, et le déclenchement des buses est commandé par établissement du motif de déclenchement des amas chromatiques .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT00938328T ATE340081T1 (de) | 2000-06-30 | 2000-06-30 | Steuerung der ausstosszeiten der druckkopfdüsen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AU2000/000755 WO2002004219A1 (fr) | 2000-06-30 | 2000-06-30 | Reglage du moment de declenchement d'une buse de tete d'impression |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1301351A1 EP1301351A1 (fr) | 2003-04-16 |
EP1301351A4 EP1301351A4 (fr) | 2004-09-15 |
EP1301351B1 true EP1301351B1 (fr) | 2006-09-20 |
Family
ID=3700834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00938328A Expired - Lifetime EP1301351B1 (fr) | 2000-06-30 | 2000-06-30 | Reglage du moment de declenchement d'une buse de tete d'impression |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1301351B1 (fr) |
JP (1) | JP2004501813A (fr) |
CN (1) | CN1214925C (fr) |
AU (2) | AU2000253745B2 (fr) |
DE (1) | DE60030893D1 (fr) |
IL (1) | IL167968A (fr) |
ZA (1) | ZA200210182B (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015163904A1 (fr) * | 2014-04-25 | 2015-10-29 | Hewlett-Packard Development Company, L.P. | Attribution de réservations de déclenchement à des primitives |
US11001057B2 (en) | 2016-03-30 | 2021-05-11 | Xaar Technology Limited | Droplet deposition apparatus and controller therefor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100612022B1 (ko) * | 2004-11-04 | 2006-08-11 | 삼성전자주식회사 | 와이드 프린트헤드를 구비한 잉크젯 프린터의 인쇄방법 및장치 |
CN116690990B (zh) * | 2023-08-07 | 2023-10-17 | 广州谦辉信息科技有限公司 | 一种基于分布式的3d打印机智能监管系统及方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179750A (ja) * | 1987-01-22 | 1988-07-23 | Canon Inc | カラ−インクジエツトプリンタ |
JPH05185606A (ja) * | 1992-01-09 | 1993-07-27 | Canon Inc | インクジェット記録装置 |
US6243111B1 (en) * | 1993-09-02 | 2001-06-05 | Canon Kabushiki Kaisha | Print head substrate, print head using the same, and printing apparatus |
JPH07112528A (ja) * | 1993-10-18 | 1995-05-02 | Canon Inc | インクジェット記録装置 |
JP3305115B2 (ja) * | 1994-06-01 | 2002-07-22 | キヤノン株式会社 | 記録装置及び方法、及び記録ヘッドとその駆動回路 |
US5754193A (en) * | 1995-01-09 | 1998-05-19 | Xerox Corporation | Thermal ink jet printhead with reduced power bus voltage drop differential |
JPH08258292A (ja) * | 1995-03-20 | 1996-10-08 | Canon Inc | 記録装置 |
JP3609888B2 (ja) * | 1995-12-05 | 2005-01-12 | 東芝テック株式会社 | プリンタヘッド駆動装置 |
JPH10329313A (ja) * | 1997-05-30 | 1998-12-15 | Citizen Watch Co Ltd | インクジェットプリンタ |
JP4028067B2 (ja) * | 1998-02-26 | 2007-12-26 | 東芝テック株式会社 | 記録ヘッドの駆動方法 |
CN1138636C (zh) * | 1998-11-09 | 2004-02-18 | 西尔弗布鲁克研究有限公司 | 用于打印机的打印机驱动程序及其驱动方法 |
-
2000
- 2000-06-30 DE DE60030893T patent/DE60030893D1/de not_active Expired - Lifetime
- 2000-06-30 EP EP00938328A patent/EP1301351B1/fr not_active Expired - Lifetime
- 2000-06-30 CN CNB008197113A patent/CN1214925C/zh not_active Expired - Fee Related
- 2000-06-30 JP JP2002508906A patent/JP2004501813A/ja active Pending
- 2000-06-30 AU AU2000253745A patent/AU2000253745B2/en not_active Ceased
-
2002
- 2002-12-17 ZA ZA200210182A patent/ZA200210182B/en unknown
-
2004
- 2004-09-28 AU AU2004214600A patent/AU2004214600B2/en not_active Ceased
-
2005
- 2005-04-11 IL IL167968A patent/IL167968A/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015163904A1 (fr) * | 2014-04-25 | 2015-10-29 | Hewlett-Packard Development Company, L.P. | Attribution de réservations de déclenchement à des primitives |
US11001057B2 (en) | 2016-03-30 | 2021-05-11 | Xaar Technology Limited | Droplet deposition apparatus and controller therefor |
Also Published As
Publication number | Publication date |
---|---|
EP1301351A1 (fr) | 2003-04-16 |
AU2004214600B2 (en) | 2006-04-06 |
DE60030893D1 (de) | 2006-11-02 |
AU2004214600A1 (en) | 2004-10-14 |
CN1454157A (zh) | 2003-11-05 |
JP2004501813A (ja) | 2004-01-22 |
EP1301351A4 (fr) | 2004-09-15 |
CN1214925C (zh) | 2005-08-17 |
ZA200210182B (en) | 2003-08-27 |
AU2000253745B2 (en) | 2004-07-08 |
IL167968A (en) | 2007-08-19 |
AU2000253745A1 (en) | 2002-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6398332B1 (en) | Controlling the timing of printhead nozzle firing | |
US8016379B2 (en) | Printhead controller for controlling printhead on basis of thermal sensors | |
US7837284B2 (en) | Printhead having multiple controllers for printhead modules | |
AU2001237126B2 (en) | Overlapping printhead module array configuration | |
US8308274B2 (en) | Printhead integrated circuit with thermally sensing heater elements | |
US7322666B2 (en) | Inkjet printhead having controlled vertically offset printhead modules | |
US7802862B2 (en) | Printhead having sequenced nozzle firing on integrated circuit | |
US7901037B2 (en) | Print engine having printhead control modes | |
US20020001008A1 (en) | Printing head, printing method and apparatus using same, and apparatus and method for correcting said printing head | |
US20070289131A1 (en) | Method Of Manufacturing Printhead Modules For Combination As Pagewidth Printhead | |
EP1405727B1 (fr) | Appareil et procédé d'éjection de liquide | |
US20080111844A1 (en) | Printer controller for sequenced printhead nozzle firing | |
US7850268B2 (en) | Recording method and recording apparatus | |
IL167968A (en) | Pagewidth printhead defining an array of nozzles with predetermined groupings | |
JP5058523B2 (ja) | 記録方法、記録装置 | |
EP2301753B1 (fr) | Module de tête d'impression doté d'une rangée incurvée et contrôleur d'imprimante permettant de fournir des données | |
KR100691461B1 (ko) | 프린트 헤드 노즐 분사타이밍 제어 | |
CN1715053B (zh) | 具有在逻辑上编组的喷嘴的打印头 | |
CN111976289B (zh) | 印刷装置 | |
JPH06135008A (ja) | 記録装置 | |
JPH0671902A (ja) | インクジェットプリントヘッド及びインクジェットプリンタ | |
EP1960205B1 (fr) | Procede de modulation de la puissance maximale necessaire d'une tete d'impression, dans lequel sont utilisees des buses redondantes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030130 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040730 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 41J 2/07 B Ipc: 7B 41J 2/21 A Ipc: 7B 41J 2/05 B |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20060920 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60030893 Country of ref document: DE Date of ref document: 20061102 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061231 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070312 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061221 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070630 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20140619 AND 20140625 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20160629 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170627 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |