EP1295288A1 - Verfahren zum herstellen eines datenspeichers - Google Patents

Verfahren zum herstellen eines datenspeichers

Info

Publication number
EP1295288A1
EP1295288A1 EP01953951A EP01953951A EP1295288A1 EP 1295288 A1 EP1295288 A1 EP 1295288A1 EP 01953951 A EP01953951 A EP 01953951A EP 01953951 A EP01953951 A EP 01953951A EP 1295288 A1 EP1295288 A1 EP 1295288A1
Authority
EP
European Patent Office
Prior art keywords
polymer film
absorber
imaging plate
polymer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01953951A
Other languages
English (en)
French (fr)
Inventor
Jörn LEIBER
Bernhard MÜSSIG
Stefan Stadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Publication of EP1295288A1 publication Critical patent/EP1295288A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0025Recording, reproducing or erasing systems characterised by the shape or form of the carrier with cylinders or cylinder-like carriers or cylindrical sections or flat carriers loaded onto a cylindrical surface, e.g. truncated cones
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/003Recording, reproducing or erasing systems characterised by the shape or form of the carrier with webs, filaments or wires, e.g. belts, spooled tapes or films of quasi-infinite extent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • the invention relates to a method for producing a data memory with an optically writable and readable information carrier.
  • a data memory with an optically writable and readable information carrier which has a polymer film, the refractive index of which can be changed locally by heating. If the polymer film is locally heated with the aid of a writing beam, the change in the refractive index results in a change in the reflectivity (reflectivity) at the point under consideration. This can be used to store information.
  • a reading beam is used to read out the information, which is more strongly reflected by locations with increased reflectivity, which can be measured in order to record the information.
  • the polymer film which consists for example of polypropylene (the material for the product marketed by Beiersdorf AG under the name "tesafilm crystal clear”), can be pre-stretched in both surface directions during production, which results in a high material Own energy is stored.
  • the material of this type of polymer film is strongly changed (compression) by reshaping, the refractive index changing in the desired manner.
  • an absorber for example a dye
  • an absorber can be contained in an adhesion layer adjacent to the polymer film, which absorber preferably absorbs and emits the heat generated locally to the polymer film. With the aid of an absorber, a sufficiently large change in the refractive index (for example a change of approximately 0.2) can be achieved with a relatively low intensity of the write beam.
  • the polymer film of the known data storage device is wound in several layers in a spiral manner on a winding core, an adhesive layer being arranged between adjacent polymer film layers.
  • the winding core can be optically transparent and have a cutout in its central area which serves to receive the writing and reading device of a data drive.
  • the read and write device is moved relative to the data memory while the data memory is at rest, so that the data memory does not have to be balanced with regard to a rapid rotational movement.
  • the polymer film cannot be used directly as a memory film, but rather that the adhesive layer containing the absorber must first be applied to the polymer film in a complex separate process step.
  • the adhesive layer containing the absorber In order to introduce a sufficient amount of absorber, an undesirably large layer thickness of the adhesive layer is also required, which is necessary to achieve a sufficient adhesive force Layer thickness exceeds and the optical transparency of the data storage impaired.
  • the method according to the invention is used to produce a data memory with an optically writable and readable information carrier which has a polymer film, the refractive index of which can be changed locally by heating.
  • the polymer film is assigned an absorber which is set up to at least partially absorb a write beam and to at least partially emit the heat generated thereby locally to the polymer film.
  • an image plate is produced which has the polymer film and the absorber assigned to the polymer film. The imaging plate is then arranged to the geometry provided in the data memory.
  • the absorber can be provided in such an amount per unit area of the imaging plate that a desired optical density of the imaging plate can be set without influencing the thickness of any adhesive layer.
  • the optical density during absorption is the product of the extinction coefficient (concentration-independent material constant) of the absorber, its concentration and the irradiated layer thickness and is one for characterizing the Absorption behavior well suited size.
  • the optical density at the light wavelength of a write beam is preferably in the range from 0.1 to 0.3 for one layer of the imaging plate, but can also be smaller or larger.
  • the polymer film is extruded together with a layer which contains absorbers and is arranged on the polymer film when the imaging plate is produced.
  • the layer containing absorber preferably has a binder in addition to the absorber in order to adhere to the polymer film.
  • This method has the advantage that the absorber is separated from the polymer film and can therefore have little or no influence on its properties. It is also possible to use absorbers which cannot be distributed homogeneously in the polymer for the polymer film. If the layer containing the absorber is heated locally with the aid of a writing beam, the heat is passed on in particular into the adjacent surface zone of the polymer film, so that the information is stored primarily in this surface zone.
  • the absorber is admixed with the polymer for the polymer film when the storage film is produced, and then a unit composed of polymer film and absorber is extruded from the polymer containing the absorber.
  • the image plate is a polymer film that contains absorbers in addition to the base polymer.
  • This method has the advantage that the absorber is generally distributed evenly in the polymer and therefore releases the heat released when absorbing a writing beam directly to the polymer.
  • the information can therefore be stored anywhere within the imaging plate, for example, viewed in the direction of the thickness of the imaging plate, also in the middle, and not only at the interface between a polymer foil and an absorber layer. Since the absorber is mixed into the polymer, a high degree of homogeneity in the distribution of the absorber can be achieved. However, absorber dyes (see below) are also required that can withstand the conditions during extrusion (for example high temperature, high pressure).
  • the polymer film is first extruded when the storage film is produced, and then the absorber is introduced into the polymer film by a diffusion process.
  • This variant also enables the use of absorber dyes that are less temperature-stable. Basically, the advantages are the same as when extruding the imaging plate from a mixture of polymer and absorber. However, a diffusion process generally cannot easily achieve such good homogeneity in the distribution of the absorber within the polymer as in the mixing process explained above.
  • the polymer film is swollen in a solution containing the absorber, and then the solvent is evaporated.
  • the absorber is converted into the gas phase and the polymer film is exposed to a gas that contains the absorber.
  • the molecules of the absorber diffuse into the polymer film.
  • This variant is particularly suitable for absorbers that sublimate, i.e. change directly from the solid state to the gaseous state, such as iodine.
  • Polypropylene for example, is suitable as a polymer for the polymer film, but other materials are also conceivable.
  • the imaging plate has a polymer film made of biaxially stretched polymer (for example polypropylene), in the previously explained methods in which the imaging plate is made of polymer and absorber is made by extrusion, the extrudate is biaxially stretched after extrusion. If, on the other hand, the absorber is introduced into the polymer film by means of a diffusion process, the polymer film can be biaxially stretched before carrying out or after carrying out this diffusion process.
  • the image plate or polymer film is stretched biaxially by being biased in its plane in two perpendicular directions during manufacture. This means that a high energy density is stored in the film material.
  • a strong material change for example a material compression
  • the change in the refractive index in the region which is locally heated by a write beam is preferably of the order of magnitude of 0.2. This leads to a change in the local reflectivity, which can be easily detected with the aid of a reading beam.
  • Dyes such as disperse red 1, anthraquinone dyes or indanthrene dyes are suitable as absorbers. Mixtures of different absorber dyes are also conceivable. Anthraquinone dyes and indanthrene dyes have a higher temperature stability than disperse red 1 and therefore offer advantages if the imaging plate is manufactured using an extrusion process.
  • the method according to the invention can be used to produce a data memory in which the imaging plate is arranged in a single layer.
  • the imaging plate is arranged in several layers, through which information can be written into or from a preselected image plate layer preselected image plate position is readable. This results in a high storage density.
  • a write or read device as is known in principle, for example, from DVD technology, information can be written into and read from this layer of memory plate in a targeted manner.
  • the write beam is defocused in the storage film layers adjacent to the storage film layer under consideration, so that the adjacent storage film layers are locally only slightly heated and the stored information is not changed there.
  • One way of arranging the image plate in multiple layers is to wind a coherent image plate in a spiral.
  • the imaging plate is preferably wound onto a central, optically transparent core which is set up to accommodate a writing and reading device of a drive which is matched to the data memory.
  • a data store produced in this way can be used in a drive in which a write and / or read beam moves in the interior of the core while the data store is at rest. The data memory therefore does not have to be balanced with regard to a rapid rotary movement.
  • An adhesive layer is preferably arranged between adjacent image plate layers in order to fix the image plate layers to one another.
  • the adhesive layer can, for example, be applied to the storage film after the storage film has been produced and before or when the storage film is arranged to the geometry provided in the data storage device.
  • the refractive index of the adhesive layer preferably deviates only slightly from the refractive index of the imaging plate in order to minimize disturbing reflections from a reading beam or a writing beam at a boundary layer between an imaging plate layer and an adjacent adhesive layer. It is particularly advantageous if the difference in refractive indices is less than 0.005. On existing difference in refractive indices can, however, be used to format the data memory.
  • FIG. 1 shows a schematic view of a data storage device produced by the method according to the invention, which has a spirally wound storage film, parts of a drive adapted to the data storage device being arranged in a cutout in the central area of the data storage device, and
  • FIG. 2 shows a schematic illustration of an extruder head with which the imaging plate of the data memory from FIG. 1 is extruded.
  • FIG. 1 shows a schematic representation of a data store 1 and a write and read device 2 of a drive matched to the data store 1.
  • the data storage device 1 has a number of layers 10 of a storage film 11 which is used for information storage and which is wound spirally around an optically transparent core.
  • the core is not shown in FIG. 1 for the sake of clarity; it is located within the innermost layer 10.
  • the individual layers 10 of the imaging plate 11 are shown in FIG. 1 as concentric circular rings, although the layers 10 are formed by spiral winding of the imaging plate 11.
  • An adhesive layer 12 is arranged between adjacent layers 10 of the imaging plate 11; the adhesive layers 12 are all connected and overall also have a spiral course.
  • the adhesive layers 12 are shown in FIG. 1 in a thickness that is not to scale.
  • the imaging plate 11 consists of biaxially oriented polypropylene with an absorber layer that contains an absorber dye, as explained in more detail below with reference to FIG. 2.
  • the imaging plate 11 has a total thickness of 35 ⁇ m; other thicknesses in the range from 10 ⁇ m to 100 ⁇ m or thicknesses outside this range are also conceivable.
  • the adhesive layers 12 are free of gas bubbles and, in the exemplary embodiment, consist of acrylate adhesive with a thickness of 5 ⁇ m, preferred layer thicknesses being between 1 ⁇ m and 40 ⁇ m.
  • the data memory 1 contains twenty layers 10 of the image plate 11 and has an outer diameter of approximately 30 mm. Its height is 19 mm. A different number of layers 10 or other dimensions are also possible.
  • the number of windings or layers 10 can be, for example, between ten and thirty, but can also be greater than thirty.
  • the read and write device 2 arranged in a recess in the central area of the core of the data memory 1 contains a read and write head 20 which can be rotated with the aid of a mechanism 21 in the directions of the arrows shown and moved axially back and forth.
  • the write and read head 20 has optical elements, with the aid of which a light beam (for example of the wavelength 630 n or 532 nm) generated by a laser not shown in FIG. 1 can be focused on the individual layers 10 of the image plate 11. Since the read and write head 20 is moved by means of the mechanism 21, it can completely scan all layers 10 of the data memory 1. In the exemplary embodiment, the data memory 1 is at rest.
  • FIG. 1 the elements provided for balancing the read and write head 20 are not shown.
  • the laser mentioned is located outside the and read head 20 and is stationary; the laser beam is directed into the read and write head 20 via optical elements.
  • the laser in the exemplary embodiment is operated with a beam power of approximately 1 mW.
  • the laser beam serves as a write beam and is focused on a preselected layer 10 of the imaging plate 11 so that the beam spot is less than 1 ⁇ ra, the light energy being introduced in the form of short pulses of approximately 10 ⁇ s duration.
  • the energy of the write beam is absorbed in the beam spot, favored by the absorber in the imaging plate 11, which leads to local heating of the imaging plate 11 and thus to a local change in the refractive index and the reflectivity.
  • the laser In order to read stored information from the data memory 1, the laser is operated in continuous wave mode (CW mode). Depending on the stored information, the reading beam focused on the desired location is reflected, and the intensity of the reflected beam is detected by a detector in the writing and reading device 2.
  • CW mode continuous wave mode
  • the information units are formed in the image plate 11 by changing the optical properties in an area with a preferred size of less than 1 ⁇ m.
  • the information can be stored in binary form, ie the local reflectivity only takes two values at the location of an information unit. This means that if the reflectivity is above a defined threshold value, a "1" is stored, for example, at the position of the information carrier under consideration, and if it is below this threshold value or below another, lower threshold value, correspondingly a "0". However, it is also conceivable to save the information in several gray levels. This is possible if the reflectivity of the image plate at the location of an information unit changes due to - left
  • nated setting of the refractive index can be changed in a targeted manner, without reaching saturation.
  • FIG. 2 schematically illustrates how a polymer film is extruded together with an absorber layer arranged on the polymer film in order to produce the storage film 11 of the data memory 1 from FIG. 1.
  • the extruder used for this has an extruder head 30 with two outlet openings, from which a polymer 32 (in the exemplary embodiment polypropylene) and an absorber composition 33 (see below) emerge at an elevated temperature. These two starting materials converge behind the extruder head 30 and form two layers during cooling, namely the polymer film denoted by 34 and the absorber layer denoted by 35.
  • the polymer film 34 and the absorber layer 35 adhere to one another and form the storage film 11. More specifically, the storage film 11 is formed by the biaxially stretching of the extrudate after the extrusion.
  • the polymer film 34 becomes a film made of biaxially oriented polypropylene (BOPP), a material in which a high level of self-energy is stored (see above).
  • BOPP biaxially oriented polypropylene
  • the extruder head 30 has a temperature of 120-150 ° C.
  • a mixture of 0.01-0.1% by weight of the absorber dye Sudan red 7B in acrylate hot melt is used as the absorber mass 33, ie the absorber layer 35 contains the absorber dye Sudan red 7B, which is embedded in the binder acrylate hot melt ,
  • the extrudate is stretched by 500% in the longitudinal direction (ie in the direction in which the polymer 32 and the absorber mass 33 emerge from the extruder head 30) and by 700% in the transverse direction.
  • the polymer film 34 has a thickness of 20-30 ⁇ m and the absorber layer 35 has a thickness of 10-20 ⁇ m, so that the storage film 11 has a total thickness of 30-50 ⁇ m.
  • different manufacturing conditions and different compositions and dimensions are for the individual Layers of the imaging plate possible. It is also conceivable that additional layers are provided.
  • the storage film 11 is provided with an adhesive layer and wound onto the optically transparent core mentioned above.
  • the absorber is mixed with the polymer for the polymer film.
  • the imaging plate is then extruded from the polymer containing the absorber as a unit consisting of polymer film and absorber.
  • a mixture of polypropylene and 0.01-0.1% by weight of the absorber dye Sudan red 7B is extruded at a temperature of 120-150 ° C.
  • the extrudate is then stretched biaxially, in the longitudinal direction (i.e. in the direction in which the mixture of polymer and absorber-dye emerges from the extruder head) by 500% and in the transverse direction by 700%.
  • the image plate created in this way has a thickness of 30-50 ⁇ m and an optical density of 0.1-0.3.
  • an adhesive layer e.g. made of an acrylate mass
  • an adhesive layer that does not contain any absorber dye is co-extruded together with the image plate.
  • a polymer film is first extruded to produce the image plate.
  • the absorber is then introduced into the polymer film by means of a diffusion process. If necessary, the polymer or. Image plate before stretching or after performing the diffusion process.
  • the polymer film can be placed in a solution which contains the absorber.
  • the solvent should dissolve the absorber on the one hand and attack the polymer film so far that it absorbs the solution and swells.
  • the absorber molecules are distributed inside the polymer film.
  • the polymer film is then removed from the solution and the solvent is evaporated.
  • the polymer film essentially returns to its original dimensions, the absorber molecules remaining inside the polymer film.
  • Another possibility for a diffusion process is that the absorber is first converted into the gas phase and the polymer film is exposed to a gas which contains the absorber.
  • the absorber molecules diffuse into the interior of the polymer film, and some of the absorber molecules remain there as a result of absorption processes.
  • the absorber Dispersrot 1 is suitable for a polymer film made of polypropylene.
  • DR1 is an azo dye that is known from applications with dye-containing polymer films (especially in the field of nonlinear optics). This absorber is preferably introduced into the polymer film via a diffusion process. If, on the other hand, the image plate is to be produced by extrusion using one of the methods explained above, with temperatures of around 200 ° C. occurring for polypropylene, absorbers with higher temperature stability, such as, for example, anthraquinone or indanthrene dyes, are more suitable than DR1.
  • the image plate preferably contains the absorber in an amount or concentration such that one layer of the image plate has an optical density in the range from 0.1 to 0.3.
  • the optical density is a measure of the absorption, here based on the light wavelength of a write beam.
  • the optical density for a layer of the imaging plate can also be less than 0.1 or greater than 0.3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Read Only Memory (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Bei einem Verfahren zum Herstellen eines Datenspeichers mit einem optisch beschreibbaren und auslesbaren Informationsträger, der eine Polymerfolie aufweist, deren Brechzahl lokal durch Erwärmung veränderbar ist, wobei der Polymerfolie ein Absorber zugeordnet ist, der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymerfolie abzugeben, wird zunächst eine Speicherfolie (11) angefertigt. Die Speicherfolie (11) weist die Polymerfolie (34) und den der Polymerfolie (34) zugeordneten Absorber (35) auf. Danach wird die Speicherfolie (11) zu der in dem Datenspeicher vorgesehenen Geometrie angeordnet.

Description

Verfahren zum Herstellen eines Datenspeichers
Die Erfindung betrifft ein Verfahren zum Herstellen eines Datenspeichers mit einem optisch beschreibbaren und auslesbaren Informationsträger.
Aus der DE 298 16 802 Ul ist ein Datenspeicher mit einem optisch beschreibbaren und auslesbaren Informationsträger bekannt, der eine Polymerfolie aufweist, deren Brechzahl lokal durch Erwärmung veränderbar ist. Wenn die Polymerfolie mit Hilfe eines Schreibstrahls lokal erwärmt wird, hat die Änderung der Brechzahl eine Änderung des Reflexionsvermögens (Reflektivität) an der betrachteten Stelle zur Folge. Dies kann zum Speichern von Information ausgenutzt werden. Zum Auslesen der Information wird ein Lesestrahl verwendet, der von Stellen mit erhöhter Reflektivität stärker reflektiert wird, was sich messen läßt, um die Information zu erfassen. Die Polymerfolie, die zum Beispiel aus Polypropylen (dem Material für das von der Beiersdorf AG unter der Bezeichnung "tesafilm kristallklar" vertriebene Produkt) besteht, kann bei der Herstellung in beiden Flächenrichtungen vorgespannt (verstreckt) werden, wodurch im Material eine hohe Eigenenergie gespeichert ist. Bei einer lokalen Erwärmung durch den Schreibstrahl findet bei einer derartigen Ausgestaltung der Polymerfolie eine starke Materialänderung (Verdichtung) durch Rückverformung statt, wobei sich die Brechzahl in der gewünschten Weise ändert. Bei dem vorbekannten Datenspeicher kann in einer der Polymerfolie benachbarten Adhäsionsschicht ein Absorber (zum Beispiel ein Farbstoff) enthalten sein, der den Schreibstrahl bevorzugt absorbiert und die dabei erzeugte Wärme lokal an die Polymerfolie abgibt. Mit Hilfe eines Absorbers läßt sich eine ausreichend große Änderung der Brechzahl (zum Beispiel eine Änderung von etwa 0,2) bereits mit einer relativ geringen Intensität des Schreibstrahls erzielen.
Die Polymerfolie des vorbekannten Datenspeichers ist in mehreren Lagen spiralartig auf einen Wickelkern gewickelt, wobei zwischen benachbarten Polymerfolienlagen eine Adhäsionsschicht angeordnet ist. Durch Fokussieren des Schreibstrahls oder Lesestrahls läßt sich Information gezielt in eine vorgewählte Lage des Informationsträgers einschreiben bzw. daraus auslesen. Der Wickelkern kann optisch transparent sein und in seinem Zentralbereich eine Aussparung aufweisen, die zum Aufnehmen der Schreib- und ;Leseeinrichtung eines Datenlaufwerks dient. Dabei wird die Schreib- und Leseeinrichtung relativ zu dem Datenspeicher bewegt, während der Datenspeicher ruht, so daß der Datenspeicher nicht im Hinblick auf eine schnelle Rotationsbewegung ausgewuchtet zu sein braucht.
Beim Herstellen des vorbekannten Datenspeichers ist es nachteilig, daß die Polymerfolie nicht direkt als Speicherfolie verwendet werden kann, sondern daß zunächst in einem aufwendigen separaten Verfahrensschritt die den Absorber enthaltende Adhäsionsschicht auf die Polymerfolie aufgetragen werden muß. Um eine ausreichende Menge an Absorber einzubringen, ist zudem eine unerwünscht große Schichtdicke der Adhäsionsschicht erforderlich, die die zum Erzielen einer ausreichenden Klebekraft erforderliche Schichtdicke übersteigt und die optische Transparenz des Datenspeichers beeinträchtigt.
Es ist Aufgabe der Erfindung, ein Verfahren zum Herstellen eines Datenspeichers der eingangs genannten Art zu schaffen, das weniger aufwendig und kostengünstiger durchgeführt werden kann und Datenspeicher hoher Qualität liefert.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Das erfindungsgemäße Verfahren dient zum Herstellen eines Datenspeichers mit einem optisch beschreibbaren und auslesbaren Informationsträger, der eine Polymerfolie aufweist, deren Brechzahl lokal durch Erwärmung veränderbar ist. Der Polymerfolie ist ein Absorber zugeordnet, der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymerfolie abzugeben. Erfindungsgemäß wird bei dem Verfahren eine Speicherfolie angefertigt, die die Polymerfolie und den der Polymerfolie zugeordneten Absorber aufweist. Danach wird die Speicherfolie zu der in dem Datenspeicher vorgesehenen Geometrie angeordnet .
Für den Herstellungsprozeß ist es von Vorteil, z.B. im Hinblick auf die Arbeitsgeschwindigkeit, wenn zunächst eine Speicherfolie gefertigt wird, in der die Polymerfolie und der der Polymerfolie zugeordnete Absorber integriert sind. Insbesondere kann der Absorber in einer derartigen Menge pro Flächeneinheit der Speicherfolie vorgesehen werden, daß sich eine gewünschte optische Dichte der Speicherfolie einstellen läßt, ohne dabei die Dicke einer etwaigen Adhäsionsschicht zu beeinflussen. Die optische Dichte ist bei der Absorption das Produkt aus dem Extinktionskoeffizienten (konzentrationsunabhängige Materialkonstante) des Absorbers, seiner Konzentration und der durchstrahlten Schichtdicke und ist eine zur Charakterisierung des Absorptionsverhaltens gut geeignete Größe. Vorzugsweise liegt die optische Dichte bei der Lichtwellenlänge eines Schreibstrahls im Bereich von 0,1 bis 0,3 für eine Lage der Speicherfolie, kann aber auch kleiner oder größer sein.
Für das Anfertigen der Speicherfolie gibt es mehrere Möglichkeiten.
Bei einer Ausgestaltung des Verfahrens wird beim Anfertigen der Speicherfolie die Polymerfolie zusammen mit einer auf der Polyme folie angeordneten Schicht, die Absorber enthält, extrudiert. Die Absorber enthaltende Schicht weist vorzugsweise außer dem Absorber ein Bindemittel auf, um an der Polymerfolie zu haften. Dieses Verfahren hat den Vorteil, daß der Absorber von der Polymerfolie getrennt ist und daher deren Eigenschaften nicht oder nur unwesentlich beeinflussen kann. Auch lassen sich Absorber verwenden, die in dem Polymer für die Polymerfolie nicht homogen verteilt werden können. Wenn die Absorber enthaltende Schicht mit Hilfe eines Schreibstrahls lokal erwärmt wird, wird die Wärme insbesondere in die angrenzende Oberflächenzone der Polymerfolie weitergeleitet, so daß die Information vor allem in dieser Oberflächenzone abgespeichert wird.
Bei einer alternativen Ausgestaltung des Verfahrens wird beim Anfertigen der Speicherfolie der Absorber dem Polymer für die Polymerfolie beigemischt, und dann wird eine Einheit aus Polymerfolie und Absorber aus dem Absorber enthaltenden Polymer extrudiert. Die Speicherfolie ist in diesem Fall also eine Polymerfolie, die außer dem Grundpolymer auch Absorber enthält. Dieses Verfahren hat den Vorteil, daß der Absorber in der Regel gleichmäßig in dem Polymer verteilt wird und daher die beim Absorbieren eines Schreibstrahls freigesetzte Wärme unmittelbar an das Polymer abgibt. Die Information kann daher überall innerhalb der Speicherfolie abgelegt werden, also zum Beispiel, in Richtung der Dicke der Speicherfolie gesehen, auch in der Mitte, und nicht nur an der Grenzfläche zwischen einer Polymer- folie und einer Absorberschicht. Da der Absorber dem Polymer beigemischt wird, läßt sich eine hohe Homogenität in der Verteilung des Absorbers erzielen. Allerdings sind auch Absorber- Farbstoffe (siehe unten) erforderlich, die die Bedingungen bei der Extrusion (zum Beispiel hohe Temperatur, hoher Druck) aushalten .
Bei einer weiteren alternativen Ausgestaltung des Verfahrens wird beim Anfertigen der Speicherfolie zunächst die Polymerfolie extrudiert, und anschließend wird der Absorber durch einen Diffusionsprozeß in die Polymerfolie eingebracht. Diese Variante ermöglicht auch die Verwendung von Absorber-Farbstoffen, die weniger temperaturstabil sind. Grundsätzlich sind die Vorteile die gleichen wie bei dem Extrudieren der Speicherfolie aus einer Mischung von Polymer und Absorber. Allerdings läßt sich mit einem Diffusionsprozeß in der Regel nicht ohne weiteres eine so gute Homogenität in der Verteilung des Absorbers innerhalb des Polymers erreichen wie bei dem zuvor erläuterten Mischungsprozeß.
Bei einer Art des Diffusionsprozesses wird die Polymerfolie in einer Lösung, die den Absorber enthält, gequollen, und anschließend wird das Lösungsmittel verdampft.
Bei einer anderen Art des Diffusionsprozesses wird der Absorber in die Gasphase überführt, und die Polymerfolie wird einem Gas, das den Absorber enthält, ausgesetzt. Dabei diffundieren die Moleküle des Absorbers in die Polymerfolie. Diese Variante ist insbesondere für Absorber geeignet, die sublimieren, also vom festen Aggregatzustand direkt in den gasförmigen übergehen, wie zum Beispiel Iod.
Als Polymer für die Polymerfolie eignet sich zum Beispiel Polypropylen, aber auch andere Materialien sind denkbar. Damit die Speicherfolie eine Polymerfolie aus biaxial verstrecktem Polymer (zum Beispiel Polypropylen) aufweist, kann bei den zuvor erläuterten Verfahren, bei denen die Speicherfolie mit Polymer und Absorber durch Extrusion angefertigt wird, das Extrudat nach dem Extrudieren biaxial verstreckt werden. Wenn dagegen der Absorber durch einen Diffusionsprozeß in die Polymerfolie eingebracht wird, kann die Polymerfolie vor Durchführung oder nach Durchführung dieses Diffusionsprozesses biaxial verstreckt werden .
Die Speicherfolie bzw. Polymerfolie wird biaxial verstreckt, indem sie bei der Herstellung innerhalb ihrer Ebene in zwei senkrecht aufeinanderstehenden Richtungen vorgespannt wird. Dies führt dazu, daß im Folienmaterial eine hohe Energiedichte gespeichert ist. Durch Deposition einer verhältnismäßig geringen Energiemenge pro Flächeneinheit mit Hilfe eines Schreibstrahls kann dann eine starke Materialänderung (zum Beispiel eine Materialverdichtung) durch Rückverformung erhalten werden, die in einer lokalen Änderung der Brechzahl und einer Änderung der optischen Weglänge im Material resultiert. Vorzugsweise liegt die Änderung der Brechzahl in dem Bereich, der durch einen Schreibstrahl lokal erwärmt wird, in der Größenordnung von 0,2. Dies führt zu einer Änderung der lokalen Reflektivität, die sich mit Hilfe eines Lesestrahls gut erfassen läßt.
Als Absorber eignen sich Farbstoffe wie zum Beispiel Dispersrot 1, Anthrachinon-Farbstoffe oder Indanthren-Farbstoffe. Auch Mischungen verschiedener Absorber-Farbstoffe sind denkbar. Anthrachinon-Farbstoffe und Indanthren-Farbstoffe haben eine höhere Temperaturstabilität als Dispersrot 1 und bieten daher Vorteile, wenn die Speicherfolie über einen Extrusionsprozeß angefertigt wird.
Mit dem erfindungsgemäßen Verfahren kann im Prinzip ein Datenspeicher hergestellt werden, bei dem die Speicherfolie in einer einzigen Lage angeordnet ist. Bei einer bevorzugten Ausführungsform der Erfindung wird die Speicherfolie jedoch in mehreren Lagen angeordnet, durch die hindurch Information in eine vorgewählte Speicherfolienlage schreibbar oder aus einer vorgewählten Speicherfolienlage auslesbar ist. Dadurch wird eine hohe Speicherdichte erreicht. Durch Fokussieren des Schreibstrahls und des Lesestrahls einer Schreib- bzw. Leseeinrichtung, wie sie im Prinzip zum Beispiel aus der DVD-Technologie bekannt ist, läßt sich Information gezielt in diese Speicherfolienlage einschreiben bzw. daraus auslesen. Beim Schreibvorgang ist der Schreibstrahl in den zu der betrachteten Speicherfolienlage benachbarten Speicherfolienlagen defokussiert, so daß die benachbarten Speicherfolienlagen lokal nur geringfügig erwärmt werden und dort die gespeicherte Information nicht verändert wird.
Eine Möglichkeit, die Speicherfolie mehrlagig anzuordnen, besteht darin, daß eine zusammenhängende Speicherfolie spiralartig aufgewickelt wird. Vorzugsweise wird die Speicherfolie auf einen zentralen, optisch transparenten Kern aufgewickelt, der zur Aufnahme einer Schreib- und Leseeinrichtung eines auf den Datenspeicher abgestimmten Laufwerks eingerichtet ist. Ein auf diese Weise hergestellter Datenspeicher kann in einem Laufwerk verwendet werden, bei dem sich im Innenraum des Kerns ein Schreib- und/oder Lesestrahl bewegt, während der Datenspeicher ruht. Der Datenspeicher braucht daher nicht im Hinblick auf eine schnelle Drehbewegung ausgewuchtet zu sein.
Vorzugsweise wird zwischen benachbarten Speicherfolienlagen eine Adhäsionsschicht angeordnet, um die Speicherfolienlagen untereinander zu fixieren. Die Adhäsionsschicht kann zum Beispiel nach dem Anfertigen der Speicher olie und vor dem oder beim Anordnen der Speicherfolie zu der in dem Datenspeicher vorgesehenen Geometrie auf die Speicherfolie aufgetragen werden. Die Brechzahl der Adhäsionsschicht weicht vorzugsweise nur geringfügig von der Brechzahl der Speicherfolie ab, um störende Reflexionen eines Lesestrahls oder eines Schreibstrahls an einer Grenzschicht zwischen einer Speicherfolienlage und einer benachbarten Adhäsionsschicht zu minimieren. Besonders vorteilhaft ist es, wenn der Unterschied der Brechzahlen kleiner als 0,005 ist. Ein bestehender Unterschied der Brechzahlen kann jedoch zum Formatieren des Datenspeichers genutzt werden.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Die Zeichnungen zeigen in
Figur 1 einen nach dem erfindungsgemäßen Verfahren hergestellten Datenspeicher, der eine spiralartig gewickelte Speicherfolie aufweist, in schematischer perspektivischer Darstellung, wobei in einer Aussparung im Zentralbereich des Datenspeichers Teile eines auf den Datenspeicher abgestimmten Laufwerks angeordnet sind, und
Figur 2 eine schematische Darstellung eines Extruderkopfes, mit dem die Speicherfolie des Datenspeichers aus Figur 1 extrudiert wird .
Figur 1 zeigt in schematischer Darstellung einen Datenspeicher 1 und eine Schreib- und Leseeinrichtung 2 eines auf den Datenspeicher 1 abgestimmten Laufwerks . Der Datenspeicher 1 weist eine Anzahl von Lagen 10 einer zur Informationsspeicherung dienenden Speicherfolie 11 auf, die spiralartig um einen optisch transparenten Kern gewickelt ist. Der Kern ist in Figur 1 der Übersichtlichkeit halber nicht dargestellt; er befindet sich innerhalb der innersten Lage 10. Zur besseren Veranschaulichung sind die einzelnen Lagen 10 der Speicherfolie 11 in Figur 1 als konzentrische Kreisringe gezeigt, obwohl die Lagen 10 durch spiralartiges Wickeln der Speicherfolie 11 ausgebildet sind. Zwischen benachbarten Lagen 10 der Speicherfolie 11 ist jeweils eine Adhäsionsschicht 12 angeordnet; die Adhäsionsschichten 12 hängen alle zusammen und haben insgesamt ebenfalls einen spiralartigen Verlauf. Aus Gründen der Übersichtlichkeit sind die Adhäsionsschichten 12 in Figur 1 in nicht maßstäblich vergrößerter Dicke eingezeichnet. Die Speicherfolie 11 besteht im Ausführungsbeispiel aus biaxial orientiertem Polypropylen mit einer Absorberschicht, die einen Absorber-Farbstoff enthält, wie weiter unten anhand von Figur 2 näher erläutert. Im Ausführungsbeispiel hat die Speicherfolie 11 eine Gesamtdicke von 35 μm; andere Dicken im Bereich von 10 μm bis 100 μm oder auch außerhalb dieses Bereichs liegende Dicken sind ebenfalls denkbar. Die Adhäsionsschichten 12 sind gasblasen- frei und bestehen im Ausführungsbeispiel aus Acrylatkleber bei einer Dicke von 5 μm, wobei bevorzugte Schichtdicken zwischen 1 μm und 40 μm liegen. Im Ausführungsbeispiel enthält der Datenspeicher 1 zwanzig Lagen 10 der Speicherfolie 11 und hat einen Außendurchmesser von etwa 30 mm. Seine Höhe beträgt 19 mm. Eine andere Anzahl von Lagen 10 oder andere Abmessungen sind ebenfalls möglich. Die Anzahl der Wicklungen oder Lagen 10 kann zum Beispiel zwischen zehn und dreißig liegen, aber auch größer als dreißig sein.
Die in einer Aussparung im Zentralbereich des Kerns des Datenspeichers 1 angeordnete Schreib- und Leseeinrichtung 2 enthält einen Schreib- und Lesekopf 20, der mit Hilfe einer Mechanik 21 in den Richtungen der eingezeichneten Pfeile gedreht und axial hin- und herbewegt werden kann. Der Schreib- und Lesekopf 20 weist optische Elemente auf, mit deren Hilfe ein von einem in Figur 1 nicht dargestellten Laser erzeugter Lichtstrahl (zum Beispiel der Wellenlänge 630 n oder 532 nm) auf die einzelnen Lagen 10 der Speicherfolie 11 fokussiert werden kann. Da der Schreib- und Lesekopf 20 mit Hilfe der Mechanik 21 bewegt wird, kann er alle Lagen 10 des Datenspeichers 1 vollständig abtasten. Im Ausführungsbeispiel ruht dabei der Datenspeicher 1. Er braucht also nicht im Hinblick auf eine hohe Rotationsgeschwindigkeit ausgewuchtet zu sein (und muß auch nicht abgewickelt bzw. umgespult werden), im Gegensatz zu dem Schreib- und Lesekopf 20. Der Übersichtlichkeit halber sind in Figur 1 die zum Auswuchten des Schreib- und Lesekopfs 20 vorgesehenen Elemente nicht gezeigt. Der erwähnte Laser befindet sich außerhalb des Schreib- und Lesekopfes 20 und ist stationär; der Laserstrahl wird über optische Elemente in den Schreib- und Lesekopf 20 gelenkt.
Zum Speichern oder Einschreiben von Information in den Datenspeicher 1 wird der Laser im Ausführungsbeispiel mit einer Strahlleistung von etwa 1 mW betrieben. Der Laserstrahl dient dabei als Schreibstrahl und wird auf eine vorgewählte Lage 10 der Speicherfolie 11 fokussiert, so daß der Strahlfleck kleiner als 1 μra ist, wobei die Lichtenergie in Form kurzer Pulse von etwa 10 μs Dauer eingebracht wird. Die Energie des Schreibstrahls wird in dem Strahlfleck absorbiert, begünstigt durch den Absorber in der Speicherfolie 11, was zu einer lokalen Erwärmung der Speicherfolie 11 und damit zu einer lokalen Änderung der Brechzahl und der Reflektivität führt.
Um gespeicherte Information aus dem Datenspeicher 1 auszulesen, wird der Laser im Continuous-Wave-Modus (CW-Modus) betrieben. In Abhängigkeit von der gespeicherten Information wird der auf die gewünschte Stelle fokussierte Lesestrahl reflektiert, und die Intensität des reflektierten Strahls wird von einem Detektor in der Schreib- und Leseeinrichtung 2 erfaßt .
In der Speicherfolie 11 sind die Informationseinheiten durch Änderung der optischen Eigenschaften in einem Bereich mit einer bevorzugten Größe von weniger als 1 μm ausgebildet. Dabei kann die Information binär gespeichert sein, d.h. die lokale Reflektivität nimmt an der Stelle einer Informationseinheit nur zwei Werte an. Das heißt, wenn die Reflektivität oberhalb eines festgelegten Schwellenwerts liegt, ist an der betrachteten Stelle des Informationsträgers z.B. eine "1" gespeichert, und wenn sie unterhalb dieses Schwellenwerts oder unterhalb eines anderen, niedrigeren Schwellenwerts liegt, entsprechend eine "0". Es ist aber auch denkbar, die Information in mehreren Graustufen abzuspeichern. Dies ist möglich, wenn sich die Reflektivität der Speicherfolie an der Stelle einer Informationseinheit durch defi- - l i ¬
niertes Einstellen der Brechzahl auf gezielte Weise verändern läßt, ohne daß dabei eine Sättigung erreicht wird.
Figur 2 veranschaulicht in schematischer Weise, wie zum Anfertigen der Speicherfolie 11 des Datenspeichers 1 aus Figur 1 eine Polymerfolie zusammen mit einer auf der Polymerfolie angeordneten Absorberschicht extrudiert wird.
Der dazu verwendete Extruder hat einen Extruderkopf 30 mit zwei Austrittsöffnungen, aus denen ein Polymer 32 (im Ausführungsbei- spiel Polypropylen) und eine Absorbermasse 33 (siehe unten) unter erhöhter Temperatur austreten. Hinter dem Extruderkopf 30 laufen diese beiden Ausgangsmaterialien zusammen und formen beim Abkühlen zwei Schichten, nämlich die mit 34 bezeichnete Polymerfolie und die mit 35 bezeichnete Absorberschicht. Die Polymerfolie 34 und die Absorberschicht 35 haften aneinander und bilden die Speicherfolie 11. Genauer gesagt, entsteht die Speicherfolie 11, indem das Extrudat nach dem Extrudieren biaxial verstreckt wird. Dadurch wird die Polymerfolie 34 zu einer Folie aus biaxial orientiertem Polypropylen (BOPP), einem Material, in dem eine hohe Eigenenergie gespeichert ist (siehe oben).
In einem Beispiel im Zusammenhang mit den Figuren 1 und 2 hat der Extruderkopf 30 eine Temperatur von 120-150 °C. Als Absorbermasse 33 dient eine Mischung von 0,01-0,1 Gew.-% des Absorber-Farbstoffs Sudanrot 7B in Acrylat-Hotmelt, d.h. die Absorberschicht 35 enthält den Absorber-Farbstoff Sudanrot 7B, der in das Bindemittel Acrylat-Hotmelt eingebettet ist . Das Extrudat wird in Längsrichtung (d.h. in der Richtung, in der das Polymer 32 und die Absorbermasse 33 aus dem Extruderkopf 30 austreten) um 500% verstreckt und in Querrichtung um 700%. Nach dem biaxialen Verstrecken hat die Polymerfolie 34 eine Dicke von 20-30 μm und die Absorberschicht 35 eine Dicke von 10-20 μm, so daß sich für die Speicherfolie 11 eine Gesamtdicke von 30-50 μm ergibt. Je nach Ausführungsform sind andere Herstellungsbedingungen und andere Zusammensetzungen und Dimensionen für die einzelnen Schichten der Speicherfolie möglich. Es ist auch denkbar, daß zusätzliche Schichten vorgesehen sind.
Für die weitere Herstellung des Datenspeichers 1 wird die Speicherfolie 11 mit einer Adhäsionsschicht versehen und auf den weiter oben erwähnten optisch transparenten Kern aufgewickelt.
Bei einer anderen Möglichkeit zum Anfertigen einer Speicherfolie wird der Absorber dem Polymer für die Polymerfolie beigemischt. Die Speicherfolie wird dann als Einheit aus Polymerfolie und Absorber aus dem Absorber enthaltenden Polymer extrudiert. In einem Beispiel wird eine Mischung aus Polypropylen und 0,01-0,1 Gew.-% des Absorber-Farbstoffs Sudanrot 7B bei einer Temperatur von 120-150 °C extrudiert. Anschließend wird das Extrudat biaxial verstreckt, und zwar in Längsrichtung (d.h. in der Richtung, in der die Mischung aus Polymer und Absorber-Farbstoff aus dem Extruderkopf austritt) um 500% und in Querrichtung um 700 %. Die auf diese Weise entstehende Speicherfolie hat eine Dicke von 30- 50 μm und eine optische Dichte von 0,1-0,3. Je nach Ausführungsform sind andere Herstellungsbedingungen und andere Mischungen, auch von anderen Polymeren oder Absorber-Farbstoffen, sowie andere Abmessungen möglich. Bei einer Varianten dieses Verfahrens wird eine Adhäsionsschicht (z.B. aus einer Acrylatmasse) , die keinen Absorber-Farbstoff enthält, zusammen mit der Speicherfolie koextrudiert .
Bei weiteren Ausgestaltungen des Verfahrens wird zum Anfertigen der Speicherfolie zunächst eine Polymerfolie extrudiert. Anschließend wird der Absorber durch einen Diffusionsprozeß in die Polymerfolie eingebracht. Gegebenenfalls kann die Polymerbzw. Speicherfolie vor Durchführung oder nach Durchführung des Diffusionsprozesses verstreckt werden.
Zum Durchführen des Diffusionsprozesses kann die Polymerfolie in eine Lösung eingelegt werden, die den Absorber enthält. Das Lösungsmittel sollte einerseits den Absorber lösen und anderer- seits die Polymerfolie so weit angreifen, daß sie die Lösung aufnimmt und quillt. Dabei verteilen sich die Absorbermoleküle im Inneren der Polymerfolie. Anschließend wird die Polymerfolie aus der Lösung herausgenommen, und das Lösungsmittel wird verdampft. Die Polymerfolie nimmt dabei im wesentlichen wieder ihre ursprünglichen Dimensionen an, wobei die Absorbermoleküle im Inneren der Polymerfolie verbleiben.
Eine andere Möglichkeit für einen Diffusionsprozeß besteht darin, daß der Absorber zunächst in die Gasphase überführt wird und die Polymerfolie einem Gas, das den Absorber enthält, ausgesetzt wird. Dabei diffundieren die Absorbermoleküle ins Innere der Polymerfolie, und ein Teil der Absorbermoleküle verbleibt dort infolge von Absorptionsprozessen.
Für eine Polymerfolie aus Polypropylen eignet sich der Absorber Dispersrot 1 (DR1). DR1 ist ein Azofarbstoff , der aus Anwendungen mit farbstoffhaltigen Polymerfilmen (vor allem im Bereich der nichtlinearen Optik) bekannt ist. Dieser Absorber wird bevorzugt über einen Diffusionsprozeß in die Polymerfolie eingebracht. Wenn dagegen die Speicherfolie nach einem der oben erläuterten Verfahren durch Extrudieren angefertigt werden soll, wobei für Polypropylen Temperaturen in der Größenordnung von 200 °C auftreten, sind Absorber mit höherer Temperaturstabilität, wie zum Beispiel Anthrachinon- oder Indanthren-Farbstoffe, besser geeignet als DR1.
Die Speicherfolie enthält den Absorber vorzugsweise in einer solchen Menge oder Konzentration, daß eine Lage der Speicherfolie eine optische Dichte im Bereich von 0,1 bis 0,3 hat. Die optische Dichte ist ein Maß für die Absorption, hier bezogen auf die Lichtwellenlänge eines Schreibstrahls. Je nach Anwendungsfall kann die optische Dichte für eine Lage der Speicherfolie aber auch kleiner als 0,1 oder größer als 0,3 sein.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines Datenspeichers (1) mit einem optisch beschreibbaren und auslesbaren Informationsträger, der eine Polymerfolie (34) aufweist, deren Brechzahl lokal durch Erwärmung veränderbar ist, und mit einem der Polymerfolie (34) zugeordneten Absorber (35), der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymerfolie (34) abzugeben, mit den Schritten:
- Anfertigen einer Speicherfolie (11), die die Polymerfolie (34) und den der Polymerfolie (34) zugeordneten Absorber (35) aufweist, und danach
- Anordnen der Speicherfolie (11) zu der in dem Datenspeicher (1) vorgesehenen Geometrie.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß beim Anfertigen der Speicherfolie (11) die Polymerfolie (34) zusammen mit einer auf der Polymerfolie (34) angeordneten Schicht (35), die Absorber enthält, extrudiert wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß beim Anfertigen der Speicherfolie der Absorber dem Polymer für die Polymerfolie beigemischt wird und daß eine Einheit aus Polymerfolie und Absorber aus dem Absorber enthaltenden Polymer extrudiert wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß beim Anfertigen der Speicherfolie zunächst die Polymerfolie extrudiert wird und anschließend der Absorber durch einen Diffusionsprozeß in die Polymerfolie eingebracht wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß bei dem Diffusionsprozeß die Polymerfolie in einer Lösung, die den Absorber enthält, gequollen wird und anschließend das Lösungsmittel verdampft wird.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß bei dem Diffusionsprozeß der Absorber in die Gasphase überführt wird und die Polymerfolie einem Gas, das den Absorber enthält, ausgesetzt wird.
7. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß beim Anfertigen der Speicherfolie (11) das Extrudat nach dem Extrudieren biaxial verstreckt wird.
8. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Polymerfolie vor Durchführung oder nach Durchführung des Diffusionsprozesses biaxial verstreckt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Polymer für die Polymerfolie (34) Polypropylen verwendet wird .
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Absorber mindestens eine der aus der folgenden Liste ausgewählten Substanzen verwendet wird: Dispersrot 1, Anthrachinon-Farbstoffe, Indanthren-Farbstoffe.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Speicherfolie (11) in mehreren Lagen (10) angeordnet wird, durch die hindurch Information in eine vorgewählte Speicherfolienlage (10) schreibbar oder aus einer vorgewählten Speicherfolienlage (10) auslesbar ist.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß eine zusammenhängende Speicherfolie (11) spiralartig aufgewickelt wird, vorzugsweise auf einen zentralen, .optisch trans- parenten Kern, der zur Aufnahme einer Schreib- und Leseeinrichtung (2) eines auf den Datenspeicher (1) abgestimmten Laufwerks eingerichtet ist.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß zwischen benachbarten Speicherfolienlagen (11) eine Adhäsionsschicht (12) angeordnet wird, deren Brechzahl vorzugsweise nur geringfügig von der Brechzahl der Speicherfolie (11) abweicht.
EP01953951A 2000-06-07 2001-05-22 Verfahren zum herstellen eines datenspeichers Withdrawn EP1295288A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028086 2000-06-07
DE10028086A DE10028086C2 (de) 2000-06-07 2000-06-07 Verfahren zum Herstellen eines Datenspeichers
PCT/EP2001/005874 WO2001095319A1 (de) 2000-06-07 2001-05-22 Verfahren zum herstellen eines datenspeichers

Publications (1)

Publication Number Publication Date
EP1295288A1 true EP1295288A1 (de) 2003-03-26

Family

ID=7644934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01953951A Withdrawn EP1295288A1 (de) 2000-06-07 2001-05-22 Verfahren zum herstellen eines datenspeichers

Country Status (5)

Country Link
US (1) US20030141607A1 (de)
EP (1) EP1295288A1 (de)
JP (1) JP2003535722A (de)
DE (1) DE10028086C2 (de)
WO (1) WO2001095319A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122419B1 (de) * 2007-02-15 2015-07-29 Leibniz-Institut für Neue Materialien gemeinnützige GmbH Verfahren zum übertragen von oberflächenstrukturierungen, wie interferenzschichten, hologrammen und anderen hochbrechenden optischen mikrostrukturen
US11211091B2 (en) 2011-06-09 2021-12-28 Case Western Reserve University Optical information storage medium
JP6087348B2 (ja) 2011-06-09 2017-03-01 ケース ウェスタン リザーブ ユニバーシティCase Western Reserve University 光学式情報記憶媒体及びこれを備える光学式データ記憶システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697513B2 (ja) * 1982-01-12 1994-11-30 大日本インキ化学工業株式会社 光記録媒体
JPS58155543A (ja) * 1982-03-10 1983-09-16 Toshiba Corp 情報記録方法
US4581317A (en) * 1984-03-01 1986-04-08 E. I. Du Pont De Nemours And Company Optical recording element
US4860273A (en) * 1986-07-31 1989-08-22 Fuji Photo Film Co., Ltd. Method of recording information and information recording medium employed for the same
JP2516071B2 (ja) * 1989-06-23 1996-07-10 日本ビクター株式会社 光記録媒体
JPH03147540A (ja) * 1989-11-01 1991-06-24 Canon Inc 光記録媒体用基板の製造方法
JPH03168931A (ja) * 1989-11-27 1991-07-22 Sony Corp 回転光学ヘッド
EP0463784B1 (de) * 1990-06-19 1998-10-14 Canon Kabushiki Kaisha Optisches Aufzeichnungsmedium, Verfahren zur optischen Aufzeichnung und Verfahren zur optischen Wiedergabe
US5368789A (en) * 1990-09-28 1994-11-29 Canon Kabushiki Kaisha Method for forming substrate sheet for optical recording medium
EP0519633A1 (de) * 1991-06-11 1992-12-23 Imperial Chemical Industries Plc Datenspeichermedien
JPH05282706A (ja) * 1991-08-01 1993-10-29 Canon Inc 光記録媒体とその製造方法及び光記録媒体用基板
JPH0546061A (ja) * 1991-08-21 1993-02-26 Asahi Glass Co Ltd 体積ホログラム光学フイルム及びその製造方法及びそれを用いた窓
CA2086467A1 (en) * 1992-01-07 1993-07-08 Kenji Kato Optical tape
JPH07164656A (ja) * 1993-10-22 1995-06-27 Sony Corp 記録部構造及び記録装置
US5855979A (en) * 1996-08-08 1999-01-05 Mitsui Chemicals, Inc. Optical recording medium
US6168682B1 (en) * 1998-02-10 2001-01-02 3M Innovative Properties Company Method of manufacturing an optical recording medium
DE29816802U1 (de) * 1998-09-19 2000-02-10 Noehte Steffen Optischer Datenspeicher
IL129011A0 (en) * 1999-03-16 2000-02-17 Omd Devices L L C Multi-layered optical information carriers with fluorescent reading and methods of their production
DE19935776A1 (de) * 1999-07-26 2001-02-08 Beiersdorf Ag Datenspeicher

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0195319A1 *

Also Published As

Publication number Publication date
DE10028086A1 (de) 2001-12-20
US20030141607A1 (en) 2003-07-31
WO2001095319A1 (de) 2001-12-13
DE10028086C2 (de) 2003-05-08
JP2003535722A (ja) 2003-12-02

Similar Documents

Publication Publication Date Title
EP1323158B1 (de) Holographischer datenspeicher
EP1307881B1 (de) Holographischer datenspeicher, seine verwendung und verfahren zur dateneingabe
EP1395985A1 (de) Holographischer datenspeicher
DE19932899C2 (de) Datenspeicher und Verwendung des Datenspeichers in einem Laufwerk
EP1198794B1 (de) Datenspeicher und verfahren zum schreiben von information in einen datenspeicher
DE10028112A1 (de) Verfahren zum Herstellen eines Datenspeichers
EP1287523A1 (de) Datenspeicher
DE2160149A1 (de) Photochromische Einrichtung und Ver fahren zu deren Betneb
DE10028086C2 (de) Verfahren zum Herstellen eines Datenspeichers
DE3607587A1 (de) Vielkomponentenharzmasse mit temperaturvariablem lichtdurchlaessigkeitsgrad
EP1290682A1 (de) Datenspeicher
DE10008328A1 (de) Datenspeicher
DE2542680A1 (de) Verfahren zum aufzeichnen von informationen
DE1278515B (de) Thermoplastischer Aufzeichnungstraeger fuer Informationsspeicherung
EP1196916B1 (de) Datenspeicher
DE3002911C2 (de) Optisches Informationsspeichermedium und Verfahren zu seiner Herstellung
DE2833914A1 (de) Vorrichtung zur sammlung von licht und verfahren zur herstellung einer solchen vorrichtung
EP1194926B1 (de) Zylinderförmiger optischer datenspeicher
DE3723416C2 (de)
EP0302374B1 (de) Dispersionslösung, daraus hergestellte bistabile reversible Dispersionsschicht und deren Verwendung
DE19935776A1 (de) Datenspeicher
EP0251119B1 (de) Lichtempfindliches Aufzeichnungs-material
WO2002103690A1 (de) Verfahren zum eingeben von information in einen optisch beschreibbaren und auslesbaren datenspeicher
DE19947782A1 (de) Datenspeicher
DE2707192A1 (de) Verfahren zur herstellung von rueckstrahlenden elementen fuer strassenmarkierung und bandfoermiges, die genannten rueckstrahlenden elemente umfassendes material fuer strassenmarkierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESA AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201