EP1292724A1 - Electrodeposition zinc-nickel - Google Patents
Electrodeposition zinc-nickelInfo
- Publication number
- EP1292724A1 EP1292724A1 EP00951046A EP00951046A EP1292724A1 EP 1292724 A1 EP1292724 A1 EP 1292724A1 EP 00951046 A EP00951046 A EP 00951046A EP 00951046 A EP00951046 A EP 00951046A EP 1292724 A1 EP1292724 A1 EP 1292724A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- anode
- bath
- anolyte
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/565—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
Definitions
- the present invention relates to an apparatus and process for zinc-nickel electroplating.
- U .S. Patent No. 5, 162,079 discloses an apparatus for electroplating metals.
- the apparatus comprises an electroplating bath which contains a plating solution of a metallic salt, for instance, nickel sulfate.
- a cathode workpiece is positioned in the bath.
- An insoluble anode assembly is also provided in the bath.
- the anode assembly includes an anode which is essentially insoluble during electroplating and an anion exchange membrane enclosure around the anode.
- An electrically conductive acid solution is contained within the enclosure of the anode assembly.
- the flow of current in the apparatus causes anions, for instance sulfate ions, in the plating solution to travel through the anion exchange membrane increasing the acid concentration within the anode assembly enclosure.
- Accu mulated acid is periodically flushed from the enclosure.
- One purpose of the apparatus of the x 079 patent is to i nhi bit the increase in concentration of dissolved metal in the electroplating bath due to a cathode efficiency which is less than the anode efficiency.
- U .S. Patent No. 4,778,572 discloses an apparatus similar to that of the "079 patent.
- An electroplating apparatus for plating nickel onto a workpiece is provided .
- a nickel-plati ng bath is provided in the apparatus.
- the bath is a typical Watts nickel low pH acid bath .
- a cathode workpiece is positioned in the bath .
- An anode structure is also positioned in the bath .
- the anode structure comprises a series of nickel plate anodes.
- the nickel plate anodes are enclosed i n an ion exchange membrane that allows a current flow from the anodes to the cathode workpiece whi le at the same ti me shielding the anodes from organics, such as Cou marin within the bath .
- the nickel plate anodes are i m mersed in dilute sulfuric acid contained within the ion excha nge membrane enclosure.
- the apparatus comprises a vessel which is divided by a cation exchange membrane into a cathode compartment containing a catholyte and an anode compartment containing an anolyte.
- the catholyte is an alkaline zi nc-nickel electroplating bath containing poly(alkyleneimine) additives for complexing and brightening.
- a cathode workpiece to be plated is positioned in the cathode compartment.
- the anolyte is an acid such as sulfuric acid or phosphoric acid.
- a platinum coated titanium anode is immersed in the anolyte.
- the ion exchange membrane allows the flow of current from the anode to the cathode, but at the same time shields the anode from the alkaline zinc-nickel electroplating bath. Electrolysis of alkaline zinc-nickel baths containing poly(alkyleneimines) produces amine breakdown at the anode into nitriles and cyanides if the anode is exposed to the plating bath . The ion exchange membrane prevents such amine breakdown.
- an apparatus which comprises an alkaline electroplating bath adjacent to an acid anolyte can be dangerous.
- a platinum coated titanium anode is expensive.
- Fig. 1 is a schematic illustration of a zinc-nickel electroplating apparatus in accordance with the present invention
- Fig . 2 is a schematic illustration of an anode assembly in the apparatus of Fig. 1 Summarv of the Invention
- the present invention relates to an apparatus for applying a zinc-nickel electroplate to a workpiece.
- the apparatus comprises a zinc-nickel electroplating bath comprising an amine additive, such as a poly(alkylene- imines) capable of being oxidized in the bath to cyanides.
- the bath has a pH more than about 14.
- a cathode workpiece is positioned in said bath.
- An anode assembly is in contact with the bath.
- the anode assembly comprises an enclosure defining an anolyte compartment, at least a portion of the enclosure in contact with the bath being an ion exchange membrane.
- An anolyte is positioned in the compartment.
- An insoluble metal anode is immersed in the anolyte.
- the anolyte is a conductive salt or base solution and the anode is a metal or metal coating selected from the group consisting of nickel, cobalt, iron, chromium and alloys thereof.
- a preferred anolyte is a solution of 50 to about 760 g/liter of sodium hydroxide.
- a preferred anode is a nickel or a nickel alloy or coating thereof coated onto a substrate.
- the present invention also resides in a process for applying a zinc-nickel electroplate to a workpiece.
- a zinc- nickel electroplating bath comprising amine additives and having a pH more than about 14 is provided.
- a cathode workpiece is positioned in the bath.
- An anode assembly is in contact with the bath.
- the anode assembly comprises an enclosure defining an anolyte compartment, at least a portion of the enclosure in contact with the bath being an ion exchange membrane.
- An anolyte is positioned in the compartment.
- An insoluble metal anode is immersed in the anolyte.
- the anolyte is a conductive salt or base solution and the anode is a metal or metal coating selected from the group consisting of nickel, cobalt, iron, chromium and alloys thereof.
- a potential is applied between the anode and cathode establishing a current flow from the anode to the cathode through the ion exchange membrane.
- the ion exchange membrane shields the anode from the zinc-nickel electroplating bath preventing amine breakdown into cyanides.
- the zinc-nickel electroplating apparatus 12 of the present invention comprises a tank 14.
- the tank 14 contains a zinc-nickel electroplating bath 16 and a cathode workpiece 18.
- the tank 14 also comprises an anode assembly 20.
- the anode assembly 20 comprises an enclosure 22 which defines an anolyte compartment 24.
- the compartment 24 is closed by the enclosure 22 on all sides and the bottom.
- At least one wall 26 of the enclosure 22 is an ion exchange membrane.
- the anolyte compartment 24 comprises an anolyte 28.
- An anode 30 is immersed in the anolyte 28.
- the enclosure 22 shields the anode 30 from the electroplating bath 16 so that no bath 16 contacts the anode 30.
- the ion exchange membrane 26 faces the cathode workpiece 18. This allows current to flow from the anode 30 to the cathode workpiece 18 on the application of an electric potential to the anode 30 and the cathode workpiece 18. The current flow causes plating of the cathode workpiece 18.
- the enclosure 22 and compartment 24 can have many configurations, for instance, a membrane bag suspended in the catholyte, or a membrane containing wall extending cross-wise in the tank 14 dividing the tank 14 into a catholyte compartment or an anolyte compartment.
- the cathode workpiece 18 is any workpiece typically used in zinc-nickel electroplating.
- a steel plate was used.
- the enclosure 22 of the anode assembly 20 can be made of any suitable plastic resistant to the zinc-nickel electroplating bath 16 and the anolyte 28, for instance, polyethylene.
- the ion exchange membrane 26 of the enclosure 22 can be any ion exchange membrane used in an electroplating bath, for example, an ion exchange membrane, such as a perfluorosulfonic acid ion exchange membrane, marketed by E.I. DuPont de Nemours under the trademark NAFION. In the following Examples, a NAFION 450 membrane was used.
- the anolyte 28 in the anolyte compartment 24 is a conductive salt or base solution, for example, an aqueous solution of sodium sulfate or an alkaline solution of potassium hydroxide or sodium hydroxide.
- alkaline solutions can have concentrations, by way of example, in the range of one molar to about 20 molar hydroxide, with a preferred concentration range of 1 to 10 molar.
- a preferred anolyte is about 50 g/liter sodium hydroxide to about 760 g/liter.
- the anode 30 of the anode assembly 20 is a metal or a metal coating selected from the group consisting of nickel, cobalt, iron, chromium, and alloys thereof.
- the anode 30 can be nickel, a nickel alloy, nickel coated onto a substrate, or a nickel alloy coated onto a substrate.
- the substrate can be metal, such as steel, copper, or aluminum or a plastic.
- An example of a nickel alloy is Hastelloy, which is 55% nickel and 45% chromium .
- the nickel or nickel alloy can be electroplated onto a substrate using a Watts type plating bath, or using an electroless nickel or nickel alloy plating process.
- the anode 30 can be cobalt or cobalt coated onto a substrate, and alloys thereof.
- the anode can also be a mild steel, a steel alloy, or an iron chromium alloy such as stainless steel.
- the zinc-nickel electroplating bath is an aqueous solution that is alkaline having a pH which is preferably above about 14.
- the bath contains an inorganic alkaline component in an effective amount to achieve this pH . Amounts from about 50 grams per liter to about 200 grams per liter, based on the electroplating bath of the alkaline component can be used.
- suitable alkaline components are alkali metal derivatives such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
- the electroplating bath 16 also contains a controlled amount of zinc ions and a controlled amount of nickel ions.
- the source for the zinc ions for the electroplating bath 16 can be any zinc compound which is soluble in an alkaline aqueous medium.
- Examples of zinc compounds which can be added to the electroplating bath are zinc oxide or a soluble salt such as zinc sulfate, zinc carbonate, zinc sulfamate, and zinc acetate.
- the concentration of zinc ions in the electroplating bath is from about 1 to 100 grams per liter, preferably about 4 to about 50 grams per liter (about 4,000 to about 50,000 ppm). At a pH above about 14, the predominant zinc species in the bath is zincate ion.
- the source for the nickel ions for the electroplating bath can be any nickel compound which can be made soluble in an aqueous alkaline solution .
- suitable nickel compounds are an inorganic or organic acid salt of nickel, such as nickel sulfate, nickel carbonate, nickel acetate, nickel sulfamate and nickel formate.
- the concentration of nickel ions in the electroplating bath can be from about 0.1 to about 10 grams per liter (about 100 to 10,000 ppm), more preferably in the range from about 0.1 gram per liter to about 3 grams per liter (about 100 ppm to about 3,000 ppm).
- the zinc-nickel electroplating bath also contains an amine compound capable of being oxidized to cyanides in the bath, such as a polymer of an aliphatic amine.
- Examples of aliphatic amine polymers oxidizable to cyanides in the bath are ethyleneimine, 1,2-propyleneimine, 1,2- butyleneimine and 1,1-dimethylethyleneimine.
- the poly(alkyleneimines) may have molecular weights from about 100 to about 100,000 and should be soluble in the bath.
- poly(ethyleneimine) which is useful in the bath can have a molecular weight of from about 150 to above about 2,000.
- Useful poly(ethyleneimines) are available commercially, for example from BASF under the designations LUGALVAN G-15, LUGALVAN G-20 and LUGALVAN G-35.
- TEPA tetraethylenepentamine
- PEHA pentaethylenehexamine
- EPOMIN 003 heptaethylene octamine
- One function of the aliphatic poly(alkyleneimines) is to complex nickel ions in the alkaline zinc-nickel bath.
- the zinc-nickel electroplating bath may also contain other additives such as other brighteners, and metal complexing agents.
- One useful metal complexing agent is QUADROL from BASF. QUADROL is N,N,N',N'-tetrakis(2- hydroxypropyl)-ethylenediamine.
- metal anode 30 copper and tin were tested as metal anodes in the anode box, but both dissolved during electrolysis. Zinc was tested but polarized severely. A graphite electrode was also tested. The graphite decomposed, and the anode box became filled with graphite particles. Iridium oxide on titanium was tested, but there was significant deterioration of the coating during electrolysis.
- the alkaline zinc-nickel bath was one gallon containing 10 g/liter of zinc, 1.5 g/liter of nickel, 20 g/liter of tetraethylenepentamine (TEPA) and lOg/liter of QUADROL.
- An anode box (disclosed in the Figure) having a NAFION 450 membrane on one side, containing 500 ml of a solution of 150g of sodium hydroxide was placed in the zinc-nickel bath.
- a metal anode was placed in the anode box.
- the metal anode was made of a coating of electroless nickel (containing 10%P) on steel. 5.0 Amperes of current were passed through the one-gallon cell for 6 hours.
- the plating bath was analyzed for cyanide, and no cyanide was detected. There was no erosion of the electroless coated steel anode in the anode box.
- Example 2 In this Example, the anode box was filled with a solution of 150g/liter of sodium hydroxide in water.
- the metal anode in the box was made of nickel metal .
- a one- gallon cell, similar to Example 1, was run at 5 amperes for 6 hours as before.
- the plating bath was analyzed for cyanide, and no cyanide was detected.
- the nickel anode had a thin conductive coating of nickel oxide/nickel hydroxide which did not interfere with the plating process. There was no weight loss of nickel anode.
- the anode box of Example 1 was filled with a 20% solution of 50% liquid caustic.
- the metal anode was nickel electroplated from a Watts type plating solution, onto a steel base metal.
- the bath was run at 5 amperes and 6.84 volts for 6 hours.
- the plating bath was analyzed for cyanide, and no cyanide was detected. There was no metal anode weight loss.
- a 1-gallon zinc-nickel plating bath similar to the bath in Example 1, was electrolyzed for 100 ampere hours, using a box anode with a NAFION 450 ion exchange membrane covering one side of the box.
- the anode in the box was steel coated with electroless nickel with contained 8%P.
- the bath was analyzed for cyanide and was found to contain no detectable cyanide. There was no metal anode weight loss. Comparative Example 5
- a 2-liter alkaline zinc-nickel plating bath containing 30g/liter of a polyethyleneimine (TEPA) was electrolyzed for 160 ampere hours with a nickel anode placed directly into the plating bath.
- the bath was found to contain 508 ppm of cyanide.
- the anode box of Example 1 was filed with a solution of 150g/liter of potassium hydroxide.
- the metal anode in the anolyte was a mild steel Q-panel.
- the bath which was similar to the bath of Example 1, was electrolyzed at 5 amperes for 6 hours. There was a slight loss of weight from the steel anode.
- the electrolyte was analyzed for cyanide, and no cyanide was detected.
- the anode box of Example 1 is filled with a solution of 150g/liter of sodium hydroxide.
- the metal anode in the box is cobalt.
- the alkaline zinc-nickel bath contains 20 g/liter of poly(ethyleneimine) and is electrolyzed for 30 amp-hours.
- the metal anode in the anode box of Example 1 is steel coated with cobalt.
- the plating bath is similar to Example 1.
- the anolyte in the box is a 20% solution of 50% liquid caustic.
- Example 9 The metal anode in the anode box in this Example, is a cobalt alloy anode.
- the anolyte is a 20% solution of 50% liquid caustic.
- the plating bath and apparatus are similar to Example 1.
- the metal anode in this Example is steel coated with a cobalt alloy coating from an electroless, cobalt-plating bath.
- the zinc-nickel plating bath and apparatus are similar to Example 1.
- the anode box contains a 15% solution of 50% liquid caustic.
- the alkaline zinc-nickel bath is electrolyzed for 6 hours at 5.0 amperes.
- the metal anode in the anode box was stainless steel .
- the plating bath and apparatus were similar to Example 1. After 30-ampere hours, there was no detectable cyanide. There was no weight loss from the stainless steel anode.
- an apparatus and process are provided by which zinc-nickel can be safely plated onto a substrate using an alkaline zinc-nickel electroplating bath containing polyamines, especially poly(alkyleneimines).
- a commercial apparatus and process will employ a zinc-nickel electroplating bath comprising additives in addition to a poly(alkyleneimine) such as other brighteners and sequestrants.
- a commercial bath typically can employ a 1000 gallon tank and the cathode workpiece positioned between arrays of compartmentalized anodes on opposite sides of the cathode along the sides of the tank.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60023190.9T DE60023190T3 (de) | 2000-06-15 | 2000-06-15 | Zink-nickel-elektroplattierung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2000/040208 WO2001096631A1 (fr) | 2000-06-15 | 2000-06-15 | Electrodeposition zinc-nickel |
Publications (4)
Publication Number | Publication Date |
---|---|
EP1292724A1 true EP1292724A1 (fr) | 2003-03-19 |
EP1292724A4 EP1292724A4 (fr) | 2004-09-08 |
EP1292724B1 EP1292724B1 (fr) | 2005-10-12 |
EP1292724B2 EP1292724B2 (fr) | 2015-12-23 |
Family
ID=21742124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00951046.2A Expired - Lifetime EP1292724B2 (fr) | 2000-06-15 | 2000-06-15 | Electrodeposition zinc-nickel |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1292724B2 (fr) |
AT (1) | ATE306572T1 (fr) |
DE (1) | DE60023190T3 (fr) |
ES (1) | ES2250166T5 (fr) |
WO (1) | WO2001096631A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2384800A1 (fr) | 2010-05-07 | 2011-11-09 | Dr.Ing. Max Schlötter GmbH & Co. KG | Régénération d'électrolytes nickel-zinc alcalins par la suppression de cyanidiones |
EP3358045A1 (fr) | 2017-02-07 | 2018-08-08 | Dr.Ing. Max Schlötter GmbH & Co. KG | Procédé de dépôt par placage de revêtements en zinc et en alliage de zinc à partir d'un bain de revêtement alcalin à élimination réduite des additifs de bain organiques |
EP3415665A1 (fr) | 2017-06-14 | 2018-12-19 | Dr.Ing. Max Schlötter GmbH & Co. KG | Procédé de dépôt galvanique de revêtements d'alliage zinc/nicel à partir d'un bain d'alliage nickel/zinc à élimination réduite des additifs |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6755960B1 (en) | 2000-06-15 | 2004-06-29 | Taskem Inc. | Zinc-nickel electroplating |
WO2004108995A1 (fr) | 2003-06-03 | 2004-12-16 | Taskem Inc. | Electrodeposition de zinc et d'alliage de zinc |
US8377283B2 (en) | 2002-11-25 | 2013-02-19 | Coventya, Inc. | Zinc and zinc-alloy electroplating |
DE10261493A1 (de) | 2002-12-23 | 2004-07-08 | METAKEM Gesellschaft für Schichtchemie der Metalle mbH | Anode zur Galvanisierung |
US7368043B2 (en) * | 2003-04-10 | 2008-05-06 | Applied Intellectual Capital | Configurations and methods of electrochemical lead recovery from contaminated soil |
FR2864553B1 (fr) * | 2003-12-31 | 2006-09-01 | Coventya | Installation de depot de zinc ou d'alliages de zinc |
US7442286B2 (en) | 2004-02-26 | 2008-10-28 | Atotech Deutschland Gmbh | Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys |
ES2574158T3 (es) | 2005-04-26 | 2016-06-15 | Atotech Deutschland Gmbh | Baño galvánico alcalino con una membrana de filtración |
DE102007060200A1 (de) | 2007-12-14 | 2009-06-18 | Coventya Gmbh | Galvanisches Bad, Verfahren zur galvanischen Abscheidung und Verwendung einer bipolaren Membran zur Separation in einem galvanischen Bad |
EP2096193B1 (fr) | 2008-02-21 | 2013-04-03 | Atotech Deutschland GmbH | Procédé de préparation de pièces linéaires ou complexes, résistantes à la corrosion plaquées en zinc et en zinc-nickel |
DE102010044551A1 (de) * | 2010-09-07 | 2012-03-08 | Coventya Gmbh | Anode sowie deren Verwendung in einem alkalischen Galvanikbad |
DE202015002289U1 (de) | 2015-03-25 | 2015-05-06 | Hartmut Trenkner | Zweikammer - Elektrodialysezelle mit Anionen- und Kationenaustauschermembran zur Verwendung als Anode in alkalischen Zink- und Zinklegierungselektrolyten zum Zweck der Metallabscheidung in galvanischen Anlagen |
US10156020B2 (en) | 2015-07-22 | 2018-12-18 | Dipsol Chemicals Co., Ltd. | Zinc alloy plating method |
EP3914757B1 (fr) * | 2019-01-24 | 2023-04-05 | Atotech Deutschland GmbH & Co. KG | Procede de dépôt électrolytique d'un alliage zinc-nickel utilsant un système d'anode à membrane |
CN114574860A (zh) * | 2022-03-08 | 2022-06-03 | 南京南微电机有限公司 | 一种局部镀镍工艺及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3712511A1 (de) * | 1986-04-14 | 1987-10-15 | Dipsol Chem | Elekroplattierungsbad |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3718549A (en) † | 1971-06-14 | 1973-02-27 | Kewanee Oil Co | Alkaline nickel plating solutions |
JPS62240788A (ja) * | 1986-04-14 | 1987-10-21 | Deitsupusoole Kk | 亜鉛−ニツケル合金用めつき浴 |
JP2769614B2 (ja) * | 1986-06-04 | 1998-06-25 | ディップソール 株式会社 | 亜鉛−ニツケル合金用めつき浴 |
US4889602B1 (en) † | 1986-04-14 | 1995-11-14 | Dipsol Chem | Electroplating bath and method for forming zinc-nickel alloy coating |
US4778572A (en) | 1987-09-08 | 1988-10-18 | Eco-Tec Limited | Process for electroplating metals |
DE4035316C2 (de) † | 1990-11-07 | 1993-11-04 | Daimler Benz Ag | Verfahren zur elektrolytischen rueckgewinnung von nickel aus chloridhaltigen elektrolytischen baedern |
US5162079A (en) | 1991-01-28 | 1992-11-10 | Eco-Tec Limited | Process and apparatus for control of electroplating bath composition |
JPH059799A (ja) * | 1991-07-05 | 1993-01-19 | Kawasaki Steel Corp | 硫酸浴Zn−Ni電気めつきにおける金属イオンの供給方法及び装置 |
US5417840A (en) * | 1993-10-21 | 1995-05-23 | Mcgean-Rohco, Inc. | Alkaline zinc-nickel alloy plating baths |
JP3348963B2 (ja) * | 1994-04-14 | 2002-11-20 | ディップソール株式会社 | 亜鉛−コバルト合金アルカリ性めっき浴及び該めっき浴を用いためっき方法 |
US5883762A (en) | 1997-03-13 | 1999-03-16 | Calhoun; Robert B. | Electroplating apparatus and process for reducing oxidation of oxidizable plating anions and cations |
DE19834353C2 (de) † | 1998-07-30 | 2000-08-17 | Hillebrand Walter Gmbh & Co Kg | Alkalisches Zink-Nickelbad |
-
2000
- 2000-06-15 ES ES00951046T patent/ES2250166T5/es not_active Expired - Lifetime
- 2000-06-15 AT AT00951046T patent/ATE306572T1/de not_active IP Right Cessation
- 2000-06-15 DE DE60023190.9T patent/DE60023190T3/de not_active Expired - Lifetime
- 2000-06-15 WO PCT/US2000/040208 patent/WO2001096631A1/fr active IP Right Grant
- 2000-06-15 EP EP00951046.2A patent/EP1292724B2/fr not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3712511A1 (de) * | 1986-04-14 | 1987-10-15 | Dipsol Chem | Elekroplattierungsbad |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 0121, no. 17 (C-487), 13 April 1988 (1988-04-13) & JP 62 240788 A (DEITSUPUSOOLE KK), 21 October 1987 (1987-10-21) * |
PATENT ABSTRACTS OF JAPAN vol. 0121, no. 81 (C-499), 27 May 1988 (1988-05-27) & JP 62 287092 A (DEITSUPUSOOLE KK), 12 December 1987 (1987-12-12) * |
PATENT ABSTRACTS OF JAPAN vol. 0140, no. 80 (C-0689), 15 February 1990 (1990-02-15) & JP 1 298192 A (EBARA YUUJIRAITO KK), 1 December 1989 (1989-12-01) * |
See also references of WO0196631A1 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2384800A1 (fr) | 2010-05-07 | 2011-11-09 | Dr.Ing. Max Schlötter GmbH & Co. KG | Régénération d'électrolytes nickel-zinc alcalins par la suppression de cyanidiones |
EP3358045A1 (fr) | 2017-02-07 | 2018-08-08 | Dr.Ing. Max Schlötter GmbH & Co. KG | Procédé de dépôt par placage de revêtements en zinc et en alliage de zinc à partir d'un bain de revêtement alcalin à élimination réduite des additifs de bain organiques |
WO2018146041A1 (fr) | 2017-02-07 | 2018-08-16 | Dr.-Ing. Max Schlötter Gmbh & Co. Kg | Procédé pour le dépôt électrolytique de revêtements de zinc et d'alliage de zinc à partir d'un bain de revêtement alcalin, avec dégradation réduite des additifs organiques du bain |
CN110325669A (zh) * | 2017-02-07 | 2019-10-11 | 马克斯·施洛特尔股份有限两合公司 | 由有机浴添加剂的降解减少的碱性镀浴电沉积锌和锌合金涂层的方法 |
JP2019530800A (ja) * | 2017-02-07 | 2019-10-24 | デーエル.−イーエヌゲー. エムアーイクス シュロッター ゲーエムベーハー ウント コー. カーゲー | 有機浴添加物の分解が低減されたアルカリ性コーティング浴から亜鉛及び亜鉛合金被膜をガルバニック堆積するための方法 |
US11339492B2 (en) | 2017-02-07 | 2022-05-24 | Dr.-Ing. Max Schlötter Gmbh & Co. Kg | Method for electrodepositing zinc and zinc alloy coatings from an alkaline coating bath with reduced depletion of organic bath additives |
EP3415665A1 (fr) | 2017-06-14 | 2018-12-19 | Dr.Ing. Max Schlötter GmbH & Co. KG | Procédé de dépôt galvanique de revêtements d'alliage zinc/nicel à partir d'un bain d'alliage nickel/zinc à élimination réduite des additifs |
Also Published As
Publication number | Publication date |
---|---|
EP1292724B1 (fr) | 2005-10-12 |
EP1292724B2 (fr) | 2015-12-23 |
DE60023190T2 (de) | 2006-07-13 |
DE60023190T3 (de) | 2016-03-10 |
ES2250166T3 (es) | 2006-04-16 |
DE60023190D1 (de) | 2006-02-23 |
EP1292724A4 (fr) | 2004-09-08 |
ES2250166T5 (es) | 2016-05-20 |
WO2001096631A1 (fr) | 2001-12-20 |
ATE306572T1 (de) | 2005-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1292724B1 (fr) | Electrodeposition zinc-nickel | |
US6755960B1 (en) | Zinc-nickel electroplating | |
TWI636164B (zh) | 鋅合金鍍覆方法 | |
EP1639155B1 (fr) | Electrodeposition de zinc et d'alliage de zinc | |
JP6582353B1 (ja) | 亜鉛又は亜鉛合金電気めっき方法及びシステム | |
JP5830202B1 (ja) | 亜鉛合金めっき方法 | |
US5607570A (en) | Electroplating solution | |
KR20100120160A (ko) | 주석 합금층의 도금을 위한 피로인산염계 전해조 | |
US8377283B2 (en) | Zinc and zinc-alloy electroplating | |
US3879270A (en) | Compositions and process for the electrodeposition of metals | |
Ramesh Bapu et al. | Studies on non-cyanide alkaline zinc electrolytes | |
ES2969188T3 (es) | Procedimiento para la deposición galvánica de revestimientos de aleaciones de cinc-níquel a partir de un baño de aleación de cinc-níquel alcalino con degradación reducida de aditivos | |
JP7442866B1 (ja) | 電気めっき用陽極並びに金属で物品を電気めっきする方法及びシステム | |
JP2997072B2 (ja) | 亜鉛−ニッケル合金めっき浴及び被めっき物上の黒色析出を防止する方法 | |
WO1999050479A1 (fr) | Solution d'electrodeposition | |
WO2013050258A2 (fr) | Dépôt sélectif d'or dur | |
Matsuoka et al. | Electrodeposition of Iron--Chromium--Nickel Alloy | |
JPH0471999B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ECKLES, WILLIAM, E. Inventor name: FRISCHAUF, ROBERT, E. |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20040728 |
|
17Q | First examination report despatched |
Effective date: 20040914 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060112 |
|
REF | Corresponds to: |
Ref document number: 60023190 Country of ref document: DE Date of ref document: 20060223 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060313 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2250166 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060615 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: WALTER HILLEBRAND GMBH & CO. KG GALVANOTECHNIK Effective date: 20060712 Opponent name: ATOTECH DEUTSCHLAND GMBH Effective date: 20060712 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060615 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051012 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAW | Appeal reference deleted |
Free format text: ORIGINAL CODE: EPIDOSDREFNO |
|
APAY | Date of receipt of notice of appeal deleted |
Free format text: ORIGINAL CODE: EPIDOSDNOA2O |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: COVENTYA, INC. |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
R26 | Opposition filed (corrected) |
Opponent name: ATOTECH DEUTSCHLAND GMBH Effective date: 20060712 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20151223 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 60023190 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60023190 Country of ref document: DE Representative=s name: WAGNER & GEYER PARTNERSCHAFT MBB PATENT- UND R, DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2250166 Country of ref document: ES Kind code of ref document: T5 Effective date: 20160520 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20161006 AND 20161012 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190625 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190627 Year of fee payment: 20 Ref country code: ES Payment date: 20190701 Year of fee payment: 20 Ref country code: IT Payment date: 20190726 Year of fee payment: 20 Ref country code: GB Payment date: 20190627 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60023190 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20200614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200614 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20200616 |