EP1278918A1 - Steuer-system bzw. verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes - Google Patents

Steuer-system bzw. verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes

Info

Publication number
EP1278918A1
EP1278918A1 EP01942992A EP01942992A EP1278918A1 EP 1278918 A1 EP1278918 A1 EP 1278918A1 EP 01942992 A EP01942992 A EP 01942992A EP 01942992 A EP01942992 A EP 01942992A EP 1278918 A1 EP1278918 A1 EP 1278918A1
Authority
EP
European Patent Office
Prior art keywords
wheel device
control system
bucket wheel
paddle wheel
stockpile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01942992A
Other languages
English (en)
French (fr)
Other versions
EP1278918B1 (de
Inventor
Bernd Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isam-Holding GmbH
ISAM Holding GmbH
Original Assignee
Isam-Holding GmbH
ISAM Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7640736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1278918(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Isam-Holding GmbH, ISAM Holding GmbH filed Critical Isam-Holding GmbH
Publication of EP1278918A1 publication Critical patent/EP1278918A1/de
Application granted granted Critical
Publication of EP1278918B1 publication Critical patent/EP1278918B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/22Component parts
    • E02F3/26Safety or control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • the invention relates to a control system for the automatic control of a movable bucket wheel device for the removal of stockpiles and / or for stockpiling bulk goods, wherein the bucket wheel device for receiving the bulk goods has at least one bucket wheel, at least one measuring device is provided for measuring the stockpile and the bucket wheel device depending on the measured and / or processed measurement data can be moved automatically to the desired dismantling and / or hold position.
  • the bucket wheel device for receiving the bulk goods has at least one bucket wheel, at least one measuring device is provided for measuring the stockpile and the bucket wheel device depending on the measured and / or processed measurement data can be moved automatically to the desired dismantling and / or hold position.
  • Invention a method for the automatic control of a movable bucket wheel device, in particular with the aid of the control system mentioned at the beginning, wherein an automatic control of a movable bucket wheel device takes place for the removal of stockpiles and / or for stockpiling bulk goods, the stockpile shape being recorded with the aid of at least one measuring device is and the paddle wheel device is automatically moved to the desired dismantling and / or hold position depending on the measured and / or processed measurement data.
  • Handling facilities are particularly warehouse and transport systems optimized for inventory and lead times. Inexpensive and future-oriented solutions take particular account of the integration into the automation technology, so that inexpensive and simple handling can be implemented in later operation. It should be noted in particular that
  • Bucket wheel devices generally run in 3-shift operation, that is, in the case of manual control of such a bucket wheel device, corresponding wages have to be paid by the employer, the operation of such a bucket wheel device is therefore associated with high costs.
  • a paddle wheel device is known that is designed to break down, in particular, compacted heaps or to hold bulk goods.
  • the bucket wheel device also called “bucket wheel excavator”, has a front boom, at the front end of which the bucket wheel is located, and a pylon, which is tower-like is executed on.
  • a counterweight is provided that is arranged on the side of the pylon opposite the front boom, namely on a rear boom.
  • the front area of the front boom is connected to the counterweight via suspension cable elements via the upper section of the pylon. The forces that occur when the bucket wheel is loaded with bulk goods on the front boom or on the bucket wheel device are compensated accordingly via the counterweight.
  • the known paddle wheel device described here has a control system for the automatic control of the movable paddle wheel device.
  • a measuring device is provided for measuring the shape of the stockpile, namely the surface profile of the stockpile. Since the bucket wheel device itself is designed to be movable, that is to say has a corresponding drive system, the bucket wheel device is moved to the desired dismantling and / or holding position depending on the measured and / or processed data that the measuring device has determined, and preferably in such a way that the paddle wheel located at the front end of the front boom is positioned at the desired dismantling or stopping position.
  • the bucket wheel device itself is moved, and on the other hand the front boom of the bucket wheel device is moved in such a way that the bucket wheel is positioned in the desired height position and in the desired lateral position for removing or heaping up the stockpile.
  • the bucket wheel device known here in the prior art is moved depending on a surface profile of the stockpile that is determined or calculated with the aid of the measuring device, or individual movable components of the bucket wheel device, which are referred to as combination devices, for example, are moved.
  • the measuring device used here is designed as a 2-D scanner and scans the surface of the heap.
  • the measuring device is arranged in the front area of the front arm of the bucket wheel device.
  • the known paddle wheel device In order for the stockpile shape, ie the surface profile of the stockpile, to be ascertained, the known paddle wheel device must be moved along the stockpile, the front boom practically “running over” the stockpile and the measuring device scanning the surface while passing over the stockpile Before starting the work process, the paddle wheel device must first be subjected to a separate measurement run with the help of the travel path of the paddle wheel device, the position of the lifting mechanism, the pivoting mechanism and the Undercarriage, the respective positions of which are determined by separately provided angle sensors or separate sensors, the position of the measuring device can also be determined, among other things. This measuring device scans the stockpile shape during the measurement run.
  • a 3-D stockpile model is calculated from the measurement data of the measurement device and the measurement data of the angle sensors provided on the travel swiveling and lifting mechanism and with the aid of a 2-D converter.
  • the separately provided control system continuously polls the values of the angle transmitters and belt scale measurement values for the bulk goods that have been removed, that is to say dismantled.
  • the control calculates a provisional stockpile model that is continuously updated in accordance with the measured excavation quantity or the hold-up quantity of the bulk material, so that preferably no separate measurement runs with the bucket wheel device have to be carried out in order to determine the surface profile of the stockpile.
  • the stockpile shape is first of all determined with the aid of a measurement run of the paddle wheel device of the 2-D scanner, the dismantling or stopping process then being started and the corresponding measured values , in particular angle encoder signals and quantity values for the mined or piled up bulk material, then the control system calculates a provisional stockpile model.
  • the control system known in the prior art or the method known here for the automatic control of a paddle wheel device has not yet been optimally designed.
  • a measurement run of the bucket wheel device or a combination device for recording or determining the shape of the stockpile is always necessary, since the measuring device arranged in the area of the front boom must be moved over the stockpile in accordance with the length of the stockpile, so that the 2-D Scanner can also capture the stockpile shape.
  • the movement of the entire bucket wheel device in particular the movement of the travel, lifting and swiveling mechanism, must be carried out. with the help of the angle encoder, i.e.
  • the movement of the paddle wheel device about its two axes of rotation and the movement of the paddle wheel device vzw. along a rail along the heap by separate sensors, which measure the distance, are permanently determined so that on the one hand the position of the measuring device can be determined and on the other hand the heap shape or the heap model can also be calculated from the measurement data.
  • the bucket wheel device is then automatically moved to the desired dismantling and / or hold position, so that the bucket wheel of the bucket wheel device begins, for example, with the stockpile being dismantled, based on that in the control unit Stored "recorded stockpile model".
  • This stockpile model is then updated with the aid of further measurement data which are determined, in particular the quantity of bulk material arriving at the conveyor system or conveyed away from the conveyor system (for example the amount of hard coal) is recorded by appropriate sensors and thus the conveyor belt measurement values and
  • further measurement data which are determined, in particular the quantity of bulk material arriving at the conveyor system or conveyed away from the conveyor system (for example the amount of hard coal) is recorded by appropriate sensors and thus the conveyor belt measurement values and
  • the stockpile removal is therefore controlled on the constantly updated theoretical "stockpile model”.
  • the shape of the stockpile can change during operation of the bucket wheel device, for example during rainfalls due to natural slipping processes or the like. Furthermore, slipping or slipping can be triggered by the dismantling process itself.
  • a currently changing stockpile shape cannot be detected immediately, in particular cannot be recorded when, for example, the paddle wheel device is at a standstill, ie is not operated, since the measuring device does not pass over the stockpile. Due to the changing stockpile shape, in particular due to natural slipping processes, it can happen that the paddle wheel of the paddle wheel device assumes a starting position, for example, which is not optimal. This harbors dangers for the corresponding hydraulic system and also for the paddle wheel device itself (risk of tipping over). In the end, the known method or the known control system is not optimal here, since, during operation of the bucket wheel device, for example, slipping off of certain partial areas of the stockpile is not detected.
  • the invention is therefore based on the object of To design and develop the system or the method mentioned at the outset in such a way that the control of a bucket wheel device is optimized, in particular the positioning of the bucket wheel vzw. is optimized while avoiding dangers and the necessary initial measurement run of the bucket wheel device for detecting the shape of the stockpile is also avoided.
  • the task outlined above is now achieved in that the control system and the measuring device are designed or implemented in such a way that, regardless of the operation of the paddle wheel device, permanent detection of the current stockpile shape is guaranteed, namely a current change the stockpile shape can be detected at least in a certain surrounding area of the impeller.
  • the current stockpile shape is recorded, namely a current change in the stockpile shape is detected at least in a certain surrounding area of the paddle wheel.
  • FIG. 2 shows a hardware configuration for realizing the control system according to the invention and the method according to the invention for the paddle wheel device shown in FIG. 1,
  • Fig. 3 shows a hardware configuration for realizing the invention
  • FIG. 4 shows a screen surface with the representation of a detected heap surface profile.
  • FIG. 1 and 3 show a paddle wheel device 1 that has a front boom 2, a pylon 3, a counterweight 4 and a chassis 5.
  • a paddle wheel 6 is provided at the front end of the boom 3.
  • Counterweight 4 and the rear boom 8 are connected to one another via support cables 7, on the other hand, are designed such that this part of the bucket wheel device 1 can be pivoted and rotated on the undercarriage 5.
  • the angles between the pylon 3 and the front arm 2 and between pylon 3 and the rear arm 8 remain constant.
  • the paddle wheel 6 arranged on the front boom 2 bulk goods are removed or bulk goods are dumped from a stockpile 9 or onto a stockpile 9.
  • the conveyor belt 13 for the transport of the bulk goods can be seen.
  • the paddle wheel device 1 has a control system 10 for the automatic Control of the movable paddle wheel device 1. From Fig. 1 it can be seen that the paddle wheel device 1 can be moved along the heap 9. The paddle wheel device 1 automatically moves to a stopping or stopping position and automatically dismantles the bulk goods or automatically piles them up. The. Movement of the paddle wheel device 1 and the control of the paddle wheel 6 and also the
  • the upper part of the bucket wheel device 1 is pivoted and / or rotated as a function of the heap shape, in particular the surface profile of the heap 9.
  • At least one measuring device 11 is provided for measuring the heap 9. With the help of the control system 10 and the measurement data measured by the measuring device 11, the bucket wheel device 1 is then automatically moved to the desired dismantling and / or holding position, in particular the bucket wheel 6 is positioned accordingly.
  • control system 10 and the measuring device 11 are designed or designed such that a permanent detection of the current stockpile shape is guaranteed, regardless of the operation of the bucket wheel device 1, namely a current change in the stockpile shape at least in a certain surrounding area of the impeller 6 can be detected. Consequently - in accordance with the method according to the invention - a permanent detection of the current stockpile shape is ensured, regardless of the operation of the bucket wheel device 1, and thus a current change in the stockpile shape - at least in a certain surrounding area of the bucket wheel 6 - is recorded. Due to the permanent recording of the stockpile shape, which corresponds to the actual circumstances, namely because the stockpile shape is scanned permanently, i.e.
  • the paddle wheel 6 can always be optimally positioned at the desired opening or dismantling position. While in the prior art scale measurement values of the bulk goods dismantled via the conveyor belt had to be determined and the provisional “stockpile model” was thereby calculated, the components necessary for this in the control effort are dispensed with or a more precise control by the control system according to the invention is now eliminated or procedure possible. 1 and 3, the measuring device 11 is arranged on the pylon 3, namely at the upper end of the pylon 3.
  • the measuring device 11 used here is designed as a 3-D image acquisition system, in particular as a 3-D laser scanner.
  • a so-called “3-D imaging sensor, LMS-Z 210”, which can scan the stockpile shape in a range of up to 350 meters, can be used.
  • a GPS system global positioning system
  • a first and a second GPS position receiver 12a and 12b which are designed as simple GPS antennas, are provided for determining the position of the paddle wheel device 1 and for determining the position of the corresponding paddle wheel device components.
  • the first GPS position receiver 12a is arranged on the front boom 2 and the second position receiver 12b on the pylon 3.
  • the GPS position receivers 12a and 12b are vzw. designed as a CFD receiver (Carier Face Differential).
  • the bucket wheel device 1 has a separate control computer 10b. Furthermore, the control system 10 has additional sensor elements 14 for realizing an additional tilt protection for the blade wheel device 1. This includes in particular an inclination angle sensor 14a, which, like the second GPS position receiver 12b, is arranged at the upper end of the pylon 3.
  • FIG. 2 now shows a hardware configuration for the control system 10 for the bucket wheel device 1.
  • a carriage 5 is provided for positioning the bucket wheel device 1 and, as can be seen from FIG. 3, a lifting mechanism and a swivel mechanism that are not described in more detail are provided so that the pivoting or rotation of the upper part of the bucket wheel device 1, that is, the front boom 2 and pylon 3 and the rear boom 4 is possible.
  • the drive system 15 provided for this purpose can only be seen in FIG. represented mathematically.
  • the drive system 15 is regulated or controlled by a control unit 10a as a function of the measurement data, the measurement device 11 and the data determined by the GPS system.
  • the target values for the control of the bucket wheel device 1 are calculated in the control unit 10a.
  • the control unit 10a determines the stockpile shape of the stockpile 9, in particular the surface profile of the stockpile 9 from which bulk goods are to be mined or to which bulk goods are to be stacked.
  • a control computer 10b is provided which, in particular, determines the position of the paddle wheel device 1 and of the bucket wheel 6 from the data of the data determined by the GPS position receivers 12a and 12b.
  • the upper part of the bucket wheel device 1 is pivotable and rotatable, namely pivotably and rotatably arranged on the undercarriage 5, but the arrangement of the pylon 3 to the front boom 2 or rear boom 8 is always the same, i.e. the corresponding distances and angles remain, since this represents a unit of the paddle wheel device 1 which does not change.
  • the exact position or position of the bucket wheel device 1 and the associated components can always be determined with the aid of the two GPS position receivers, namely the first GPS position receiver 12 and the second GPS position receiver 12b.
  • the two GPS position receivers 12a and 12b vzw. arranged in one and the same plane, but attached or fixed at different positions, here on the front arm 2 or on the pylon 3.
  • FIG. 3 shows a more detailed illustration of a hardware configuration for the bucket wheel device 1. It can be clearly seen that the measuring device 11 and the second GPS position receiver 12b are arranged at the upper end of the pylon 3 of the bucket wheel device 1.
  • the first GPS position receiver 12a is arranged on the front boom 2 of the bucket wheel device 1. It is conceivable that in addition to the first GPS position receiver 12a, namely shortly behind the paddle wheel 6, a video camera system is also arranged which, for example, can in turn be connected to an external control station. However, this is not absolutely necessary here, since the paddle wheel device 1 is one by one Control center independent control system 10, as shown in Fig. 2, and here a separate control unit 10a and a separate control computer 10b are provided for the paddle wheel device 1.
  • the control system 10 here has the control unit 10a, a separate control computer 10b and corresponding control lines 10c.
  • the control computer 10b is here vzw. as
  • the drive system 15 shown only schematically here has the individual controllable components of the bucket wheel device 1, that is to say in particular the motor system or hydraulics for the lifting and swiveling mechanism, the undercarriage and for the bucket wheel 6. These components of the drive system 15 become via the control unit 10a controlled with the help of the control computer 10b.
  • control computer 10b calculates the position of the bucket wheel device 1, in particular the exact position of the bucket wheel 6 to the heap 9, depending on the values of the first and second GPS position receivers 12a and 12b.
  • the control system 10 shown here is designed as a programmable logic controller.
  • the measuring device 11 embodied here as a 3-D scanner, detection of the stockpile shape of the stockpile 9 is possible independently of an operation of the paddle wheel device 1.
  • the measuring device 11 embodied here as a 3-D scanner, detection of the stockpile shape of the stockpile 9 is possible independently of an operation of the paddle wheel device 1.
  • the measuring device 11 at the upper end of the pylon 3 and the design of the measuring device 11 as a 3-D
  • the heap shape of the heap 9 can be recorded permanently.
  • current changes in the stockpile shape can be detected, for example, by natural rain-related slipping processes, in particular in the direct vicinity of the paddle wheel 6.
  • the control system 10 or the measuring device 11 and the associated components of the control system 10 are designed such that the heap shape is recorded in real time. It is no longer necessary to run the entire stockpile 9 in the longitudinal direction.
  • the movements or positions of the paddle wheel device 1 and its components, in particular the Movements of the paddle wheel device 1 about its three axes of rotation are recorded with the aid of the GPS system.
  • the stockpile shape can always be continuously scanned or determined and the generation of a further scanning axis, such as in the 2-D scanner known in the prior art, is no longer necessary.
  • the stockpile shape is always up-to-date calculated using the control system 10, in particular the control computer 10b, from the measurement data supplied here by the 3D scanner 11 and the GPS system.
  • FIG. 4 finally shows the surface profile of a stockpile 9, which is calculated with the aid of the control computer 10b and is output in a two-dimensional color representation on a screen 16.
  • This presentation has proven to be very advantageous. Individual segments 17, vzw. in different colors on the screen 16, here partially characterized by different hatching.
  • Such a screen 16 could, for example, be provided in an external control station which is provided for the control or monitoring of a plurality of bucket wheel devices 1.
  • an inclination angle sensor 14a which vzw. is also arranged in the upper area of the pylon 3, a tilt protection for the paddle wheel device 1 is realized. It has already been mentioned at the beginning that the positioning of the impeller 6 of the impeller 1 is problematic.
  • an inclination angle sensor 14a is provided here, which is likewise connected in terms of circuitry to the control computer 10b or the control unit 10a. If the inclination angle sensor 14a determines a specific inclination angle of the bucket wheel device 1, the operation is immediately stopped, in particular the bucket wheel 6 is switched off. The measurement data of the inclination angle sensor 14a are compared with the measurement data of the GPS system.
  • the angle of inclination sensor 14a determines the angle of inclination of the bucket wheel device 1, in particular the inclination of the upper area or part of the bucket wheel device 1, and therefore also the inclination of the boom 2, on the other hand, this inclination can also be determined accordingly with the aid of the first and second GPS position receivers 12a and 12b and the control computer 10b. If the measurement data differ from one another here, this shows that either the inclination angle sensor 14a or the GPS system is not functioning properly. In this case, the control system 10 is designed such that the bucket wheel device 1 is also switched off, so that a safety system for the bucket wheel device 1 is implemented.
  • the control system 10 is now designed so that at least a relatively large area can be detected using the measuring device 11.
  • detection of the current stockpile shape in the area of the front boom 2 and detection of the surrounding area of the rear boom 8 is ensured.
  • the boom 8, in particular the counterweight 4 provided here on the rear boom 8, can be moved, in particular pivoted, without risk.
  • the front boom 2 or rear boom 8 is not pivoted with the aid of the control unit 10a or the control computer 10b.
  • Measuring device 11 can therefore, especially since it is arranged at the upper end of pylon 3, "scan" a relatively large area around bucket wheel device 1, so that the safety aspect during operation of bucket wheel device 1 is significantly increased. LIST OF REFERENCE NUMBERS
  • Control system a control unit b control computer c control lines
  • Measuring device a first GPS position receiver b second GPS position receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Control And Safety Of Cranes (AREA)
  • Operation Control Of Excavators (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Catching Or Destruction (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Ship Loading And Unloading (AREA)
  • Road Repair (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die Erfindung betrifft ein Steuer-System (10) bzw. ein Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerätes (1) zum Abbau von Halden und/oder zum Aufhalden von Massengut, wobei das Schaufelradgerät (1) zur Aufnahme des Massengutes mindestens ein Schaufelrad (6) aufweist, mindestens eine Messvorrichtung (11) zur Vermessung der Halde (9) vorgesehen ist und das Schaufelradgerät (1) in Abhängigkeit der gemessenen und/oder verarbeiteten Messdaten automatisch an die gewünschte Abbau- und/oder Aufhaldposition verfahrbar ist. Natürliche Rutschvorgänge an der Halde (9) sind dadurch ermittelbar, dass das Steuer-System (10) und die Messvorrichtung (11) so ausgebildet bzw. ausgeführt sind, dass unabhängig vom Betrieb des Schaufelradbaggers (1) eine permanente Erfassung der aktuellen Haldenform gewährleistet ist, nämlich eine aktuelle Veränderung der Haldenform zumindest in einem bestimmten Umgebungsbereich des Schaufelrades (6) erfassbar ist.

Description

„Steuer-System bzw. Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerates"
Die Erfindung betrifft ein Steuer-System für die automatische Steuerung eines verfahrbaren Schaufelradgerates zum Abbau von Halden und/oder zum Aufhalden von Massengut, wobei das Schaufelradgerät zur Aufnahme des Massengutes mindestens ein Schaufelrad aufweist, mindestens eine Meßvorrichtung zur Vermessung der Halde vorgesehen ist und das Schaufelradgerät in Abhängigkeit, der gemessenen und/oder verarbeiteten Meßdaten automatisch an die ge- wünschte Abbau- und/oder Aufhaltposition verfahrbar ist. Zusätzlich betrifft die
Erfindung ein Verfahren zur automatischen Steuerung eines verfahrbaren Schaufelradgerates, insbesondere mit Hilfe des eingangs genannten Steuer- Systems, wobei eine automatische Steuerung eines verfahrbaren Schaufelradgerates zum Abbau von Halden und/oder zum Aufhalden von Massengut erfolgt, wobei mit Hilfe mindestens einer Meß Vorrichtung die Haldenform erfaßt wird und das Schaufelradgerät in Abhängigkeit der gemessenen und/oder verarbeiteten Meßdaten automatisch an die gewünschte Abbau- und/oder Aufhaltposition gefahren wird.
Wesentliche Vorraussetzungen moderner und flexibler Massengut-
Umschlaganlagen sind insbesondere bestands- und durchlaufzeitoptimierte Lager- und Transportsysteme. Kostengünstige und in die Zukunft orientierte Lösungen berücksichtigen im besonderen Maße die Einbindung in die Automatisierungstechnik, so daß im späteren Betrieb eine kostengünstige und einfache Handhabung realisierbar ist. Hierbei ist insbesondere zu berücksichtigen, daß
Schaufelradgeräte im allgemeinen im 3-Schichten-Betrieb laufen, also hier bei einer manuellen Steuerung eines derartigen Schaufelradgerates entsprechende Arbeitslöhne seitens des Arbeitgebers zu entrichten sind, der Betrieb eines derartigen Schaufelradgerates also mit hohen Kosten verbunden ist.
Im Stand der Technik, von dem die Erfindung ausgeht (DE 197 37 858 AI), ist ein Schaufelradgerät bekannt, daß zum Abbau insbesondere verdichteter Halden bzw. zum Aufhalden von Massengut ausgebildet ist. Das Schaufelradgerät, auch „Schaufelradbagger" genannt, weist einen vorderen Ausleger, an dessen vorderen Ende sich das Schaufelrad befindet, und einen Pylon, der turmähnlich ausgeführt ist, auf. Schließlich ist ein Kontergewicht vorgesehen, daß auf der dem vorderen Ausleger gegenüberliegenden Seite des Pylons, nämlich an einem hinteren Ausleger angeordnet ist. Der vordere Bereich des vorderen Auslegers ist über den oberen Teilbereich des Pylons mit dem Kontergewicht über tragseil- förmige Elemente verbunden. Über das Kontergewicht werden die, beim Beladen des Schaufelrades mit Massengut am vorderen Ausleger bzw. am Schaufelradgerät auftretenden Kräfte entsprechend kompensiert. Das hier beschriebene, bekannte Schaufelradgerät weist ein Steuer-System für die automatische Steuerung des verfahrbaren Schaufelradgerates auf. Hierzu ist eine Meßeinrichtung zum Messen der Haldenform, nämlich des Oberflächenprofiles der Halde vorgesehen. Da das Schaufelradgerät selbst verfahrbar ausgebildet ist, also ein entsprechendes Antriebssystem aufweist, wird das Schaufelradgerät in Abhängigkeit der gemessenen und/oder verarbeiteten Daten, die die Meßvorrichtung ermittelt hat, an die gewünschte Abbau- und/oder Aufhaltposition verfahren und zwar vorzugsweise so, daß das am vorderen Ende des vorderen Auslegers angeordnete Schaufelrad an der gewünschten Abbau- bzw. Aufhaltposition positioniert wird. Folglich wird einerseits das Schaufelradgerät selbst verfahren, andererseits der vordere Ausleger des Schaufelradgerates so bewegt, daß das Schaufelrad in der gewünschten Höhenposition und in der gewünschten seitlichen Po- sition zum Abbau bzw. zum Aufschütten der Halde positioniert ist.
Das hier im Stand der Technik bekannte Schaufelradgerät wird in Abhängigkeit eines Oberflächenprofiles der Halde, daß mit Hilfe der Meßvorrichtung ermittelt bzw. errechnet wird, entsprechend verfahren bzw. werden einzelne bewegbare Komponenten des Schaufelradgerates, die bspw. als Kombigeräte bezeichnet werden, verfahren. Die hier benutzte Meßvorrichtung ist als 2-D-Scanner ausgebildet und tastet die Oberfläche der Halde ab. Die Meßvorrichtung ist im vorderen Bereich des vorderen Auslegers des Schaufelradgerates angeordnet. Damit die Haldenform, d.h. das Oberflächenprofil der Halde ermittelt werden kann, muß das bekannte Schaufelradgerät längs der Halde verfahren werden, wobei der vordere Ausleger quasi die Halde „überfährt" und die Meßvorrichtung während des Überfahrens der Halde die Oberfläche abtastet. Folglich führt das hier bekannte Schaufelradgerät vor Aufnahme des Arbeitsvorganges zunächst einmal eine separate Meßfahrt durch. Mit Hilfe des Verfahrweges des Schaufel- radgerätes, der Stellung des Hub-Werkes, des Schwenk-Werkes sowie des Fahrwerkes, deren jeweilige Stellungen durch separat vorgesehene Winkelgeber oder separate Sensoren ermittelt werden, ist u.a. auch die Position der Meßvorrichtung bestimmbar. Diese Meßvorrichtung scannt während der Meßfahrt die Haldenform. Anders ausgedrückt, mit Hilfe einer Steuereinrichtung bzw. eines Einsteck-PC's wird aus den Meßdaten der Meßeinrichtung und den Meßdaten der am Fahr-Schwenk- und Hubwerk vorgesehenen Winkelgeber und mit Hilfe eines 2-D-Wandlers, ein 3-D-Haldenmodell errechnet. Während des Betriebes des Schaufelradgerates, also während des Aufhaldens bzw. Abbaus der Halde fragt die separat vorgesehene Steuerung ständig die Werte der Winkelgeber so- wie Bandwaagen-Meßwerte für das abtransportierte, also abgebaute Massengut ab. Aufgrund dieser Werte errechnet die Steuerung dann ein provisorisches Haldenmodell, daß laufend entsprechend der gemessenen Abbaumenge bzw. der Aufhaltmenge des Massengutes aktualisiert wird, so daß vorzugsweise keine gesonderten Meßfahrten mit dem Schaufelradgerät mehr durchgeführt werden müssen, um das Oberflächenprofil der Halde zu ermitteln. Anders ausgedrückt, bei dem im Stand der Technik bekannten Schaufelradgerät bzw. dem hier beschriebenen Verfahren wird zunächst anfänglich einmal die Haldenform mit Hilfe einer Meßfahrt des Schaufelradgerates des 2-D-Scanners ermittelt, wobei dann der Abbau- oder Aufhaltvorgang begonnen wird und über entsprechende Meßwerte, insbesondere Winkelgebersignale sowie Mengenwerte für das abgebaute bzw. aufgehaldete Massengut, dann die Steuerung ein provisorisches Haldenmodell errechnet.
Das im Stand der Technik bekannte Steuer-System bzw. das hier bekannte Ver- fahren für die automatische Steuerung eines Schaufelradgerates ist noch nicht optimal ausgebildet. Einerseits ist zumindest anfänglich immer eine Meßfahrt des Schaufelradgerates oder auch eines Kombigerätes zur Erfassung bzw. Ermittlung der Haldenform notwendig, da die im Bereich des vorderen Auslegers angeordnete Meßvorrichtung entsprechend der Länge der Halde über die Halde verfahren werden muß, damit der vorgesehene 2-D-Scanner die Haldenform auch erfassen kann. Während dieser Meßfahrt muß dann die Bewegung des gesamten Schaufelradgerates insbesondere die Bewegung des Fahr-, Hub- und Schwenkwerkes, vzw. mit Hilfe der Winkelgeber, also die Bewegung des Schaufelradgerates um seine zwei Drehachsen sowie die Bewegung des Schaufelrad- gerätes vzw. entlang einer Schiene längs zur Halde durch separate Sensoren, die die Wegstrecke messen, permanent ermittelt werden, damit einerseits die Position der Meßvorrichtung bestimmbar ist und andererseits aus den Messdaten dann auch die Haldenform bzw. das Haldenmodell errechenbar ist. Um nun die entsprechende Halde aufzuhalden bzw. abzubauen, wird das Schaufelradge- rät dann automatisch an die gewünschte Abbau- und/oder Aufhalteposition verfahren, so daß das Schaufelrad des Schaufelradgerates bspw. mit dem Abbau der Halde beginnt und zwar basierend auf dem in der Steuereinheit abgespeicherten „erfaßten Haldenmodell". Dieses Haldenmodell wird dann mit Hilfe weiterer Messdaten, die ermittelt werden, aktualisiert, insbesondere wird die an der Bandanlage ankommende bzw. von der Bandanlage weggeförderte Massengutmenge (bspw. Steinkohlenmenge) durch entsprechendeSensoren und damit die Bandwaagen-Meßwerte erfaßt und das in der Steuereinheit abgespeicherte Haldenmodell wird anhand dieser Meßdaten laufend aktualisiert. Anders ausgedrückt, es erfolgt während des Betriebs des Schaufelradgerates, insbesondere in einem bestimmten Umgebungsbereich des Schaufelrades keine separate Messung der Haldenform. Die Steuerung des Abbaus der Halde erfolgt daher an dem ständig aktualisierten theoretischen „Haldenmodell". Dies birgt mehrere Nachteile in sich. Einerseits kann es während es Betriebs des Schaufelradgerates zu Veränderungen der Haldenform kommen, bspw. während Regenfällen durch natürliche Abrutsch-Vorgänge oder dergleichen. Weiterhin können durch den Abbauvorgang selbst Verrutschungen oder Abrutschungen ausgelöst werden. Im Endeffekt ist bei dem bekannten Steuer-System eine sich aktuell verändernde Haldenform nicht umgehend erfaßbar, insbesondere dann nicht erfaßbar, wenn bspw. das Schaufelradgerät still steht, also nicht betrieben wird, da nämlich kein Überfahren der Halde mit der Meßvorrichtung stattfindet. Aufgrund der sich verändernden Haldenform, insbesondere aufgrund natürlicher Abrutschvorgänge, kann es vorkommen, daß das Schaufelrad des Schaufelradgerates bspw. eine Startposition einnimmt, die nicht optimal ist. Dies beherbergt Gefahren für das entsprechende Hydrauhksystem bzw. auch für das Schaufelradgerät selbst (Umkipp-Gefahr). Im Endeffekt ist das bekannte Verfahren bzw. das bekannte Steuer-System hier nicht optimal, da während des Betriebes des Schaufelradgerates bspw. ein Abrutschen bestimmter Teilbereiche der Halde nicht erfaßt werden.
Der Erfindung liegt daher die Aufgabe zugrunde, das eingangs genannte Steuer- System bzw. das eingangs genannte Verfahren derart auszugestalten und weiterzubilden, daß die Steuerung eines Schaufelradgerates optimiert ist, insbesondere die Positionierung des Schaufelrades vzw. unter Vermeidung von Gefahren optimiert ist und auch die notwendige anfängliche Meßfahrt des Schau- felradgerätes zur Erfassung der Haldenform vermieden ist.
Für das Steuer-System ist die zuvor aufgezeigte Aufgabe nun dadurch gelöst, daß das Steuer-System und die Meßvorrichtung so ausgebildet bzw. ausgeführt sind, daß unabhängig vom Betrieb des Schaufelradgerates eine permanente Er- fassung der aktuellen Haldenform gewährleistet ist, nämlich eine aktuelle Veränderung der Haldenform zumindest in einem bestimmten Umgebungsbereich des Schaufelrades erfaßbar ist.
Für das eingangs genannte Verfahren ist die zuvor aufgezeigte Aufgabe dadurch gelöst, daß unabhängig vom Betrieb des Schaufelradgerates eine permanente
Erfassung der aktuellen Haldenform erfolgt, nämlich eine aktuelle Veränderung der Haldenform, zumindest in einem bestimmten Umgebungsbereich des Schaufelrades erfaßt wird.
Dadurch, daß das Steuer-System bzw. das Verfahren nunmehr so ausgebildet ist, daß eine permanente Erfassung der aktuellen Haldenform gewährleistet ist, können auch Veränderungen der Haldenform, die bspw. auf natürlichen Vorgängen wie „Abrutschen bei Regen" erfolgen, immer aktuell erfaßt werden. Insbesondere ist die Erfassung dieser Veränderungen der aktuellen Haldenform in einem bestimmten Umgebungsbereiches des Schaufelrades notwendig und sinnvoll, damit das Schaufelrad immer in die exakte und gewünschte Position verfahren werden kann. Dies verhindert die eingangs erwähnten Gefahren. Weiterhin werden gesonderte Meßfahrten, insbesondere die bisher im Stand der Technik notwendige anfängliche Meßfahrt vermieden, da unabhängig vom Be- trieb des Schaufelradgerates die aktuelle Haldenform erfaßbar ist. Folglich entfällt die Errechnung des bisher im Stand der Technik bekannten provisorischen „Haldenmodelles" in Abhängigkeit der Ermittlung des abtransportierten Massengut-Gewichtes. Im Ergebnis sind die eingangs beschriebenen Nachteile vermieden, was im einzelnen noch deutlich werden wird. Es gibt nun eine Vielzahl von Möglichkeiten das erfindungsgemäße Steuer- System bzw. das erfindungsgemäße Verfahren zur Steuerung des Schaufelradgerates in vorteilhafter Weise auszugestalten und weiterzubilden. Im folgenden soll nun ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der folgen- den Zeichnung und der dazugehörenden Beschreibung näher erläutert werden.
In der Zeichnung zeigt
Fig. 1 ein verfahrbares Schaufelradgerät in einer schematischen Darstellung von der Seite,
Fig. 2 eine Hardwarekonfiguration zur Realisierung des erfindungsgemäßen Steuer-Systems bzw. erfindungsgemäßen Verfahrens für das in Fig. 1 dargestellte Schaufelradgerät,
Fig. 3 eine Hardwarekonfiguration zur Realisierung des erfindungsgemäßen
Steuer-Systems bzw. erfindungsgemäßen Verfahrens in detaillierter schematischerer Darstellung und
Fig. 4 eine Bildschirmoberfläche mit der Darstellung eines erfaßten Haldeno- berflächenprofiles.
Die Fig. 1 und 3 zeigen ein Schaufelradgerät 1, daß einen vorderen Ausleger 2, einen Pylon 3, einen Kontergewicht 4 und ein Fahrwerk 5 aufweist. Zusätzlich ist am vorderen Ende des Auslegers 3 ein Schaufelrad 6 vorgesehen. Der obere Bereich des Schaufelradgerates 1, also der Ausleger 2, der Pylon 3 sowie das
Kontergewicht 4 und der hintere Ausleger 8 sind über Tragseile 7 einerseits miteinander verbunden, andererseits so ausgebildet, daß dieser Teil des Schaufelradgerates 1 auf dem Fahrwerk 5 verschwenkbar und verdrehbar ist. Hierbei bleiben die Winkel zwischen dem Pylon 3 und dem vorderen Ausleger 2 sowie zwischen Pylon 3 und dem hinteren Ausleger 8 konstant. Mit Hilfe des am vorderen Ausleger 2 angeordneten Schaufelrades 6 erfolgt der Abbau von Massengut bzw. das Aufhalden von Massengut von einer Halde 9 bzw. auf eine Halde 9. Zu erkennen ist das Förderband 13 für den Transport des Massengutes.
Hierbei weist das Schaufelradgerät 1 ein Steuer-System 10 für die automatische Steuerung des verfahrbaren Schaufelradgerates 1 auf. Aus Fig. 1 ist erkennbar, daß das Schaufelradgerät 1 längs zur Halde 9 verfahrbar ist. Das Schaufelradgerät 1 fährt automatisch an eine Ab- oder Aufhaltposition und baut das Massengut automatisch ab bzw. haldet es automatisch auf. Die. Bewegung des Schaufelradgerates 1 sowie das Ansteuern des Schaufelrades 6 und auch die
Verschwenkung und/oder Verdrehung des oberen Teils des Schaufelradgerates 1 erfolgt in Abhängigkeit der Haldenform, insbesondere des Oberflächenprofiles der Halde 9. Zur Vermessung der Halde 9 ist mindestens eine Meßvorrichtung 11 vorgesehen. Mit Hilfe des Steuer-Systems 10 und der von der Meßvorrich- tung 11 gemessenen Meßdaten wird das Schaufelradgerät 1 dann automatisch an die gewünschte Abbau- und/oder Aufhaltposition verfahren, insbesondere das Schaufelrad 6 entsprechend positioniert.
Die eingangs genannten Nachteile sind nun dadurch vermieden, daß das Steuer- System 10 und die Meßvorrichtung 11 so ausgebildet bzw. ausgeführt sind, daß unabhängig vom Betrieb des Schaufelradgerates 1 eine permanente Erfassung der aktuellen Haldenform gewährleistet ist, nämlich eine aktuelle Veränderung der Haldenform zumindest in einem bestimmten Umgebungsbereich des Schaufelrades 6 erfaßbar ist. Folglich wird - gemäß dem erfindungsgemäßen Verfah- ren - unabhängig vom Betrieb des Schaufelradgerates 1 eine permanente Erfassung der aktuellen Haldenform gewährleistet und damit eine aktuelle Veränderung der Haldenform - zumindest in einem bestimmten Umgebungsbereich des Schaufehades 6 - erfaßt. Aufgrund der permanenten Erfassung der Haldenform, die den tatsächlichen Gegebenheiten entspricht, da nämlich permanent, also kontinuierlich die Haldenform hier abgetastet wird, können auch Veränderungen der Haldenform, die insbesondere nicht direkt mit einem Abbau bzw. Aufhalden von Massengut in Zusammenhang stehen, also bspw. auf natürlichen Abrutschungen basieren, sofort ermittelt werden. Hierdurch bedingt kann das Schaufelrad 6 immer optimal an der gewünschten Aufhald- bzw. Abbauposition positioniert werden. Während im Stand der Technik noch Waagen- Meßwerte des über das Förderband abgebauten Massengutes ermittelt werden mußten und hierdurch das provisorische „Haldenmodell" errechnet wurde, entfallen die für diesen in diesem Steueraufwand notwendigen Komponenten bzw. ist nun eine genauere Steuerung durch das erfindungsgemäße Steuer-System bzw. Ver- fahren möglich. Wie Fig. 1 und 3 gut erkennen lassen, ist die Meßvorrichtung 11 am Pylon 3, nämlich am oberen Ende des Pylons 3 angeordnet. Die hier verwendete Meßvorrichtung 11 ist als 3-D-Bilderfassungssystem, insbesondere als 3-D- Laserscanner ausgeführt. Beispielsweise kommt hier ein sogenannter „3-D Ima- ging Sensor, LMS-Z 210" in Frage, der in einem Bereich von vzw. bis zu 350 Meter die Haldenform abscannen kann.
Weiterhin ist zur Erfassung der Bewegungen und/oder Positionen des Schaufel- radgerätes 1 oder der entsprechenden Komponenten, nämlich der Ausleger 2 und 8 bzw. des Pylons 3 und des Schaufelrades 6 ein GPS-System (Global- Positioning-System) vorgesehen. Die Bewegungen des Schaufelradgerates 1 um seine drei Drehachsen sind aufgrund dieses GPS-Systemes genauestens ermittelbar. Hierzu ist ein erster und ein zweiter GPS-Positionsempfänger 12a und 12b, die als einfache GPS-Antennen ausgebildet sind, zur Bestimmung der Position des Schaufelradgerates 1 sowie zur Bestimmung der Position der entsprechenden Schaufelradgerät-Komponenten vorgesehen. Der erste GPS- Positionsempfänger 12a ist am vorderen Ausleger 2 und der zweite Positionsempfänger 12b am Pylon 3 angeordnet. Die GPS-Positionsempfänger 12a und 12b sind vzw. als CFD-Empfänger (Carier Face Differential) ausgeführt.
Wie Fig. 2 und 3 erkennen lassen, weist das Schaufelradgerät 1 einen separaten Steuerrechner 10b auf. Weiterhin weist das Steuer-System 10 zusätzliche Sensorelemente 14 zur Realisierung eines zusätzlichen Kippschutzes für das Schau- felradgerät 1 auf. Hierzu zählt insbesondere ein Neigungswinkel-Sensor 14a, der ebenfalls wie der zweite GPS-Positionsempfänger 12b am oberen Ende des Pylons 3 angeordnet ist.
Fig. 2 zeigt nun eine Hardwarekonfiguration für das Steuer-System 10 für das Schaufelradgerät 1. Wie bereits erwähnt, sind zur Positionierung des Schaufelradgerates 1 ein Fahrwerk 5 vorgesehen sowie - wie aus Fig. 3 ersichtlich - ein nicht näher bezeichnetes Hub- und ein Schwenkwerk vorgesehen sind, so daß die Verschwenkung bzw. Verdrehung des oberen Teiles des Schaufelradgerates 1, also des vorderen Auslegers 2 und Pylon 3 sowie des hinteren Auslegers 4 möglich ist. Das hierzu vorgesehene Antriebssystem 15 ist in Fig. 2 nur sehe- matisch dargestellt.
Fig. 2 zeigt aber, daß das Antriebssystem 15 von einer Steuereinheit 10a in Abhängigkeit der Meßdaten, der Meßvorrichtung 11 sowie der vom GPS-System ermittelten Daten geregelt bzw. gesteuert wird. Die Soll- Werte für die Steuerung des Schaufelradgerates 1 werden in der Steuereinheit 10a berechnet. In Abhängigkeit der Meßdaten der Meßvorrichtung 11 ermittelt die Steuereinheit 10a die Haldenform der Halde 9, insbesondere das Oberflächenprofil der Halde 9 von der Massengut abgebaut werden soll bzw. auf die Massengut aufgehaldet werden soll. Zur Unterstützung der Steuereinheit 10a ist ein Steuerrechner 10b vorgesehen, der insbesondere aus den Daten der von den GPS- Positionsempfängern 12a und 12b ermittelten Daten die Position des Schaufelradgerates 1 sowie des Schaufehades 6 ermittelt. Es darf hier daran erinnert werden, daß der obere Teil des Schaufelradgerates 1 zwar schwenkbar und verdrehbar, nämlich auf dem Fahrwerk 5 schwenkbar und verdrehbar angeordnet ist, aber die Anordnung des Pylons 3 zum vorderen Ausleger 2 bzw. hinteren Ausleger 8 immer gleich, d.h. die entsprechenden Abstände und Winkel bleiben, da dies eine in sich nicht verändernde Einheit des Schaufelradgerates 1 darstellt. Aufgrund der bekannten Abmessungen kann mit Hilfe der beiden GPS- Positionsempfänger, nämlich dem ersten GPS-Positionsempfänger 12 und dem zweiten GPS-Positionsempfängers 12b immer die genaue Lage bzw. Position des Schaufelradgerates 1 und der zugehörigen Komponenten ermittelt werden. Hierzu sind die beiden GPS-Positionsempfänger 12a und 12b vzw. in ein und dergleichen Ebene angeordnet, aber an unterschiedlichen Positionen, hier am vorderen Ausleger 2 bzw. am Pylon 3 befestigt bzw. fixiert.
Fig. 3 zeigt eine detailliertere Darstellung für eine Hardwarekonfiguration für das Schaufelradgerät 1. Gut zu erkennen ist, daß am oberen Ende des Pylons 3 des Schaufelradgerates 1 die Meß Vorrichtung 11 und der zweite GPS- Positionsempfänger 12b angeordnet ist. Der erste GPS-Positionsempfänger 12a ist am vorderen Ausleger 2 des Schaufelradgerates 1 angeordnet. Denkbar ist, daß zusätzhch zu dem ersten GPS-Positionsempfänger 12a, nämlich kurz hinter dem Schaufelrad 6 noch ein Videokamera-System angeordnet ist, daß bspw. wiederum mit einem externen Leitstand verbunden sein kann. Dies ist hier aber nicht unbedingt notwendig, da das Schaufelradgerät 1 nämlich ein von einem Leitstand unabhängiges Steuer-System 10 aufweist, so wie es in Fig. 2 dargestellt ist, und hier eine separate Steuereinheit 10a und ein separater Steuerrechner 10b für das Schaufelradgerät 1 vorgesehen sind. Das Steuer-System 10, weist hier die Steuereinheit 10a, einen separaten Steuerrechner 10b sowie ent- sprechende Steuerleitungen 10c auf. Der Steuerrechner 10b ist hier vzw. als
Einsteck-PC ausgeführt und mit Hilfe des Steuerrechners 10b wird in Abhängigkeit der Meßdaten der Meßeinrichtung 11 die Haldenform, insbesondere das Oberflächenprofil der Halde 9 berechnet. In Abhängigkeit dieses Oberflächenprofils erfolgt die Steuerung des Schaufelradgerates 1, nämlich werden die ent- sprechenden Signale der Steuereinheit 10a an das Antriebssystem 15 abgegeben. Das hier nur schematisch dargestellte Antriebssystem 15 weist hier die einzelnen ansteuerbaren Komponenten des Schaufelradgerates 1 auf, also insbesondere die Motorik bzw. Hydraulik für das Hub- und Schwenkwerk, das Fahrwerk sowie für das Schaufelrad 6. Über die Steuereinheit 10a werden diese Komponenten des Antriebssystems 15 mit Hilfe des Steuerrechners 10b angesteuert. Des weiteren berechnet der Steuerrechner 10b in Abhängigkeit der Werte des ersten und zweiten GPS-Positionsempfängers 12a und 12b die Position des Schaufelradgerates 1, insbesondere die genaue Position des Schaufelrades 6 zur Halde 9. Vzw. ist das hier dargestellte Steuer-System 10 als speicher- programmierbare Steuerung ausgeführt.
Mit der hier als 3-D-Scanner ausgeführten Meßvorrichtung 11 ist unabhängig von einem Betrieb des Schaufelradgerates 1 eine Erfassung der Haldenform der Halde 9 möglich. Insbesondere durch die Anordnung der Meßvorrichtung 11 am oberen Ende des Pylons 3 und der Ausführung der Meßvorrichtung 11 als 3-D-
Scanner muß keine gesonderte Meßfahrt durchgeführt werden und auch im Stillstand des Schaufelradgerates 1, also unabhängig von dessen Betrieb ist eine permanente Erfassung der Haldenform der Halde 9 möglich. Insbesondere können auch aktuelle Veränderungen der Haldenform bspw. durch natürliche re- genbedingte Abrutschvorgänge erfaßt werden, insbesondere im direkten Umgebungsbereich des Schaufelrades 6. Das Steuer- System 10 bzw. die Meßvorrichtung 11 und die zugehörigen Komponenten des Steuer-Systems 10 sind so ausgebildet, daß die Haldenform in Echtzeit erfaßt wird. Es ist kein Abfahren der gesamten Halde 9 in Längsrichtung mehr erforderlich. Die Bewegungen bzw. Positionen des Schaufelradgerates 1 und dessen Komponenten, insbesondere die Bewegungen des Schaufelradgerates 1 um seine drei Drehachsen werden mit Hilfe des GPS-Systems erfaßt. Aufgrund der Anordnung des GPS-Systems der damit genau bestimmbaren Positionierung des Schaufelradgerates 1 und eriner als 3-D-Sensor ausgebildeten Meßvorrichtung 11 am oberen Ende des Pylons 3 kann die Haldenform immer permanent abgetastet bzw. ermittelt werden und die Erzeugung einer weiteren Scannachse, wie bei dem im Stand der Technik bekannten 2-D-Scanner, ist nicht mehr erforderlich. Aus den von der hier als 3- D-Scanner ausgeführten Meßvorrichtung 11 und dem GPS-System gelieferten Meßdaten wird die Haldenform mit Hilfe des Steuer-Systems 10, insbesondere des Steuerrechners 10b immer aktuell ausrechnend nachgebildet.
Fig. 4 zeigt schließlich das Oberflächenprofil einer Halde 9, das mit Hilfe des Steuerrechners 10b errechnet und in 2-dimensionaler farbiger Darstellung auf einem Bildschirm 16 ausgegeben wird. Diese Darstellung hat sich als sehr vor- teilhaft erwiesen. Deutlich zu erkennen sind einzelne Segmente 17, vzw. in unterschiedlicher farbiger Darstellung auf dem Bildschirm 16, hier teilweise durch unterschiedliche Schraffuren gekennzeichnet. Ein derartiger Bildschirm 16 könnte bspw. in einem externen Leitstand vorgesehen sein, der zur Steuerung bzw. Überwachung mehrerer Schaufelradgeräte 1 vorgesehen ist. Schließlich ist mit Hilfe eines Neigungswinkel-Sensors 14a, der vzw. ebenfalls im oberen Bereich des Pylons 3 angeordnet ist, ein Kippschutz für das Schaufelradgerät 1 realisiert. Es ist bereits eingangs erwähnt worden, daß die Positionierung des Schaufelrades 6 des Schaufelradgerates 1 problematisch ist. Aufgrund der hier wirkenden großen Kräfte kann bei falscher Positionierung des Schaufelrades 6 und bei nicht rechtzeitigem Abschalten des Schaufelrades 6 es zu einem Kippen des gesamten Schaufelradgerates 1 kommen. Insbesondere um dies zu vermeiden, ist hier ein Neigungswinkel-Sensor 14a vorgesehen, der ebenfalls mit dem Steuerrechner 10b bzw. der Steuereinheit 10a schaltungstechnisch verbunden ist. Ermittelt der Neigungswinkel-Sensor 14a einen bestimmten Neigungswin- kel des Schaufelradgerates 1, so wird umgehend der Betrieb eingestellt, insbesondere das Schaufelrad 6 abgeschaltet. Norteilhafterweise werden die Meßdaten des Neigungswinkel-Sensors 14a mit den Meßdaten des GPS-Systems verglichen. Einerseits ermittelt also der Neigungswinkel-Sensor 14a den Neigungswinkel des Schaufelradgerates 1, insbesondere die Neigung des oberen Be- reichs bzw. Teils des Schaufelradgerates 1, also auch die Neigung des Auslegers 2, andererseits ist diese Neigung auch mit Hilfe des ersten und zweiten GPS- Positionsempfängers 12a bzw. 12b und des Steuerrechners 10b entsprechend ermittelbar. Weichen die Meßdaten hier voneinander ab, so zeigt dies, daß entweder der Neigungswinkel-Sensor 14a oder aber das GPS-System nicht ord- nungsgemäß funktioniert. In diesem Falle ist das Steuer-System 10 so ausgeführt, daß auch dann ein Abschalten des Schaufelradgerates 1 erfolgt, so daß ein Sicherheitssystem für das Schaufelradgerät 1 realisiert ist.
Das Steuer-System 10 ist nun so ausgeführt, daß zumindest ein relativ großer Bereich mit Hilfe der Meßvorrichtung 11 erfaßt werden kann. Insbesondere wird eine Erfassung der aktuellen Haldenform im Bereich des vorderen Auslegers 2 und eine Erfassung des Umgebungsbereiches des hinteren Auslegers 8 gewährleistet. Dies hat eine entsprechende Erhöhung der Sicherheit des Betriebes des Schaufelradgerates 1 zur Folge, da aktuelle Veränderungen der Haldenform im Bereich des vorderen Auslegers 2 ebenfalls mit erfaßt werden, so daß der vordere Ausleger bspw. nicht gegen „Haldenberge" stoßen kann und/oder der hintere Ausleger 8, insbesondere das hier am hinteren Ausleger 8 vorgesehene Kontergewicht 4 gefahrlos bewegbar, insbesondere verschwenkbar ist. Bspw. erfolgt auch hier mit Hilfe der Steuereinheit 10a bzw. dem Steuerrechner 10b eben kei- ne Verschwenkung des vorderen Auslegers 2 bzw. hinteren Auslegers 8, wenn bspw. im Bereich des hinteren Auslegers 8, insbesondere im Bereich des Kontergewichtes 4 Hindernisse mit Hilfe des Steuer-System 10, insbesondere mit Hilfe der Messvorrichtung 11 ermittelt werden, gegen die das Kontergewicht 4 stoßen könnte. In Frage kommen hier bspw. im Bereich des Kontergewichtes 4 abgestellte weitere Baggerfahrzeuge, LKW's oder dergleichen. Mit Hilfe der
Messvorrichtung 11 läßt sich also, insbesondere da diese am oberen Ende des Pylons 3 angeordnet ist, ein relativ großer Bereich um das Schaufelradgerät 1 herum „abscannen", so daß der Sicherheitsaspekt beim Betrieb des Schaufelradgerates 1 deuthch erhöht ist. Bezugszeichenliste:
Schaufelradgerät
Ausleger
Pylon
Kontergewicht
Fahrwerk
Schaufelrad
Tragseile hinterer Ausleger
Halde
Steuer-System a Steuereinheit b Steuerrechners c Steuerleitungen
Meßvorrichtung a erster GPS-Positionsempfänger b zweiter GPS-Positionsempfänger
Förderband
Sensorelemente a Neigungswinkel-Sensor
Antriebssystem
Bildschirm
Segmente

Claims

Patentansprüche:
1. Steuer-System (10) für die automatischen Steuerung eines verfahrbaren Schaufelradgerates (1) zum Abbau von Halden und/oder zum Aufhalden von
Massengut, wobei das Schaufelradgerät (1) zur Aufnahme des Massengutes mindestens ein Schaufelrad (6) aufweist, mindestens eine Meßvorrichtung (11) zur Vermessung der Halde (9) vorgesehen ist und das Schaufelradgerät (1) in Abhängigkeit der gemessenen und/oder verarbeiteten Meßdaten auto- matisch an die gewünschte Abbau- und/oder Aufhaldeposition verfahrbar ist, dadurch gekennzeichnet, daß das Steuer-System (10) und die Meßvorrichtung (11) so ausgebildet bzw. ausgeführt sind, daß unabhängig vom Betrieb des Schaufelradgerates (1) eine permanente Erfassung der aktuellen Haldenform gewährleistet ist, nämlich eine aktuelle Veränderung der Haldenform zumindest in einem bestimmten Umgebungsbereich des Schaufelrades (6) erfaßbar ist.
2. Steuer-System nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das Schaufelradgerät (1) einen vorderen Ausleger (2) und ei- nen Pylon (3) aufweist und die Meßvorrichtung (11) am Pylon (3) angeordnet ist.
3. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Meßvorrichtung (11) als 3-D Bilderfassungssystem, insbesondere als 3-D-Laserscanner ausgeführt ist.
4. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Erfassung der Bewegungen und/oder Positionen des Schaufelradgerates (1), insbesondere der Bewegungen des Schaufelradgerates (1) um seine drei Drehachsen, ein GPS-System vorgesehen ist.
5. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein erster und ein zweiter GPS-Positionsempfänger (12a, 12b) zur Bestimmung der Position des Schaufelradgerates (1) und des Schau- felrades (6) vorgesehen sind.
6. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der erste GPS-Positionsempfänger (12a) am Ausleger (2) und der zweite GPS-Positionsempfänger (12b) am Pylon (3) angeordnet ist.
7. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Schaufelradgerät (1) einen separaten Steuerrechner (10b) aufweist.
8. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Steuer-System (10) zusätzliche Sensorelemente (14) zur Realisierung eines zusätzlichen Kippschutzes für das Schaufelradgerät (1) aufweist.
9. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens ein Neigungswinkel-Sensor (14a) vorgesehen ist.
10. Steuer-System nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß zusätzlich eine Erfassung der aktuellen Haldenform im größeren Umgebungsbereich des vorderen Auslegers (2) und/oder eine Erfassung des Umgebungsbereiches des hinteren Auslegers (8) realisiert ist.
11. Verfahren zur automatischen Steuerung eines verfahrbaren Schaufelradge- rätes (1), insbesondere mit Hilfe des Steuer-Systems (10) nach einem der Ansprüche 1 bis 10, wobei eine automatische Steuerung eines verfahrbaren Schaufelradgerates (1) zum Abbau von Halden und/oder zum Aufhalden von Massengut erfolgt, wobei mit Hilfe mindestens einer Meßvorrichtung (11) die Haldenform erfaßt wird und das Schaufelradgerät (1) in Abhängigkeit der gemessenen und/oder verarbeiteten Meßdaten automatisch an die gewünschte Abbau- und oder Aufhaldposition gefahren wird, dadurch gekennzeichnet, daß unabhängig vom Betrieb des Schaufelradgerates (1) eine permanente Erfassung der aktuellen Haldenform erfolgt, nämlich eine aktuelle Veränderung der Haldenform zumindest in einem bestimmten Umgebungsbereich des Schaufelrades (6) erfaßt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Meßvorrichtung (11) und die zugehörigen Komponenten so ausgebildet sind, daß die Haldenform in Echtzeit erfaßt wird.
13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die Bewegungen bzw. Positionen des Schaufelradgerates (1), insbesondere die Bewegungen des Schaufelradgerates (1) um seine drei Drehachsen, mit Hilfe eines GPS-Systems erfaßt werden.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß aus den von der Meßeinrichtung (11) und dem GPS-System gelieferten Meßdaten die Haldenform ausrechnend nachgebildet wird.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß das Oberflächenprofil der Halde (9) mit Hilfe eines Steuerrechners (10b) errechnet und in zweidimensionaler farbiger Darstellung auf einem Bildschirm (16) ausgebbar ist.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß mit Hilfe von mindestens einem Neigungswinkel-Sensor (14a) durch einen Vergleich der Daten des Neigungswinkel-Sensors (14a) /GPS-System ein Kippschutz für das Schaufelradgerät (1) realisiert ist.
17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß zusätzhch die Erfassung der aktuellen Haldenform im größeren Umgebungsbereich des vorderen Auslegers (2) und oder eine Erfassung des Umgebungsbereiches des hinteren Auslegers (8) erfolgt. '
EP01942992A 2000-05-05 2001-05-02 Verfahrbares schaufelradgerät mit steuersystem und verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes Expired - Lifetime EP1278918B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021675A DE10021675A1 (de) 2000-05-05 2000-05-05 Steuer-System bzw. Verfahren für die automatische Steuerung eines verfahrbaren Schaufelradgerätes
DE10021675 2000-05-05
PCT/DE2001/001637 WO2001086077A1 (de) 2000-05-05 2001-05-02 Steuer-system bzw. verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes

Publications (2)

Publication Number Publication Date
EP1278918A1 true EP1278918A1 (de) 2003-01-29
EP1278918B1 EP1278918B1 (de) 2003-12-17

Family

ID=7640736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01942992A Expired - Lifetime EP1278918B1 (de) 2000-05-05 2001-05-02 Verfahrbares schaufelradgerät mit steuersystem und verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes

Country Status (10)

Country Link
US (1) US6970801B2 (de)
EP (1) EP1278918B1 (de)
AT (1) ATE256792T1 (de)
AU (1) AU780449B2 (de)
BR (1) BR0110567B1 (de)
CA (1) CA2406608C (de)
DE (3) DE10021675A1 (de)
ES (1) ES2210173T3 (de)
PT (1) PT1278918E (de)
WO (1) WO2001086077A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637887B2 (en) 2012-09-14 2017-05-02 3D Image Automation Pty Ltd Reclaimer 3D volume rate controller

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742773B2 (en) 2005-10-31 2010-06-22 Terahop Networks, Inc. Using GPS and ranging to determine relative elevation of an asset
US7783246B2 (en) 2005-06-16 2010-08-24 Terahop Networks, Inc. Tactical GPS denial and denial detection system
US7583769B2 (en) * 2005-06-16 2009-09-01 Terahop Netowrks, Inc. Operating GPS receivers in GPS-adverse environment
US7725206B2 (en) * 2003-11-12 2010-05-25 The Boeing Company System and method for manufacturing and after-market support using as-built data
US9156167B2 (en) * 2007-05-15 2015-10-13 Trimble Navigation Limited Determining an autonomous position of a point of interest on a lifting device
US8144000B2 (en) 2007-09-26 2012-03-27 Trimble Navigation Limited Collision avoidance
US8103438B2 (en) 2007-09-26 2012-01-24 Trimble Navigation Limited Method and system for automatically directing traffic on a site
US8081108B2 (en) 2008-01-07 2011-12-20 Trimble Navigation Limited Autonomous projection of global navigation satellite orbits
US7898409B2 (en) 2008-04-09 2011-03-01 Trimble Navigation Limited Circuit for exclusion zone compliance
US8054181B2 (en) 2008-04-09 2011-11-08 Trimble Navigation Limited Terrestial-signal based exclusion zone compliance
US8514058B2 (en) 2008-08-18 2013-08-20 Trimble Navigation Limited Construction equipment component location tracking
US8224518B2 (en) 2008-08-18 2012-07-17 Trimble Navigation Limited Automated recordation of crane inspection activity
US7911379B2 (en) * 2008-08-18 2011-03-22 Trimble Navigation Limited Construction equipment component location tracking
US20100044332A1 (en) * 2008-08-22 2010-02-25 Cameron John F Monitoring crane component overstress
US8345926B2 (en) * 2008-08-22 2013-01-01 Caterpillar Trimble Control Technologies Llc Three dimensional scanning arrangement including dynamic updating
US8872643B2 (en) * 2010-10-23 2014-10-28 William Ebert Enhanced heavy equipment proximity sensor
RU2746122C2 (ru) 2012-01-31 2021-04-07 Джой Глобал Серфейс Майнинг Инк Добычной одноковшовый экскаватор, узел дужки и копающий узел для добычного одноковшового экскаватора
US9415976B2 (en) * 2012-05-10 2016-08-16 Trimble Navigation Limited Crane collision avoidance
CN102691325B (zh) * 2012-06-12 2014-03-19 中联重科股份有限公司 抓斗停绳控制器、控制系统和控制方法及连续墙抓斗
WO2015048123A1 (en) * 2013-09-24 2015-04-02 Lockheed Martin Corporation Stockpile reconciliation
BR112016017406A2 (pt) * 2014-01-30 2017-08-08 Siemens Industry Inc Método e dispositivo para determinar um modelo ambiental de dimensão n+1 e aparelho de prospecção
KR101664928B1 (ko) 2014-12-12 2016-10-25 에너시스(주) 야적파일의 3차원 모델에 대한 사각지대 복원방법
DE102015104229A1 (de) 2015-03-20 2016-09-22 Hauk & Sasko Ingenieurgesellschaft Mbh System und Verfahren zum Betrieb einer Halde
DE102015208396A1 (de) * 2015-05-06 2016-11-10 Takraf Gmbh Pylon für ein Haldenschüttgerät oder ein kombiniertes Haldenschütt-/Rückladegerät
AU2017204390B2 (en) * 2016-07-07 2021-12-16 Joy Global Surface Mining Inc Methods and systems for estimating the hardness of a rock mass
CN109577413A (zh) * 2018-12-25 2019-04-05 中铁四局集团第工程有限公司 一种路基刷坡施工方法及系统
DE102019204444A1 (de) * 2019-03-29 2020-10-01 Robert Bosch Gmbh Verfahren und System zur Identifikation von Schüttgut
DE102019206831A1 (de) * 2019-05-10 2020-11-12 Thyssenkrupp Ag Vorrichtung und Verfahren zum zumindest teilweise automatisierten computergestützten Positionieren wenigstens einer Güter-/Materialflusseinheit
CN112645075A (zh) * 2020-12-29 2021-04-13 湛江中粤能源有限公司 一种共轨斗轮机安全防护系统
CN114715678B (zh) * 2022-03-18 2023-08-08 华能国际电力股份有限公司上海石洞口第二电厂 一种基于激光扫描仪的斗轮悬臂式堆取料机
CN115057248B (zh) * 2022-06-30 2024-04-12 山东日照发电有限公司 一种斗轮堆取料机的卸料对位装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854217B2 (ja) * 1977-09-09 1983-12-03 三菱電機株式会社 到達位置制御装置
JPS57146105A (en) * 1981-03-05 1982-09-09 Hitachi Cable Ltd Measuring device for length of linear object
JPS57209124A (en) * 1981-06-18 1982-12-22 Hitachi Ltd Positioning method of bucket wheel in reclaimer
JPS5852119A (ja) * 1981-09-24 1983-03-28 Mitsubishi Electric Corp リクレ−マの運転制御装置
JPS59106634A (ja) * 1982-12-11 1984-06-20 Caterpillar Mitsubishi Ltd 建設機械の運行制御システム
US4507910A (en) * 1983-11-21 1985-04-02 Ezra C. Lundahl, Inc. Automatic sonar activated height control for a header
EP0159187A3 (de) * 1984-04-17 1987-07-15 Simon-Carves Limited Messungssystem für die Oberflächentopographie
EP0412400B1 (de) * 1989-08-08 1994-03-02 Siemens Aktiengesellschaft Kollisionsschutzeinrichtung für Fördergeräte
EP0412402B1 (de) * 1989-08-08 1993-04-07 Siemens Aktiengesellschaft Regelungsverfahren für Tagebau-Fördergeräte
DE4133392C1 (en) * 1991-10-09 1992-12-24 Rheinbraun Ag, 5000 Koeln, De Determining progress of mining material spreader - receiving signals from at least four satellites at end of tipping arm and at vehicle base and calculating actual geodetic positions and height of material tip
US5883817A (en) * 1996-07-08 1999-03-16 Trimble Navigation Limited Method and apparatus for precise positioning of large structures
DE29715552U1 (de) * 1997-07-10 1997-11-20 Siemens AG, 80333 München Schaufelradgerät
US6369376B1 (en) * 1997-07-10 2002-04-09 Siemens Aktiengesellschaft Conveyor device
US6363632B1 (en) * 1998-10-09 2002-04-02 Carnegie Mellon University System for autonomous excavation and truck loading

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0186077A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637887B2 (en) 2012-09-14 2017-05-02 3D Image Automation Pty Ltd Reclaimer 3D volume rate controller

Also Published As

Publication number Publication date
DE10191832D2 (de) 2003-03-27
WO2001086077A1 (de) 2001-11-15
AU780449B2 (en) 2005-03-24
ATE256792T1 (de) 2004-01-15
EP1278918B1 (de) 2003-12-17
DE50101199D1 (de) 2004-01-29
AU6576201A (en) 2001-11-20
PT1278918E (pt) 2004-04-30
DE10021675A1 (de) 2001-11-15
CA2406608C (en) 2006-01-10
US6970801B2 (en) 2005-11-29
US20040088138A1 (en) 2004-05-06
ES2210173T3 (es) 2004-07-01
BR0110567B1 (pt) 2012-11-27
US20050246133A9 (en) 2005-11-03
CA2406608A1 (en) 2001-11-15
BR0110567A (pt) 2003-04-01

Similar Documents

Publication Publication Date Title
EP1278918A1 (de) Steuer-system bzw. verfahren für die automatische steuerung eines verfahrbaren schaufelradgerätes
DE10251910B4 (de) Containerkran
EP1832157B1 (de) Steuereinrichtung
EP0342655B1 (de) Containerkrananlage
DE3322683C2 (de) Vorrichtung zum Ernten von Früchten mit einem fotoelektrischen Fruchtlagedetektor
EP0656868B1 (de) Vorrichtung und verfahren zur steuerung eines containerkranes
EP2989042B1 (de) Vorrichtung zum handgeführten bewegen von lasten
DE102016222589B4 (de) Selbstfahrende Fräsmaschine, sowie Verfahren zum Steuern einer selbstfahrenden Fräsmaschine
DE4301627B4 (de) Schüttgutplaniervorrichtung
DE102014216763A1 (de) Selbstfahrende Fräsmaschine, sowie Verfahren zum Abladen von Fräsgut
DE2416947B2 (de) Verfahren zum begrenzen der verstellbewegung eines an einem allseitig schwenkbaren tragarm einer vortriebsmaschine gelagerten loesewerkzeuges auf den aufzufahrenden streckenquerschnitt und einrichtung zur ausuebung dieses verfahrens
DE202009011577U1 (de) Kran
EP2135834A1 (de) Kran, vorzugsweise Mobil- oder Raupenkran
DE102018109498A1 (de) Schaufelradbagger und Verfahren zum Steuern eines Schaufelradbaggers
EP1832156B1 (de) Steuereinrichtung
WO2018073168A1 (de) Verfahren zum automatischen positionieren eines portalhubstaplers für container und portalhubstapler dafür
WO1999002788A1 (de) Schaufelradgerät
DE19841570C2 (de) Kaikran zum Be- und Entladen von Containern
WO2023151967A1 (de) Kran
DE102015222485A1 (de) Verfahren zur Hubhöhen- und/oder Schwenkwinkelbegrenzung eines Baggers
EP2199236B1 (de) Positioniervorrichtung für Bandförderanlagen
DE102006035732A1 (de) Entladebrücke zum Be- und/oder Entladen des Laderaumes eines Schiffes, vzw. mit Containern bzw. Verfahren zum Be- und/oder Entladen des Laderaumes eines Schiffes. vzw. mit Containern
DE19725315C2 (de) Kran, insbesondere Hüttenwerkskran
DE10161651A1 (de) Verfahren und Anordnung zum Einbringen von Pfosten für Leitplankensysteme in den Boden
DE102018126523B4 (de) Arbeitsmaschine, insbesondere Radlader zum Holzumschlag

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021105

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RTI1 Title (correction)

Free format text: BUCKET WHEEL DEVICE WITH CONTROL SYSTEM AND METHOD FOR AUTOMATICALLY CONTROLLING A MOBILE BUCKET WHEEL DEVICE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50101199

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040502

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040502

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2210173

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50101199

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200427

Year of fee payment: 20

Ref country code: DE

Payment date: 20200422

Year of fee payment: 20

Ref country code: PT

Payment date: 20200416

Year of fee payment: 20

Ref country code: NL

Payment date: 20200417

Year of fee payment: 20

Ref country code: ES

Payment date: 20200601

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200414

Year of fee payment: 20

Ref country code: GB

Payment date: 20200422

Year of fee payment: 20

Ref country code: BE

Payment date: 20200416

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50101199

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210501

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210501

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210512

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210503