EP1264010B1 - Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof - Google Patents

Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof Download PDF

Info

Publication number
EP1264010B1
EP1264010B1 EP01915052A EP01915052A EP1264010B1 EP 1264010 B1 EP1264010 B1 EP 1264010B1 EP 01915052 A EP01915052 A EP 01915052A EP 01915052 A EP01915052 A EP 01915052A EP 1264010 B1 EP1264010 B1 EP 1264010B1
Authority
EP
European Patent Office
Prior art keywords
metal
auxiliary
anode
cathode
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01915052A
Other languages
German (de)
French (fr)
Other versions
EP1264010A1 (en
Inventor
Kai-Jens Matejat
Sven Lamprecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Publication of EP1264010A1 publication Critical patent/EP1264010A1/en
Application granted granted Critical
Publication of EP1264010B1 publication Critical patent/EP1264010B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Definitions

  • the invention relates to a method and a device for regulating the Concentration of metal ions in an electrolyte fluid.
  • the procedure and the device is particularly applicable for regulating the concentration of copper ions in one for the electrolytic deposition of copper serving and additionally containing Fe (II) and Fe (III) compounds Kupferabscheideeng.
  • the concentration of the ions of the metal to be deposited in the electrolyte liquid is kept as constant as possible. This can be, for example be achieved by a loss of the metal ions in the electrolyte liquid, caused by the electrolytic metal deposition is compensated by adding appropriate metal compounds. The However, these are the supply and disposal costs to be expended very large.
  • Another well-known method of supplementing the metal ions in The electrolyte fluid is the direct dissolution of metal in the fluid with an oxidizing agent, for example oxygen.
  • an oxidizing agent for example oxygen.
  • For copper electroplating can metallic copper in an electrolyte fluid containing oxygen enriched from the air, to be dissolved. Ballast salts, i.a.
  • a method for electrolytic metal deposition with insoluble anodes is proposed in which be added to the electrolytic liquid substances of an electrochemically reversible redox system as additives, for example, Fe (NH 4 ) 2 (SO 4 ) 2 , which transported by intensive forced convection with the electrolyte to the anodes, there electrochemically converted by the electrolysis, according to their turnover by means of intensive forced convection led from the anodes into a metal ion generator, in this at him located regeneration metal with simultaneous external power dissolution of the regeneration metal in its initial state electrochemically reset and medium again in this initial state s intensive forced convection be supplied to the separation vessel.
  • the metal ions formed in the dissolution of metal pieces in the metal ion generator are guided with the electrolyte liquid in the galvanizing.
  • the formation of harmful by-products can be linked to the insoluble anodes are avoided.
  • the electrolytic Metal deposition consumed metal ions by reaction of corresponding metal pieces with the substance of the electrochemically reversible Redox system replenished by placing the pieces of metal with the oxidized substances be oxidized and form the metal ions.
  • DD 261 613 A1 describes a process using substances of an electrochemically reversible redox system, such as Fe (NH 4 ) 2 (SO 4 ) 2 , for electrolytic copper deposition, wherein it is stated that organic additives commonly used in the deposition liquid for deposition smooth and high gloss copper layers are not oxidized when performing the process on the insoluble anodes.
  • an electrochemically reversible redox system such as Fe (NH 4 ) 2 (SO 4 ) 2
  • DE 43 44 387 A1 likewise discloses a process for electrolytic deposition using copper with predetermined physical properties insoluble anodes and arranged outside the galvanizing cell Copper ion generator as well as of substances of an electrochemical reversible redox system described in the deposition liquid, wherein the Copper ion generator serves as a regeneration space for the metal ions and copper pieces contains. It is stated that when carrying out the in DD 215 589 B5 and DD 261 613 A1 described a decomposition the organic additive was observed in the Abscheideomeella and that Therefore, during prolonged service life of a deposition bath decomposition products these additives would accumulate in the bath.
  • the problem with the mentioned methods and devices is that the metal content in the electrolyte liquid does not readily keep constant leaves. This causes the deposition conditions to change and thus no reproducible conditions can be achieved in the electrolytic deposition are.
  • the change of the metal content in the electrolyte liquid is et al due to the fact that the metal pieces in the metal ion generator not only through the action of the substances of the electrochemically reversible redox system are formed, but in the case of a Kupferabscheidebades using Fe (II) / Fe (III) compounds as substances of the electrochemical reversible redox system also contained in the electrolyte fluid Oxygen from the air.
  • the document proposes a method and a device for regulating the concentration of metal ions. Thereafter, at least a portion of the electrolyte liquid contained in the electroplating plant is passed through one or more at least one insoluble anode and at least one cathode having auxiliary electrolytic cells and set between the anodes and the cathodes of the auxiliary cells such a high electrical current flow that the current density at the anode surface at least 6 A / dm 2 and the current density at the cathode surface is at most 3 A / dm 2 .
  • the ratio of the surface of the anodes to the surface of the cathodes is set to at least 1: 4.
  • the metal ion content in the electrolyte liquid be kept constant over a longer period of time by a part the oxidized species of the electrochemical contained in the electrolyte liquid reversible redox system is reduced at the cathode of the auxiliary cell.
  • the ratio of the current densities at the anode and at the cathode in the auxiliary cell for example, by a suitable choice of the ratio of the surfaces the anode and the cathode are adjusted, the reduced Species of the electrochemically reversible redox system at the anode of the Not auxiliary cell or oxidized only to a minor extent, so that the Concentration of the oxidized species of the electrochemically reversible redox system regulates and thereby directly influences the rate of formation of metal ions can be taken.
  • auxiliary cell the deposited on the cathode of the auxiliary cell copper of Time to time electrochemically removed, so that again additional Energy is consumed and the device during this period not available. Therefore, for continuous production several such auxiliary cells are provided, some of which are for regulation The metal ion concentration can be used while in others parallel auxiliary cells removed the copper from the cathode again becomes.
  • a particular disadvantage here is that the commonly used cathode material is damaged by the Abtierevorgang. This will be the one reduces the efficiency of the reduction.
  • the cathode must be replaced by a new one after a few detachments.
  • the present invention is therefore based on the problem, the disadvantages avoid the known methods and devices and in particular to find a device and a method with which an economical Operation of the electrolytic deposition method is made possible.
  • insoluble anodes and in the Electrolyte fluid contained substances of an electrochemically reversible redox system be used.
  • the procedure should last for a very long time be carried out under constant conditions. It should in particular the concentration of metal ions in the electrolyte fluid within this Period are kept constant within narrow limits. It's supposed to be be possible, the concentration of metal ions with simple means keeping constant, with only low energy consumption and low equipment costs are to spend.
  • the electrolyte liquid is continuously through the system, in the metal is deposited electrolytically, and the auxiliary cells passed, such that the liquid the plant and the cells at least temporarily at the same time or optionally also flows through one after the other. At the same time the liquid becomes repeatedly returned to the system after flowing through the auxiliary cells.
  • the metal is made using at least one insoluble, preferably dimensionally stable main anode separated from the electrolyte liquid on the material to be treated. For this a flow of current between the material to be treated and the main anode is generated.
  • the metal ions become in at least one of the electrolyte liquid at least partially flowed through by the metal ion generator as auxiliary cell Substances of the redox system in the oxidized form by dissolution of metal pieces educated.
  • the substances in the oxidized form are under formation corresponding substances, for example metal ions, in the reduced form transformed.
  • the resulting substances in the reduced form become the main anode forming the corresponding substances in the oxidized Form oxidized again.
  • anode spaces surrounding the auxiliary anodes and cathode spaces, which surround the metal pieces, by at least partially ion permeable Means separated from each other If necessary, the at least partially ion-permeable means between the anode compartments and the cathode compartments but also omitted.
  • the auxiliary cathodes are in one liquid quiescent section of the metal ion generator housed, to a mixing of the electrolyte contained in the cathode compartment with the electrolyte liquid in the anode compartment at least largely avoided.
  • the two spaces constructively so from each other be separated that the mixing is largely omitted
  • the metal pieces are preferably in a very well-flowed compartment of the metal ion generator accommodated.
  • the metal ion content kept constant within narrow limits in a metal plating solution be so that reproducible deposition conditions are met can.
  • the metal plating solution is continuously from the Gatvanisierstrom, for example, a separation vessel in the inventive Metal ion generator and from there back to the galvanizing transferred.
  • the substances formed on the main anode in the galvanizing plant of the Redox systems in the oxidized form become attached to the metal pieces in the metal ion generator reduced again to form metal ions.
  • the substances of the redox system in the reduced form in the metal ion generator by cathodic polarization of the metal pieces opposite An auxiliary anode can be changed, the rate of formation of the metal ions be regulated in the metal ion generator.
  • a renewed oxidation of the reduced Substances of the redox system to the oxidized substances at the auxiliary anode is thereby largely prevents the anode space surrounding the auxiliary anode from which the metal pieces surrounding cathode space is separated.
  • the production rate becomes the substances of the redox system in the reduced form and thus below the rate of formation of the metal ions in the metal ion generator on a Value set so large that the amount produced per unit time Metal ions by oxidation with the redox compounds, plus the amount by the dissolution of the metal by the registered in the electrolyte liquid Atmospheric oxygen is created, exactly the same as the amount of at the Cathode in the electroplating plant consumed metal ions. Thus, the remains Total ion content of the metal to be deposited in the electrolyte liquid constant.
  • the method according to the invention and the device have opposite to in WO 99/10564 A2 described the further advantage that only one or more secondary cells provided in addition to the electroplating plant and not one or more auxiliary cells and one or more additional metal ion generators.
  • the separation solution comes not with an inert auxiliary cathode as described in WO 9910564 A2 Plant in contact, so that a possible deposition of metal on the auxiliary cathode can not lead to the problems discussed above. Therefore the process according to the invention also occurs over a very long period of time without major maintenance, for example, without one in the known device required intermediate detachment of the deposited Metal from the auxiliary cathode.
  • the resulting problem namely a reduction in the efficiency of the conversion of the oxidized substances of the redox system in the reduced substances by a formed metal coating on the auxiliary cathode, arises using the present invention not a.
  • the material to be treated in The electroplating plant is located in an electrolyte fluid, which when carried out the inventive method, a reduced concentration of Contains substances of the redox system in the oxidized form.
  • a reduced concentration of Contains substances of the redox system in the oxidized form is located in an electrolyte fluid, which when carried out the inventive method, a reduced concentration of Contains substances of the redox system in the oxidized form.
  • One accordingly smaller amount of the substances of the redox system is from the galvanizing the treated material surface is reduced.
  • the result is an improvement the cathodic current yield in the electroplating plant.
  • the associated Profit in production capacity is up to 10%.
  • Another advantage of the invention is that of galvanizing Anode sludge known with soluble anodes is eliminated. Nevertheless, can In some cases, a "feed and bleed" operation of the plant may be useful. This is especially true then, if organic and / or inorganic additives in the electrolyte liquid to be exchanged in the long term. As a result of the partial Discarding the electrolyte fluid also becomes the content of the oxidized metal ions proportionately reduced the redox system. To this portion can the Capacity of Metaltionengenerators be reduced.
  • the metal ion content can thus be kept constant by that substances of the redox system be reduced in the oxidized form in the metal ion generator and at the same time removes a part of the electrolyte liquid from the electroplating plant and is replaced by fresh electrolyte fluid.
  • This material is opposite the plating solution and the used substances of the redox system chemically and electrochemically stable.
  • titanium or tantalum is used as the base material.
  • the Base material is preferably used as a perforated electrode material, for example, in the form of expanded metal or nets to low Space to offer a large surface.
  • a precious metal preferably platinum, Iridium, ruthenium or their oxides or mixed oxides coated.
  • the base material is thus also against electrolytic removal protected. Titanium anodes with an iridium oxide coating that is spherical Bodies are irradiated and thus compressed without pore, are sufficient durable and therefore have a long life among the applied Conditions.
  • metal pieces are used in the form of balls.
  • copper does not need to contain phosphorus like using soluble copper anodes. This reduces the formation of anode sludge.
  • metal balls have the advantage that a reduction in volume of the ball bed in Metal ion generator in the dissolution of the metal pieces not readily to Bridges forming cavities leads, so that the refilling of new pieces of metal is relieved.
  • the bulk volume can be optimized in the metal ion generator.
  • the metal pieces can also essentially be cylindrical or cuboid. It's on a sufficient Ensure flow through the cathode compartment.
  • the ratio of the surface area of the metal pieces to the surface of the at least one auxiliary anode is set to a value of at least 4: 1.
  • the current density is increased at the auxiliary anode, so that preferably the water of the deposition solution is oxidized to form oxygen and oxidized only to a minor extent, the substances of the redox system in the reduced form.
  • Such a high surface ratio can be achieved, for example, by the choice of small metal pieces, in particular metal spheres with a small diameter, can be adjusted.
  • a cathodic current density of 0.1 A / dm 2 to 0.5 A / dm 2 and an anodic current density of 20 A / dm 2 to 60 A / dm 2 sets. Under these conditions, practically only oxygen is formed at the anode. Any substances of the redox system in the reduced form which are present in the anode compartment are practically not oxidized under these conditions.
  • the metal ion generator may preferably be tubular.
  • a advantageous embodiment in this case is that the auxiliary anode is arranged above the ingestible space of the metal pieces.
  • the metal ion generator by vertical division also in two compartments (anode compartment and cathode compartment) be divided, wherein in the one compartment the metal pieces and in the other, the at least one auxiliary anode are arranged. Also in this Trap occurs at the auxiliary anode resulting oxygen without further contact with the pieces of metal from the deposition solution.
  • the bed of metal pieces preferably rests on a sieve-shaped Electrode, which consists of an inert material, such as titanium. About this electrode, the current can be supplied to the metal pieces. By this electrode is formed Siebförmig, the Abscheide58 through the sieve to the metal bed and conveyed through it become. Thus, reproducible flow conditions in the Metal fill set.
  • the deposition solution entering the cathode compartment can after passage of the metal fill in the upper region of the cathode space brought out by overflow from the cathode compartment again become.
  • the efficiency of the reduction of the substances of the redox system be increased in the oxidized form on the metal pieces, since the concentration overvoltage for these substances is reduced in the pieces.
  • the auxiliary anode is made of an anode compartment and the metal pieces of one Surrounded cathode compartment, in which the deposition solution is located.
  • the two Rooms are separated from each other by at least partially ion-permeable means separated.
  • ion-permeable means may preferably liquid-permeable, non-conductive fabrics are used, such as a polypropylene fabric. This material hinders convection between the electrolyte spaces.
  • ion exchange membranes can also be used. These have the further advantage that not only the convection between electrolyte spaces but also the migration can be selectively hindered. If, for example, an anion exchange membrane is used, anions can pass from the cathode space into the anode space, but not cations from the anode space into the cathode space. In the event that a Kupferabscheidehav with Fe 2+ - and Fe 3+ ions is used, the Fe 3+ ions formed in the anode compartment by oxidation are not transferred into the cathode compartment, so that the efficiency of the erfindüngsdorfen device is not affected.
  • ion exchange membranes as at least partially ion-permeable agents from a technical point of view are particularly advantageous.
  • these materials are also more expensive and mechanically more sensitive than the liquid permeable fabrics.
  • the metal ion concentration in the deposition solution can be, for example by adjusting the current flow between the auxiliary anode and the metal pieces be regulated.
  • the current is controlled by the power supply.
  • a sensor can be provided with which the metal ion concentration in the solution is measured continuously.
  • the extinction the deposition solution in a separate flowed through by the solution Measuring cell determined photometrically and the output of the measuring cell a Comparator are supplied.
  • the resulting control variable can then in a control variable for adjusting the current to the power supply implemented become.
  • This stream is primarily the content of the substances of the redox system in the electrolyte fluid. This content in turn influences the dissolution rate at the metal pieces.
  • the electrolyte liquid is removed from the galvanizing plant, in which the inert Main anodes and the material to be coated are in a forced circulation promoted in the metal ion generator and from this back into the Electroplating.
  • pumps are used, which transfer the liquid promote suitable piping in the forced circulation.
  • a reservoir used between the galvanizing and the metal ion generator is arranged.
  • This reservoir serves for example in addition, the electrolyte liquid for several parallel operated separation vessel to stockpile in a galvanizing plant. Two can do this Liquid circuits are formed, one of which between the Abscheide electem and the reservoir, and a second between the reservoir and the metal ion generator is formed.
  • too Filter media are inserted into the circulation to remove contaminants from the electrolyte fluid to remove.
  • the metal ion generator be placed in the separation vessel itself, as short as possible To achieve flow paths.
  • the invention is preferably suitable for the regulation of the concentration of copper ion content in copper baths using dimensionally stable, inert anodes in the separation vessel in which Fe 2+ and Fe 3+ salts, preferably FeSO 4 / Fe, are used to maintain the concentration of the copper ions 2 (SO 4 ) 3 or Fe (NH 4 ) 2 (SO 4 ) 2 , or other salts are included.
  • Fe 2+ and Fe 3+ salts preferably FeSO 4 / Fe
  • the invention can also be used for regulating the metal ion concentration in baths for the electrolytic deposition of other metals, for example zinc, nickel, chromium, tin, lead and their alloys with one another and with other elements, for example with phosphorus and / or boron Case, if appropriate, to use other substances of an electrochemically reversible redox system, wherein the redox system is selected depending on the respective deposition potential.
  • compounds of the elements titanium, cerium, vanadium, manganese, chromium can be used.
  • Usable compounds are, for example, titanylsulfuric acid, cerium (IV) sulfate, alkali metal vanadate, manganese (II) sulfate and alkali chromate or dichromate.
  • the inventive method and apparatus are particularly applicable suitable for electroplating in horizontal flow systems in which plate-shaped material to be treated, preferably printed circuit boards, in horizontal or vertical position and horizontal direction linearly and thereby moving be brought into contact with the electrolyte liquid.
  • the procedure can of course, also for the galvanization of material to be treated in conventional Diving facilities are used, in which the material to be treated mostly in vertical Orientation is immersed.
  • Fig. 1 an arrangement for electroplating is shown schematically, which has a separating vessel 1, a metal ion generator 2 and a reservoir 3 .
  • the separation vessel 1 may be formed, for example, as a continuous system for the treatment of printed circuit boards, wherein preferably a sump is provided, is taken from the electrolyte liquid for swelling, spraying on or otherwise in contact Bring with the circuit boards and after contact with the circuit boards again flowing back.
  • the individual containers are filled with the electrolyte liquid.
  • electrolyte fluid For example, a sulphurous copper bath can be used, the copper sulfate, sulfuric acid and sodium chloride as well as organic and inorganic additives for controlling the physical properties of the contains deposited metal.
  • the metal ion generator 2 includes an auxiliary anode 20 and metal pieces 30 .
  • the metal pieces 30 (only partially shown) rest as a bed on a sieve bottom 31 , which is made of titanium.
  • the sieve bottom 31 and the auxiliary anode 20 are connected via electrical supply lines 40,41 with a DC power supply 50 .
  • the sieve bottom 31 is poled cathodically and for this purpose connected to the negative pole of the power supply 50 .
  • the Hitfsanode 20 is poled anodically and connected to the positive pole of the power supply 50 .
  • the metal pieces 30 are also cathodically polarized, so that a current flow between the metal pieces 30 and the auxiliary anode 20 is produced.
  • an ion-permeable polypropylene fabric 21 is clamped to prevent convective fluid exchange between the spaces 25 and 35 .
  • the separation vessel 1 is connected to the reservoir 3 in a first fluid circuit: electrolyte liquid is withdrawn in the upper region of the separation vessel 1 via the pipe 4 and transferred to the reservoir 3 .
  • electrolyte liquid is withdrawn in the upper region of the separation vessel 1 via the pipe 4 and transferred to the reservoir 3 .
  • the liquid can be withdrawn from the separation tank 1 via an overflow compartment.
  • the liquid contained in the reservoir 3 is withdrawn in the lower region of the container via a pipe 5 with a pump 6 and passed through a filter unit 7, for example, wound filter cartridges.
  • the filtered solution is returned via the pipe 8 in the separation vessel 1 .
  • the reservoir 3 is further connected to the metal ion generator 2 via a second fluid circuit: liquid is discharged at the bottom of the reservoir 3 via the pipe 9 and introduced in the lower region below the sieve bottom 31 in the metal ion container 2 . The liquid is withdrawn via an overflow in the upper region of the cathode chamber 35 from the metal ion generator 2 again and returned via the pipe 10 into the reservoir 3 .
  • the metal ion generator 2 consists of a tube housing 15, which consists for example of polypropylene and which has a bottom 16 , also made of polypropylene, for example.
  • the tubular housing 15 has an opening 17 on the upper end side.
  • a liquid inlet 18 is provided for the electrolyte liquid.
  • a liquid outlet 19 is arranged in a corresponding manner.
  • the cross section of the tubular housing 15 is preferably rectangular, square or round.
  • anode chamber 25 and a cathode compartment 35 there are an anode chamber 25 and a cathode compartment 35.
  • the anode compartment 25 and the cathode compartment 35 are separated from each other by a wall 24 and an ion-permeable fabric 21 fixed to the lower edge of the wall 24 , in this case a polypropylene fabric. This is shown in detail in Fig. 3 .
  • the wall 24 forms an upper opening and is fixed to the upper end edge of the tubular housing 15 (not shown).
  • the auxiliary anode 20 is housed in the anode compartment 25 .
  • the metal pieces 30 are included, in this case no phosphorus-containing copper balls, for example with a diameter of about 30 mm.
  • the copper balls 30 form a bed which rests on a titanium sieve 31 in the lower region of the tubular housing 15 .
  • the auxiliary anode 20 is connected to the positive pole and the sieve bottom 31 to the negative pole of a DC power supply.
  • the Verschraubungsstelle 38 for the anodic current supply from the DC voltage source to the auxiliary anode 20 and the cathodic Versch Hurbungsstelle 39 for the power line to the sieve bottom 31 are shown schematically in Fig. 3 . In this case, the electrical feeds for the sieve bottom 31 are led out of the top of the metal ion generator 2 isolated.
  • the tube 9 leads via the liquid inlet 18 into the metal ion generator 2.
  • the liquid inlet 18 is provided below the sieve 31 .
  • the sieve prevents metal pieces or sludge from clogging the tube 9 .
  • the metal ion generator 2 is further connected to the tube 10 at the liquid outlet 19 .
  • the liquid outlet 19 is arranged in the upper region of the metal ion generator 2 .
  • the liquid outlet 19 is formed as out of the pipe housing 15 leading pipe 10 having an outlet opening 11 in the upper region of the cathode space 35 .
  • the electrolyte liquid can exit through the outlet opening 11 from the cathode chamber 35 into the pipe 10 . This exit opening 11 is located above the level of the auxiliary anode 20 to ensure that the auxiliary anode 20 is always within the liquid.
  • electrolyte liquid containing in addition to copper ions also formed on the main anode Fe 3+ ions and optionally additionally contains Fe 2+ ions is pumped through the liquid inlet 18 into the metal ion generator 2 .
  • the liquid then enters in the direction of the arrow 23 through the sieve bottom 31 into the cathode space 35 , in which the copper balls 30 are located.
  • the rate of formation of the copper ions can be regulated by cathodic polarization of the copper balls 30 via the sieve bottom 31 : By increasing the cathodic potential on the copper balls 30 , the rate of formation of the Cu 2+ ions is suppressed.
  • the enriched with Cu 2+ ions solution occurs in the upper region of the cathode chamber 35 through the opening 11 via the liquid outlet 19 from the metal ion generator 2 again.
  • the water of the electrolyte liquid contained in the anode chamber 25 is anodically oxidized to oxygen, which exits from the upper portion of the metal ion generator 2 through the opening 17 .
  • Fe 2+ ions contained in the anode space 25 are also oxidized on the auxiliary anode 20 . Since the fluid communication between the cathode chamber 35 and anode chamber 25 is greatly hindered by the separation 21,24 which deplete Fe 2+ ions in the anode compartment 25 so that their concentration in the steady-state operation is close to zero.
  • FIG. 4 shows a second embodiment of the metal ion generator 2 according to the invention.
  • the metal ion generator 2 in this case is a container with side walls 15 which form a rectangular, square or round outline of the metal ion generator 2 .
  • the container also has a bottom 16 .
  • the walls 15 and the bottom 16 are made of polypropylene.
  • the metal ion generator 2 forms an opening 17.
  • the metal ion generator 2 in turn has a cathode space 35 and an anode space 25 .
  • the spaces 25 and 35 are further separated by an ion-permeable wall 21, in this case an ion exchange membrane, preferably an anion exchange membrane, which is arranged vertically.
  • a perforated wall 26 is provided, which gives the membrane the necessary stability.
  • a sieve bottom 31 is arranged in the lower region, which is formed by a titanium mesh. On the sieve bottom 31 rests a bed of metal pieces 30 (only partially shown), here copper balls with a diameter of about 30 mm.
  • An auxiliary anode 20 is accommodated in the anode compartment. The auxiliary anode 20 is connected to the positive pole and the sieve bottom 31 to the negative pole of a DC power supply (not shown).
  • the electrolyte liquid may enter the metal ion generator 2 through the lower liquid inlet 18 .
  • the liquid inlet 18 is arranged below the sieve bottom 31 .
  • Liquid can exit via an upper liquid outlet 19 from the metal ion generator 2 again.
  • the outlet 19 is arranged in the upper region of the cathode space 35 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

In order to regulate the metal ion concentration in an electrolyte fluid serving to electrolytically deposit metal and additionally containing substances of an electrochemically reversible redox system, it has been known in the art to conduct at least one portion of the electrolyte fluid through one auxiliary cell provided with one insoluble auxiliary anode and at least one auxiliary cathode, a current being conducted between them by applying a voltage. Accordingly, excess quantities of the oxidized substances of the redox system are reduced at the auxiliary cathode, the formation of ions of the metal to be deposited being reduced as a result thereof. Starting from this prior art, the present invention relates to using pieces of the metal to be deposited as an auxiliary cathode.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Regulieren der Konzentration von Metallionen in einer Elektrolytflüssigkeit. Das Verfahren und die Vorrichtung sind insbesondere anwendbar zum Regulieren der Konzentration von Kupferionen in einer zur elektrolytischen Abscheidung von Kupfer dienenden und zusätzlich Fe(II)- und Fe(III)-Verbindungen enthaltenden Kupferabscheidelösung.The invention relates to a method and a device for regulating the Concentration of metal ions in an electrolyte fluid. The procedure and the device is particularly applicable for regulating the concentration of copper ions in one for the electrolytic deposition of copper serving and additionally containing Fe (II) and Fe (III) compounds Kupferabscheidelösung.

Beim Galvanisieren unter Verwendung von unlöslichen Anoden muß dafür gesorgt werden, daß die Konzentration der Ionen des abzuscheidenden Metalls in der Elektrolytflüssigkeit möglichst konstant gehalten wird. Dies kann beispielsweise dadurch erreicht werden, daß ein Verlust der Metallionen in der Elektrolytflüssigkeit, der durch die elektrolytische Metallabscheidung verursacht wird, durch Zugabe entsprechender Metallverbindungen ausgeglichen wird. Die hierfür aufzuwendenden Versorgungs- und Entsorgungskosten sind jedoch sehr groß. Eine weitere bekannte Methode zur Ergänzung der Metallionen in der Elektrolytflüssigkeit besteht in der direkten Auflösung von Metall in der Flüssigkeit mit einem Oxidationsmittel, beispielsweise Sauerstoff. Zur Kupfergalvanisierung kann metallisches Kupfer in einer Elektrolytflüssigkeit, die mit Sauerstoff aus der Luft angereichert ist, aufgelöst werden. Ballastsalze, die u.a. bei der Ergänzung mit Metallsalzen entstehen, reichem sich in der Elektrolytflüssigkeit in diesem Falle nicht an. Allerdings entsteht beim Galvanisieren in beiden Fällen Sauerstoff an den unlöslichen Anoden der Elektrolysezelle. Dieser Sauerstoff greift die organischen Additive in der Elektrolytflüssigkeit an, die üblicherweise zur Steuerung der physikalischen Eigenschaften der abgeschiedenen Metallschicht zur Elektrolytflüssigkeit zugegeben werden. Der Sauerstoff führt zusätzlich auch zu einer korrosiven Zerstörung des Anodenwerkstoffes. When galvanizing using insoluble anodes must be ensured be that the concentration of the ions of the metal to be deposited in the electrolyte liquid is kept as constant as possible. This can be, for example be achieved by a loss of the metal ions in the electrolyte liquid, caused by the electrolytic metal deposition is compensated by adding appropriate metal compounds. The However, these are the supply and disposal costs to be expended very large. Another well-known method of supplementing the metal ions in The electrolyte fluid is the direct dissolution of metal in the fluid with an oxidizing agent, for example oxygen. For copper electroplating can metallic copper in an electrolyte fluid containing oxygen enriched from the air, to be dissolved. Ballast salts, i.a. at Compounding with metal salts arise in the electrolyte fluid not in this case. However, galvanizing occurs in both Oxygen at the insoluble anodes of the electrolysis cell. This oxygen attacks the organic additives in the electrolyte, usually for controlling the physical properties of the deposited Metal layer are added to the electrolyte liquid. The oxygen additionally leads to corrosive destruction of the anode material.

Zur Vermeidung der Bildung von schädlichen Gasen an den unlöslichen Anoden, beispielsweise von Sauerstoff und bei Verwendung von typischen schwefelsauren Verkupferungsbädem, die zusätzlich Chloridionen enthalten, auch von Chlor, wird in DD 215 589 B5 ein Verfahren zur elektrolytischen Metallabscheidung mit unlöslichen Anoden vorgeschlagen, bei dem zur Elektrotytflüssigkeit Stoffe eines elektrochemisch reversiblen Redoxsystems als Zusätze zugegeben werden, beispielsweise Fe(NH4)2(SO4)2, die durch intensive Zwangskonvektion mit der Elektrolytflüssigkeit an die Anoden transportiert, dort durch den Elektrolysestrom elektrochemisch umgesetzt, nach ihrem Umsatz mittels intensiver Zwangskonvektion von den Anoden ab in einen Metallionengenerator geleitet, in diesem an in ihm befindlichem Regenerierungsmetall bei gleichzeitiger außenstromloser Auflösung des Regenerierungsmetalls in ihren Ausgangszustand elektrochemisch zurückgesetzt und in diesem Ausgangszustand wieder mittels intensiver Zwangskonvektion dem Abscheidebehälter zugeführt werden. Die bei der Auflösung von Metallstücken in dem Metallionengenerator gebildeten Metallionen werden mit der Elektrolytflüssigkeit in die Galvanisieranlage geführt.To avoid the formation of harmful gases on the insoluble anodes, for example of oxygen and using typical sulfuric copper Verkupferungsbädem which additionally contain chloride ions, including chlorine, DD 215 589 B5 a method for electrolytic metal deposition with insoluble anodes is proposed in which be added to the electrolytic liquid substances of an electrochemically reversible redox system as additives, for example, Fe (NH 4 ) 2 (SO 4 ) 2 , which transported by intensive forced convection with the electrolyte to the anodes, there electrochemically converted by the electrolysis, according to their turnover by means of intensive forced convection led from the anodes into a metal ion generator, in this at him located regeneration metal with simultaneous external power dissolution of the regeneration metal in its initial state electrochemically reset and medium again in this initial state s intensive forced convection be supplied to the separation vessel. The metal ions formed in the dissolution of metal pieces in the metal ion generator are guided with the electrolyte liquid in the galvanizing.

Mit diesem Verfahren kann die Bildung schädlicher Nebenprodukte an den unlöslichen Anoden vermieden werden. Außerdem werden die bei der elektrolytischen Metallabscheidung verbrauchten Metallionen durch Reaktion von entsprechenden Metallstücken mit dem Stoff des elektrochemisch reversiblen Redoxsystems nachgeliefert, indem die Metallstücke mit den oxidierten Stoffen oxidiert werden und sich die Metallionen bilden.With this method, the formation of harmful by-products can be linked to the insoluble anodes are avoided. In addition, the electrolytic Metal deposition consumed metal ions by reaction of corresponding metal pieces with the substance of the electrochemically reversible Redox system replenished by placing the pieces of metal with the oxidized substances be oxidized and form the metal ions.

In DD 261 613 A1 wird ein Verfahren unter Verwendung von Stoffen eines elektrochemisch reversiblen Redoxsystems, wie Fe(NH4)2(SO4)2, für die elektrolytische Kupferabscheidung beschrieben, wobei angegeben wird, daß in der Abscheideflüssigkeit üblicherweise eingesetzte organische Additive zur Abscheidung von glatten und hochglänzenden Kupferschichten bei Durchführung des Verfahrens an den unlöslichen Anoden nicht oxidiert werden. DD 261 613 A1 describes a process using substances of an electrochemically reversible redox system, such as Fe (NH 4 ) 2 (SO 4 ) 2 , for electrolytic copper deposition, wherein it is stated that organic additives commonly used in the deposition liquid for deposition smooth and high gloss copper layers are not oxidized when performing the process on the insoluble anodes.

In DE 43 44 387 A1 wird ebenfalls ein Verfahren zur elektrolytischen Abscheidung von Kupfer mit vorbestimmten physikalischen Eigenschaften unter Verwendung unlöslicher Anoden und einem außerhalb der Galvanisierzelle angeordneten Kupferionengenerator sowie von Stoffen eines elektrochemisch reversiblen Redoxsystems in der Abscheideflüssigkeit beschrieben, wobei der Kupferionengenerator als Regenerierraum für die Metallionen dient und Kupferstücke enthält. Es wird angegeben, daß bei Durchführung der in DD 215 589 B5 und DD 261 613 A1 beschriebenen Verfahren eine Zersetzung der organischen Additive in der Abscheideflüssigkeit beobachtet wurde und daß sich daher bei längerer Betriebsdauer eines Abscheidebades Zersetzungsprodukte dieser Additive in dem Bad anreichern würden. Zur Lösung dieses Problems wird vorgeschlagen, die Stoffe des elektrochemisch reversiblen Redoxsystems in einer Konzentration einzusetzen, die gerade zur Aufrechterhaltung des galvanotechnisch notwendigen Gesamtkupfergehaltes in der Galvanisieranlage führt, und die Elektrolytflüssigkeit innerhalb und außerhalb der Galvanisierzelle derart zu führen, daß die Lebensdauer der an den Anoden der elektrolytischen Zelle oxidativ gebildeten Ionen des reversibel umsetzbaren Stoffes in der gesamten Galvanoanlage zeitlich so eingeschränkt wird, daß eine Zerstörung der Additive durch diese Ionen vermieden oder drastisch verringert wird.DE 43 44 387 A1 likewise discloses a process for electrolytic deposition using copper with predetermined physical properties insoluble anodes and arranged outside the galvanizing cell Copper ion generator as well as of substances of an electrochemical reversible redox system described in the deposition liquid, wherein the Copper ion generator serves as a regeneration space for the metal ions and copper pieces contains. It is stated that when carrying out the in DD 215 589 B5 and DD 261 613 A1 described a decomposition the organic additive was observed in the Abscheideflüssigkeit and that Therefore, during prolonged service life of a deposition bath decomposition products these additives would accumulate in the bath. To solve this problem it is proposed that the substances of the electrochemically reversible redox system to use in a concentration that is just to maintain of the electroplating total copper content in the galvanizing plant leads, and the electrolyte liquid inside and outside the galvanizing cell lead such that the life of the anodes of the electrolytic Cell oxidatively formed ions of the reversibly convertible substance in the entire Galvanoanlage time is limited so that a destruction the additives are avoided or drastically reduced by these ions becomes.

Problematisch bei den genannten Verfahren und Vorrichtungen ist, daß sich der Metallgehalt in der Elektrolytflüssigkeit nicht ohne weiteres konstant halten läßt. Dies führt dazu, daß sich die Abscheidebedingungen ändern und damit keine reproduzierbaren Verhältnisse bei der elektrolytischen Abscheidung erreichbar sind. Die Änderung des Metallgehaltes in der Elektrolytflüssigkeit ist u.a. darauf zurückzuführen, daß die Metallstücke in dem Metallionengenerator nicht nur durch die Einwirkung der Stoffe des elektrochemisch reversiblen Redoxsystems gebildet werden, sondern im Falle eines Kupferabscheidebades unter Verwendung von Fe(II)/Fe(III)-Verbindungen als Stoffe des elektrochemisch reversiblen Redoxsystems auch durch in der Elektrolytflüssigkeit enthaltenen Sauerstoff aus der Luft. The problem with the mentioned methods and devices is that the metal content in the electrolyte liquid does not readily keep constant leaves. This causes the deposition conditions to change and thus no reproducible conditions can be achieved in the electrolytic deposition are. The change of the metal content in the electrolyte liquid is et al due to the fact that the metal pieces in the metal ion generator not only through the action of the substances of the electrochemically reversible redox system are formed, but in the case of a Kupferabscheidebades using Fe (II) / Fe (III) compounds as substances of the electrochemical reversible redox system also contained in the electrolyte fluid Oxygen from the air.

Ferner wurde auch festgestellt, daß die oxidierten Stoffe des elektrochemisch reversiblen Redoxsystems nicht nur im Metallionengenerator sondern auch an der Kathode im Abscheidebehälter reduziert werden, so daß die kathodische Stromausbeute lediglich bei etwa 90 % liegt.It has also been found that the oxidized substances of the electrochemical reversible redox system not only in the metal ion generator but also at the cathode in the separator can be reduced, so that the cathodic Current efficiency is only about 90%.

Aus den vorgenannten Gründen stellt sich ein stationärer Zustand zwischen der Bildung von Metallionen im Metallionengenerator und dem Verbrauch der Metallionen durch elektrolytische Metallabscheidung nicht ein. Speziell bei Anwendung einer höheren Temperatur wird dieser Effekt noch verstärkt. Der Gehalt der abzuscheidenden Metallionen in der Elektrolytflüssigkeit nimmt daher kontinuierlich zu. Der Gehalt der Metallionen muß jedoch innerhalb enger Grenzen gehalten werden, um ausreichend gute physikalische Eigenschaften der abgeschiedenen Metallschichten einhalten zu können.For the above reasons, a stationary state between the Formation of metal ions in the metal ion generator and the consumption of metal ions not by electrolytic metal deposition. Especially when used a higher temperature, this effect is enhanced. The salary the metal ions to be deposited in the electrolyte liquid therefore increases continuously to. However, the content of the metal ions must be within narrow limits be kept sufficiently good physical properties of the deposited To be able to comply with metal layers.

In WO 9910564 A2 ist hierzu u.a. angegeben, daß es nicht möglich sei, die Konzentration der Metallionen in der Elektrolytflüssigkeit in einer zusätzlichen elektrolytischen Nebenzelle unter Verwendung einer unlöslichen Anode abzusenken, so wie es von herkömmlichen Galvanisieranlagen mit löslichen anstelle der hier verwendeten unlöslichen Anoden bekannt sei. Das sich dabei stellende Problem bestehe darin, daß die Stoffe des elektrochemisch reversiblen Redoxsystems an der Anode der Nebenzelle oxidiert werden, so daß der Gehalt der oxidierten Spezies dieser Stoffe in der Flüssigkeit ansteige. In der Folge steige auch der Gehalt der Metallionen in der Elektrolytflüssigkeit weiter an, so daß das eigentliche Ziel der Absenkung der Metallionenkonzentration verfehlt werde.In WO 9910564 A2 this is u.a. indicated that it was not possible, the Concentration of the metal ions in the electrolyte liquid in an additional lower electrolytic secondary cell using an insoluble anode, Just as it is used by conventional electroplating plants with soluble the insoluble anodes used here are known. That is The problem is that the substances of the electrochemically reversible Redox system are oxidized at the anode of the side cell, so that the Increase the content of the oxidized species of these substances in the liquid. In the As a consequence, the content of the metal ions in the electrolyte fluid also continues to increase so that the ultimate goal of lowering the metal ion concentration missed.

In dem genannten Dokument wird noch zusätzlich als Lösungsmöglichkeit für das Problem angegeben, die Elektrolytflüssigkeit permanent zu verdünnen. Da hierzu aber ständig große Mengen der Flüssigkeit verworfen und entsorgt werden müßten, sei diese auch als "feed and bleed"-Verfahren bekannte Vorgehensweise unbefriedigend. In the document mentioned is still additionally as a solution for indicated the problem of permanently diluting the electrolyte fluid. There but this constantly discards large amounts of liquid and disposed of would have to, this is also known as "feed and bleed" procedure known procedure unsatisfactory.

Zur Lösung des Problems werden in dem Dokument ein Verfahren und eine Vorrichtung zur Regulierung der Konzentration von Metallionen vorgeschlagen. Danach wird zumindest ein Teil der in der Galvanisieranlage enthaltenen Elektrolytflüssigkeit durch eine oder mehrere mindestens eine unlösliche Anode und mindestens eine Kathode aufweisende elektrolytische Hilfszellen geleitet und zwischen den Anoden und den Kathoden der Hilfszellen ein so hoher elektrischer Stromfluß eingestellt, daß die Stromdichte an der Anodenoberfläche mindestens 6 A/dm2 und die Stromdichte an der Kathodenoberfläche höchstens 3 A/dm2 beträgt. Das Verhältnis der Oberfläche der Anoden zur Oberfläche der Kathoden wird auf mindestens 1 : 4 eingestellt.To solve the problem, the document proposes a method and a device for regulating the concentration of metal ions. Thereafter, at least a portion of the electrolyte liquid contained in the electroplating plant is passed through one or more at least one insoluble anode and at least one cathode having auxiliary electrolytic cells and set between the anodes and the cathodes of the auxiliary cells such a high electrical current flow that the current density at the anode surface at least 6 A / dm 2 and the current density at the cathode surface is at most 3 A / dm 2 . The ratio of the surface of the anodes to the surface of the cathodes is set to at least 1: 4.

Mit dieser Anordnung kann der Metallionengehalt in der Elektrolytflüssigkeit auch über einen längeren Zeitraum konstant gehalten werden, indem ein Teil der in der Elektrolytflüssigkeit enthaltenen oxidierten Spezies des elektrochemisch reversiblen Redoxsystems an der Kathode der Hilfszelle reduziert wird. Indem das Verhältnis der Stromdichten an der Anode und an der Kathode in der Hilfszelle beispielsweise durch geeignete Wahl des Verhältnisses der Oberflächen der Anode und der Kathode eingestellt wird, werden die reduzierten Spezies des elektrochemisch reversiblen Redoxsystems an der Anode der Hilfszelle nicht oder nur in einem untergeordneten Maße oxidiert, so daß die Konzentration der oxidierten Spezies des elektrochemisch reversiblen Redoxsystems reguliert und dadurch auf die Bildungsrate der Metallionen direkt Einfluß genommen werden kann.With this arrangement, the metal ion content in the electrolyte liquid be kept constant over a longer period of time by a part the oxidized species of the electrochemical contained in the electrolyte liquid reversible redox system is reduced at the cathode of the auxiliary cell. By the ratio of the current densities at the anode and at the cathode in the auxiliary cell, for example, by a suitable choice of the ratio of the surfaces the anode and the cathode are adjusted, the reduced Species of the electrochemically reversible redox system at the anode of the Not auxiliary cell or oxidized only to a minor extent, so that the Concentration of the oxidized species of the electrochemically reversible redox system regulates and thereby directly influences the rate of formation of metal ions can be taken.

Es hat sich jedoch herausgestellt, daß die in WO 9910564 A2 beschriebene Vorrichtung relativ aufwendig ist, da mehrere Nebenzellen zum Abscheidebehälter vorgesehen werden müssen. Es handelt sich hierbei um die erwähnte Hilfszelle und den Metallionengenerator. In Produktionsanlagen muß gegebenenfalls eine Vielzahl von Hilfszellen und Metallionengeneratoren vorgesehen werden. Außerdem wird an der Kathode in der Hilfszelle fortwährend Metall abgeschieden, so daß der Wirkungsgrad der Reduktion der oxidierten Spezies des elektrochemisch reversiblen Redoxsystems an der Kathode ständig sinkt und damit eine erhöhte elektrische Leistung erforderlich wird. Da die hierzu eingesetzten Gleichrichter zur Stromversorgung der Hilfszelle mit einer erhöhten Nennleistung ausgelegt werden müssen, sind nochmals erhöhte Anlagenkosten erforderlich. Außerdem ist die Lebensdauer dieser Vorrichtung durch einen korrosiven Angriff auf das Anodenmaterial limitiert.However, it has been found that the described in WO 9910564 A2 Device is relatively expensive, since several side cells to the separation vessel must be provided. These are the ones mentioned Auxiliary cell and the metal ion generator. If necessary, in production facilities a plurality of auxiliary cells and metal ion generators are provided become. In addition, at the cathode in the auxiliary cell is constantly metal deposited, so that the efficiency of reduction of the oxidized species of the electrochemically reversible redox system at the cathode is constantly decreasing and thus an increased electrical power is required. As for this used rectifier for powering the auxiliary cell with an elevated Rated power must be interpreted, are again increased system costs required. In addition, the life of this device is through limited a corrosive attack on the anode material.

Außerdem muß das auf der Kathode der Hilfszelle abgeschiedene Kupfer von Zeit zu Zeit elektrochemisch wieder entfernt werden, so daß nochmals zusätzliche Energie verbraucht wird und die Vorrichtung während dieses Zeitraumes nicht zur Verfügung steht. Daher müssen für eine kontinuierliche Produktion mehrere derartige Hilfszellen vorgesehen werden, von denen einige zur Regulierung der Metallionen-Konzentration eingesetzt werden, während in anderen parallel geschalteten Hilfszellen das Kupfer von der Kathode wieder entfernt wird. Besonders nachteilig ist hierbei, daß das üblicherweise eingesetzte Kathodenmaterial durch den Abtösevorgang geschädigt wird. Dadurch wird zum einen der Wirkungsgrad der Reduktion verringert. Zum anderen muß die Kathode nach einigen Ablösevorgängen durch eine neue ersetzt werden.In addition, the deposited on the cathode of the auxiliary cell copper of Time to time electrochemically removed, so that again additional Energy is consumed and the device during this period not available. Therefore, for continuous production several such auxiliary cells are provided, some of which are for regulation The metal ion concentration can be used while in others parallel auxiliary cells removed the copper from the cathode again becomes. A particular disadvantage here is that the commonly used cathode material is damaged by the Abtösevorgang. This will be the one reduces the efficiency of the reduction. On the other hand, the cathode must be replaced by a new one after a few detachments.

Für den Fall, dass anstelle der unlöslichen Anoden in der Elektrolysezelle lösliche Anoden verwendet werden, wird in Patent Abstracts of Japan Vol. 016, No. 512 (C-0998) - JP 04 191394 ebenfalls eine elektrolytische Hilfszelle zur Stabilisierung der Qualität der Kupferabscheidung auf einem Stahldraht vorgeschlagen. In der Elektrolysezelle der Vorrichtung wird Kupfer auf dem Stahldraht abgeschieden und die Lösung dann in die elektrolytische Hilfszelle überführt. Dort sind unlösliche Anoden und Kupferkathoden vorgesehen. Kupfer kann in diesem Falle aus der Lösung durch elektrolytische Abscheidung entfernt werden, so dass der Kupfergehalt auf einen vorbestimmten Wert eingestellt werden kann.In the event that instead of the insoluble anodes in the electrolytic cell soluble Anodes are used in Patent Abstracts of Japan Vol. 016, no. 512 (C-0998) - JP 04 191394 also an electrolytic auxiliary cell for stabilizing the Quality of copper deposition proposed on a steel wire. In the Electrolytic cell of the device copper is deposited on the steel wire and then transfer the solution to the electrolytic auxiliary cell. There are insoluble Anodes and copper cathodes provided. Copper can in this case from the Solution can be removed by electrolytic deposition, so that the copper content can be set to a predetermined value.

Der vorliegenden Erfindung liegt von daher das Problem zugrunde, die Nachteile der bekannten Verfahren und Vorrichtungen zu vermeiden und insbesondere eine Vorrichtung und ein Verfahren zu finden, mit denen eine wirtschaftliche Betriebsweise des elektrolytischen Abscheideverfahrens ermöglicht wird. Insbesondere sollen bei dem Abscheideverfahren unlösliche Anoden und in der Elektrolytflüssigkeit enthaltene Stoffe eines elektrochemisch reversiblen Redoxsystems eingesetzt werden. Das Verfahren soll über einen sehr langen Zeitraum unter konstanten Bedingungen durchführbar sein. Dabei soll insbesondere die Konzentration der Metallionen in der Elektrolytflüssigkeit innerhalb dieses Zeitraumes innerhalb enger Grenzen konstant gehalten werden. Es soll vor allem möglich sein, die Konzentration der Metallionen- mit einfachen Mitteln konstant zu halten, wobei nur ein geringer Energieverbrauch und geringe Anlagenkosten aufzuwenden sind. The present invention is therefore based on the problem, the disadvantages avoid the known methods and devices and in particular to find a device and a method with which an economical Operation of the electrolytic deposition method is made possible. Especially should in the deposition insoluble anodes and in the Electrolyte fluid contained substances of an electrochemically reversible redox system be used. The procedure should last for a very long time be carried out under constant conditions. It should in particular the concentration of metal ions in the electrolyte fluid within this Period are kept constant within narrow limits. It's supposed to be be possible, the concentration of metal ions with simple means keeping constant, with only low energy consumption and low equipment costs are to spend.

Gelöst wird dieses Problem durch das Verfahren nach Anspruch 1, die Vorrichtung nach Anspruch 11, die Anwendung des Verfahrens nach Anspruch 22 und die Verwendung der Vorrichtung nach Anspruch 23. Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.This problem is solved by the method according to claim 1, the device according to claim 11, the application of the method according to claim 22 and the use of the device according to claim 23. Preferred embodiments The invention are specified in the subclaims.

Das erfindungsgemäße Verfahren dient zum Regulieren der Konzentration von Metallionen in einer zur elektrolytischen Abscheidung von Metall dienenden und zusätzlich Stoffe eines elektrochemisch reversiblen Redoxsystems in einer oxidierten und einer reduzierten Form enthaltenden Elektrolytflüssigkeit. Es besteht darin, daß

  • a. zumindest ein Teil der Elektrolytflüssigkeit durch mindestens eine jeweils mindestens eine unlösliche Hilfsanode und mindestens eine Hilfskathode aufweisende Hilfszelle geleitet wird,
  • b. zwischen den Hilfskathoden und den Hilfsanoden der Hilfszelle ein Stromfluß durch Anlegen einer Spannung erzeugt wird und
  • c. Stücke des abzuscheidenden Metalls als Hilfskathoden eingesetzt werden.
  • The method according to the invention serves to regulate the concentration of metal ions in an electrolyte liquid used for the electrolytic deposition of metal and additionally substances of an electrochemically reversible redox system in an oxidized and a reduced form. It is that
  • a. at least a part of the electrolyte liquid is passed through at least one auxiliary cell each having at least one insoluble auxiliary anode and at least one auxiliary cathode,
  • b. a current flow is generated by applying a voltage between the auxiliary cathodes and the auxiliary anodes of the auxiliary cell and
  • c. Pieces of the metal to be deposited can be used as auxiliary cathodes.
  • Die Elektrolytflüssigkeit wird hierzu kontinuierlich durch die Anlage, in der Metall elektrolytisch abgeschieden wird, und die Hilfszellen geleitet, dergestalt, daß die Flüssigkeit die Anlage und die Zellen zumindest zeitweise gleichzeitig oder gegebenenfalls auch nacheinander durchströmt. Dabei wird die Flüssigkeit nach dem Durchströmen der Hilfszellen immer wieder in die Anlage zurückgeleitet.The electrolyte liquid is continuously through the system, in the metal is deposited electrolytically, and the auxiliary cells passed, such that the liquid the plant and the cells at least temporarily at the same time or optionally also flows through one after the other. At the same time the liquid becomes repeatedly returned to the system after flowing through the auxiliary cells.

    Zur elektrolytischen Metallabscheidung wird das Metall unter Verwendung von mindestens einer unlöslichen, vorzugsweise dimensionsstabilen Hauptanode aus der Elektrolytflüssigkeit auf dem Behandlungsgut abgeschieden. Hierzu wird ein Stromfluß zwischen dem Behandlungsgut und der Hauptanode erzeugt. Die Metallionen werden in mindestens einem von der Elektrolytflüssigkeit zumindest teilweise durchströmten Metallionengenerator als Hilfszelle durch die Stoffe des Redoxsystems in der oxidierten Form durch Auflösung von Metallstücken gebildet. Dabei werden die Stoffe in der oxidierten Form unter Bildung entsprechender Stoffe, beispielsweise Metallionen, in der reduzierten Form umgewandelt. Die dabei entstandenen Stoffe in der reduzierten Form werden an der Hauptanode unter Bildung der entsprechenden Stoffe in der oxidierten Form wieder oxidiert.For electrolytic metal deposition, the metal is made using at least one insoluble, preferably dimensionally stable main anode separated from the electrolyte liquid on the material to be treated. For this a flow of current between the material to be treated and the main anode is generated. The metal ions become in at least one of the electrolyte liquid at least partially flowed through by the metal ion generator as auxiliary cell Substances of the redox system in the oxidized form by dissolution of metal pieces educated. The substances in the oxidized form are under formation corresponding substances, for example metal ions, in the reduced form transformed. The resulting substances in the reduced form become the main anode forming the corresponding substances in the oxidized Form oxidized again.

    Die erfindungsgemäße Vorrichtung dient daher zur elektrolytischen Abscheidung von Metall mit einer Metallionen und zusätzlich Stoffe eines elektrochemisch reversiblen Redoxsystems in einer oxidierten und einer reduzierten Form enthaltenden Elektrolytflüssigkeit und umfasst eine Galvanisieranlage mit mindestens einer unlöslichen Hauptanode und mindestens einem mit der Galvanisieranlage in Flüssigkeitsverbindung stehenden Metallionengenerator, der als elektrolytische Hilfszelle dient,

  • a. in den Stücke des abzuscheidenden Metalls einfüllbar sind und
  • b. der mindestens eine unlösliche Hitfsanode und mindestens eine Stromversorgung, vorzugsweise eine Gleichstromquelle, zur Erzeugung eines Stromflusses zwischen der Hilfsanode und den einfüllbaren Metallstücken aufweist,
  • c. wobei die Metallstücke als Hilfskathoden einsetzbar sind.
  • The device according to the invention therefore serves for the electrolytic deposition of metal with a metal ion and additionally substances of an electrochemically reversible redox system in an oxidized and a reduced form containing electrolyte liquid and comprises a galvanizing plant with at least one insoluble main anode and at least one standing in liquid connection with the galvanizing metal ion generator, the serves as an electrolytic auxiliary cell,
  • a. in the pieces of the metal to be deposited are fillable and
  • b. the at least one insoluble Hitfsanode and at least one power supply, preferably a DC power source, for generating a current flow between the auxiliary anode and the fillable metal pieces,
  • c. wherein the metal pieces can be used as auxiliary cathodes.
  • Vorzugsweise sind Anodenräume, die die Hilfsanoden umgeben, und Kathodenräume, die die Metallstücke umgeben, durch zumindest partiell ionendurchlässige Mittel voneinander getrennt Gegebenenfalls können die zumindest partiell ionendurchlässigen Mittel zwischen den Anodenräumen und den Kathodenräumen aber auch entfallen. In diesem Falle sind die Hilfskathoden in einem flüssigkeitsberuhigien Abschnitt des Metallionengenerators untergebracht, um eine Vermischung der im Kathodenraum enthaltenen Elektrolytflüssigkeit mit der Elektrolytflüssigkeit im Anodenraum zumindest weitgehend zu vermeiden. Beispielsweise können die beiden Räume konstruktiv derart voneinander getrennt werden, daß die Vermischung weitgehend unterbleibt Die Metallstücke sind vorzugsweise in einem sehr gut durchströmten Abteil des Metallionengenerators untergebracht.Preferably, anode spaces surrounding the auxiliary anodes and cathode spaces, which surround the metal pieces, by at least partially ion permeable Means separated from each other If necessary, the at least partially ion-permeable means between the anode compartments and the cathode compartments but also omitted. In this case, the auxiliary cathodes are in one liquid quiescent section of the metal ion generator housed, to a mixing of the electrolyte contained in the cathode compartment with the electrolyte liquid in the anode compartment at least largely avoided. For example, the two spaces constructively so from each other be separated that the mixing is largely omitted The metal pieces are preferably in a very well-flowed compartment of the metal ion generator accommodated.

    Mit dem erfindungsgemäßen Verfahren und der Vorrichtung, die insbesondere zum Regulieren der Konzentration von Kupferionen in einer zur elektrolytischen Abscheidung von Kupfer dienenden und zusätzlich Pe(II)- und Fe(III)-Verbindungen enthaltenden Kupferabscheidelösung dienen, kann der Metallionengehalt in einer Metallabscheidelösung in engen Grenzen konstant gehalten werden, so daß reproduzierbare Abscheidungsbedingungen eingehalten werden können. Die Metallabscheidelösung wird kontinuierlich von der Gatvanisieranlage, beispielsweise einem Abscheidebehälter, in den erfindungsgemäßen Metallionengenerator und von dort wieder zurück in die Galvanisieranlage überführt. Die an der Hauptanode in der Galvanisieranlage gebildeten Stoffe des Redoxsystems in der oxidierten Form werden an den Metallstücken im Metallionengenerator unter Bildung von Metallionen wieder reduziert. Indem die Bildungsrate der Stoffe des Redoxsystems in der reduzierten Form im Metallionengenerator durch kathodische Polarisierung der Metallstücke gegenüber einer Hilfsanode verändert werden kann, kann die Bildungsrate der Metallionen im Metallionengenerator reguliert werden. Eine erneute Oxidation der reduzierten Stoffe des Redoxsystems zu den oxidierten Stoffen an der Hilfsanode wird dadurch weitgehend verhindert, daß der die Hilfsanode umgebende Anodenraum von dem die Metallstücke umgebenden Kathodenraum getrennt ist. Eine Vermischung der Flüssigkeiten im Anoden- und im Kathodenraum wird weitgehend vermieden, so daß die reduzierten Stoffe des Redoxsystems nur in sehr geringem Umfange an die Hilfsanode gelangen können, da diese Stoffe nur durch Diffusion an die Hilfsanode gelangen können und die Konzentration dieser Stoffe in dem Anodenraum durch die dortige elektrochemische Reaktion verarmt.With the method according to the invention and the device, in particular for regulating the concentration of copper ions in an electrolytic one Deposition of copper-serving and additionally Pe (II) and Fe (III) compounds serving copper deposition solution, the metal ion content kept constant within narrow limits in a metal plating solution be so that reproducible deposition conditions are met can. The metal plating solution is continuously from the Gatvanisieranlage, for example, a separation vessel in the inventive Metal ion generator and from there back to the galvanizing transferred. The substances formed on the main anode in the galvanizing plant of the Redox systems in the oxidized form become attached to the metal pieces in the metal ion generator reduced again to form metal ions. By the education rate the substances of the redox system in the reduced form in the metal ion generator by cathodic polarization of the metal pieces opposite An auxiliary anode can be changed, the rate of formation of the metal ions be regulated in the metal ion generator. A renewed oxidation of the reduced Substances of the redox system to the oxidized substances at the auxiliary anode is thereby largely prevents the anode space surrounding the auxiliary anode from which the metal pieces surrounding cathode space is separated. A Mixing of the liquids in the anode and in the cathode compartment becomes extensive avoided, so that the reduced substances of the redox system only in reach the auxiliary anode very small extent, since these substances can only get to the auxiliary anode by diffusion and the concentration of these substances in the anode compartment by the local electrochemical reaction impoverished.

    Durch Einstellen des Stromflusses im Metallionengenerator wird die Produktionsrate der Stoffe des Redoxsystems in der reduzierten Form und damit nachfolgend die Bildungsrate der Metallionen im Metallionengenerator auf einen Wert eingestellt, der so groß ist, daß die pro Zeiteinheit erzeugte Menge an Metallionen durch Oxidation mit den Redoxverbindungen, zuzüglich der Menge, die durch Auflösung des Metalls durch den in die Elektrolytflüssigkeit eingetragenen Luftsauerstoff entsteht, genau gleich groß ist wie die Menge der an der Kathode in der Galvanisieranlage verbrauchten Metallionen. Somit bleibt der Gesamtionengehalt des abzuscheidenden Metalls in der Elektrolytflüssigkeit konstant. Bei Anwendung des erfindungsgemäßen Verfahrens stellt sich also der gewünschte stationäre Zustand zwischen der Metallionenbildung und deren Verbrauch ein.By adjusting the current flow in the metal ion generator, the production rate becomes the substances of the redox system in the reduced form and thus below the rate of formation of the metal ions in the metal ion generator on a Value set so large that the amount produced per unit time Metal ions by oxidation with the redox compounds, plus the amount by the dissolution of the metal by the registered in the electrolyte liquid Atmospheric oxygen is created, exactly the same as the amount of at the Cathode in the electroplating plant consumed metal ions. Thus, the remains Total ion content of the metal to be deposited in the electrolyte liquid constant. When applying the method according to the invention turns so the desired steady state between metal ion formation and their Consumption.

    Das erfindungsgemäße Verfahren und die Vorrichtung weisen gegenüber der in WO 9910564 A2 beschriebenen Erfindung den weiteren Vorteil auf, daß nur eine oder mehrere Nebenzellen zusätzlich zur Galvanisieranlage vorgesehen werden müssen und nicht eine oder mehrere Hilfszellen und ein oder mehrere zusätzliche Metallionengeneratoren. Dadurch sind die Aufwendungen für die Anlagentechnik wesentlich geringer. Außerdem kommt die Abscheidelösung nicht mit einer inerten Hilfskathode wie bei der in der WO 9910564 A2 beschriebenen Anlage in Kontakt, so daß eine mögliche Abscheidung von Metall auf der Hilfskathode nicht zu den oben erörterten Problemen führen kann. Daher kommt das erfindungsgemäße Verfahren auch über einen sehr langen Zeitraum ohne wesentliche Wartungsarbeiten aus, beispielsweise ohne ein in der bekannten Vorrichtung erforderliches intermediäres Ablösen des abgeschiedenen Metalls von der Hilfskathode. Das dabei entstehende Problem, nämlich eine Verringerung des Wirkungsgrades der Umwandlung der oxidierten Stoffe des Redoxsystems in die reduzierten Stoffe durch einen gebildeten Metallüberzug auf der Hilfskathode, stellt sich bei Anwendung der vorliegenden Erfindung nicht ein.The method according to the invention and the device have opposite to in WO 99/10564 A2 described the further advantage that only one or more secondary cells provided in addition to the electroplating plant and not one or more auxiliary cells and one or more additional metal ion generators. As a result, the expenses for the Plant engineering significantly lower. In addition, the separation solution comes not with an inert auxiliary cathode as described in WO 9910564 A2 Plant in contact, so that a possible deposition of metal on the auxiliary cathode can not lead to the problems discussed above. Therefore the process according to the invention also occurs over a very long period of time without major maintenance, for example, without one in the known device required intermediate detachment of the deposited Metal from the auxiliary cathode. The resulting problem, namely a reduction in the efficiency of the conversion of the oxidized substances of the redox system in the reduced substances by a formed metal coating on the auxiliary cathode, arises using the present invention not a.

    Die Absenkung des Gehaltes der Stoffe des Redoxsystems in der oxidierten Form im Elektrolyten hat einen zusätzlichen Nutzeffekt: Das Behandlungsgut in der Galvanisieranlage befindet sich in einer Elektrolytflüssigkeit, die bei Durchführung des erfindungsgemäßen Verfahrens eine verringerte Konzentration der Stoffe des Redoxsystems in der oxidierten Form enthält. Eine entsprechend geringere Menge der Stoffe des Redoxsystems wird vom Galvanisierstrom an der Behandlungsgutoberfläche reduziert. Die Folge davon ist eine Verbesserung der kathodischen Stromausbeute in der Galvanisieranlage. Der damit verbundene Gewinn an Produktionskapazität beträgt bis zu 10 %. Lowering of content of substances of redox system in the oxidized Form in the electrolyte has an additional benefit: The material to be treated in The electroplating plant is located in an electrolyte fluid, which when carried out the inventive method, a reduced concentration of Contains substances of the redox system in the oxidized form. One accordingly smaller amount of the substances of the redox system is from the galvanizing the treated material surface is reduced. The result is an improvement the cathodic current yield in the electroplating plant. The associated Profit in production capacity is up to 10%.

    Ein weiterer Vorteil der Erfindung besteht darin, daß der von Galvanisieranlagen mit löslichen Anoden bekannte Anodenschlamm entfällt. Trotzdem kann teilweise ein "feed and bleed"-Betrieb der Anlage nützlich sein. Dies gilt insbesondere dann, wenn organische und/oder anorganische Zusätze in der Elektrolytflüssigkeit langfristig ausgetauscht werden sollen. Als Folge des teilweisen Verwerfens der Elektrolytflüssigkeit wird auch der Gehalt der oxidierten Metallionen des Redoxsystems anteilsmäßig gesenkt. Um diesen Anteil kann die Kapazität des Metaltionengenerators verringert werden. Der Metallionengehalt kann somit auch dadurch konstant gehalten werden, daß Stoffe des Redoxsystems in der oxidierten Form im Metallionengenerator reduziert werden und gleichzeitig ein Teil der Elektrolytflüssigkeit aus der Galvanisieranlage entfernt und durch frische Elektrolytflüssigkeit ersetzt wird.Another advantage of the invention is that of galvanizing Anode sludge known with soluble anodes is eliminated. Nevertheless, can In some cases, a "feed and bleed" operation of the plant may be useful. This is especially true then, if organic and / or inorganic additives in the electrolyte liquid to be exchanged in the long term. As a result of the partial Discarding the electrolyte fluid also becomes the content of the oxidized metal ions proportionately reduced the redox system. To this portion can the Capacity of Metaltionengenerators be reduced. The metal ion content can thus be kept constant by that substances of the redox system be reduced in the oxidized form in the metal ion generator and at the same time removes a part of the electrolyte liquid from the electroplating plant and is replaced by fresh electrolyte fluid.

    Vorzugsweise werden mit Edelmetallen und/oder mit Mischoxiden insbesondere von Edelmetallen aktivierte inerte Metallelektroden als unlösliche Hilfsanoden eingesetzt. Dieses Material ist gegenüber der Abscheidelösung und den verwendeten Stoffen des Redoxsystems chemisch und elektrochemisch stabil. Beispielsweise wird Titan oder Tantal als Grundwerkstoff eingesetzt. Der Grundwerkstoff wird vorzugsweise als perforiertes Elektrodenmaterial verwendet, beispielsweise in Form von Streckmetall oder Netzen, um bei geringem Platzangebot eine große Oberfläche zu bieten. Da bei elektrochemischen Reaktionen an diesen Metallen eine erhebliche Polarisationsüberspannung anliegt, werden die Grundwerkstoffe mit einem Edelmetall, vorzugsweise Platin, Iridium, Ruthenium oder deren Oxiden oder Mischoxiden beschichtet. Außerdem wird der Grundwerkstoff dadurch auch gegen einen elektrolytischen Abtrag geschützt. Titananoden mit einer Iridiumoxidbeschichtung, die mit kugelförmigen Körpern bestrahlt und dadurch porenfrei verdichtet werden, sind ausreichend beständig und weisen daher eine lange Lebensdauer unter den angewendeten Bedingungen auf. Preference is given to using precious metals and / or mixed oxides in particular inert metal activated inert metal electrodes as insoluble auxiliary anodes used. This material is opposite the plating solution and the used substances of the redox system chemically and electrochemically stable. For example, titanium or tantalum is used as the base material. Of the Base material is preferably used as a perforated electrode material, for example, in the form of expanded metal or nets to low Space to offer a large surface. As with electrochemical reactions a considerable polarization overvoltage is applied to these metals, are the base materials with a precious metal, preferably platinum, Iridium, ruthenium or their oxides or mixed oxides coated. Furthermore The base material is thus also against electrolytic removal protected. Titanium anodes with an iridium oxide coating that is spherical Bodies are irradiated and thus compressed without pore, are sufficient durable and therefore have a long life among the applied Conditions.

    Vorzugsweise werden Metallstücke in Form von Kugeln eingesetzt. Kupfer braucht nicht wie bei Verwendung löslicher Kupferanoden Phosphor zu enthalten. Dadurch wird die Bildung von Anodenschlamm vermindert. Metallkugeln weisen den Vorteil auf, daß eine Volumenverringerung der Kugelschüttung im Metallionengenerator bei der Auflösung der Metallstücke nicht ohne weiteres zu Brücken bildenden Hohlräumen führt, so daß das Nachfüllen von neuen Metallstücken erleichtert wird. Durch den Einsatz von Kugeln mit einem geeigneten Durchmesser kann das Schüttvolumen im Metallionengenerator optimiert werden. Dadurch werden wiederum der Strömungswiderstand oder bei vorgegebener Pumpenleistung der Volumenstrom der Abscheidelösung durch die gebildete Metallkugelschüttung festgelegt. Die Metallstücke können aber auch im wesentlichen zylindrisch oder quaderförmig sein. Es ist auf eine ausreichende Durchströmung des Kathodenraumes zu achten.Preferably, metal pieces are used in the form of balls. copper does not need to contain phosphorus like using soluble copper anodes. This reduces the formation of anode sludge. metal balls have the advantage that a reduction in volume of the ball bed in Metal ion generator in the dissolution of the metal pieces not readily to Bridges forming cavities leads, so that the refilling of new pieces of metal is relieved. By using bullets with a suitable Diameter, the bulk volume can be optimized in the metal ion generator. As a result, in turn, the flow resistance or at a given Pump capacity of the volume flow of the deposition solution through the formed Metal ball bed set. But the metal pieces can also essentially be cylindrical or cuboid. It's on a sufficient Ensure flow through the cathode compartment.

    Um ferner eine Oxidation von in den Anodenraum gelangenden Stoffen des Redoxsystems in der reduzierten Form weiter zu vermindern, wird das Verhältnis der Oberfläche der Metallstücke zur Oberfläche der mindestens einen Hilfsanode auf einen Wert von mindestens 4 : 1 eingestellt. Dadurch wird die Stromdichte an der Hilfsanode erhöht, so daß bevorzugt das Wasser der Abscheidelösung unter Bildung von Sauerstoff oxidiert und nur in untergeordnetem Umfange die Stoffe des Redoxsystems in der reduzierten Form oxidiert werden. Besonders bevorzugt ist ein Oberflächenverhältnis von mindestens 6 : 1 und insbesondere von mindestens 10 : 1. Insbesondere bevorzugt sind Verhältnisse von mindestens 40 : 1 und vor allem von mindestens 100 : 1. Ein derart großes Oberflächenverhältnis kann beispielsweise durch Wahl von kleinen Metallstükken, insbesondere Metallkugeln mit einem kleinen Durchmesser, eingestellt werden. Typischerweise stellt sich eine kathodische Stromdichte von 0,1 A/dm2 bis 0,5 A/dm2 und eine anodische Stromdichte von 20 A/dm2 bis 60 A/dm2 ein. Unter diesen Bedingungen wird praktisch nur noch Sauerstoff an der Anode gebildet. Gegebenenfalls im Anodenraum vorhandene Stoffe des Redoxsystems in der reduzierten Form werden unter diesen Bedingungen praktisch nicht oxidiert. Furthermore, in order further to reduce oxidation of substances in the redox system in the reduced form reaching the anode compartment, the ratio of the surface area of the metal pieces to the surface of the at least one auxiliary anode is set to a value of at least 4: 1. As a result, the current density is increased at the auxiliary anode, so that preferably the water of the deposition solution is oxidized to form oxygen and oxidized only to a minor extent, the substances of the redox system in the reduced form. Particular preference is given to a surface ratio of at least 6: 1 and in particular of at least 10: 1. Particular preference is given to ratios of at least 40: 1 and above all of at least 100: 1. Such a high surface ratio can be achieved, for example, by the choice of small metal pieces, in particular metal spheres with a small diameter, can be adjusted. Typically, a cathodic current density of 0.1 A / dm 2 to 0.5 A / dm 2 and an anodic current density of 20 A / dm 2 to 60 A / dm 2 sets. Under these conditions, practically only oxygen is formed at the anode. Any substances of the redox system in the reduced form which are present in the anode compartment are practically not oxidized under these conditions.

    Der Metallionengenerator kann vorzugsweise rohrförmig ausgebildet sein. Eine vorteilhafte Ausführungsform in diesem Falle besteht darin, daß die Hilfsanode oberhalb des von den Metallstücken einnehmbaren Raumes angeordnet ist. Dadurch kann der an der Hilfsanode durch die anodische Wasserzersetzung gebildete Sauerstoff aus der Abscheidelösung im Metallionengenerator entweichen, ohne daß er mit den Metallstücken in Berührung kommt und ohne daß er mit der Lösung in intensiven Kontakt gerät mit der Folge, daß er sich in nennenswerten Mengen in der Lösung auflöst und auf diese Weise zu den Metallstücken gelangt. Mit dieser Anordnung wird daher verhindert, daß sich die Metallstücke mit erhöhter Rate durch die Einwirkung des Sauerstoffes auflösen.The metal ion generator may preferably be tubular. A advantageous embodiment in this case is that the auxiliary anode is arranged above the ingestible space of the metal pieces. As a result, the at the auxiliary anode by the anodic water decomposition escape formed oxygen from the deposition solution in the metal ion generator, without being in contact with the metal pieces and without him with the solution in intensive contact with the result that he is in appreciable Dissolves quantities in the solution and in this way to the metal pieces arrives. With this arrangement, therefore, prevents the metal pieces Dissolve at elevated rate by the action of oxygen.

    In einer alternativen, vorteilhaften Ausführungsform kann der Metallionengenerator durch senkrechte Teilung auch in zwei Abteile (Anodenraum und Kathodenraum) aufgeteilt sein, wobei in dem einen Abteil die Metallstücke und in dem anderen die mindestens eine Hilfsanode angeordnet sind. Auch in diesem Falle tritt an der Hilfsanode entstehender Sauerstoff ohne weitere Berührung mit den Metallstücken aus der Abscheidelösung aus.In an alternative, advantageous embodiment, the metal ion generator by vertical division also in two compartments (anode compartment and cathode compartment) be divided, wherein in the one compartment the metal pieces and in the other, the at least one auxiliary anode are arranged. Also in this Trap occurs at the auxiliary anode resulting oxygen without further contact with the pieces of metal from the deposition solution.

    Die Schüttung der Metallstücke ruht vorzugsweise auf einer siebförmig ausgebildeten Elektrode, die aus einem inerten Material besteht, beispielsweise Titan. Über diese Elektrode kann der Strom den Metallstücken zugeführt werden. Indem diese Elektrode siebförmig ausgebildet ist, kann die Abscheidelösung durch das Sieb hindurch an die Metallschüttung und durch diese hindurch gefördert werden. Damit werden reproduzierbare Strömungsverhältnisse in der Metallschüttung eingestellt. Die in den Kathodenraum eintretende Abscheidelösung kann nach Durchtritt der Metallschüttung im oberen Bereich des Kathodenraums durch Überfließen aus dem Kathodenraum wieder herausgeführt werden. Indem eine hohe Strömungsgeschwindigkeit durch die Schüttung eingestellt wird, kann der Wirkungsgrad der Reduktion der Stoffe des Redoxsystems in der oxidierten Form an den Metallstücken erhöht werden, da die Konzentrationsüberspannung für diese Stoffe an den Stücken verringert wird. The bed of metal pieces preferably rests on a sieve-shaped Electrode, which consists of an inert material, such as titanium. About this electrode, the current can be supplied to the metal pieces. By this electrode is formed Siebförmig, the Abscheidelösung through the sieve to the metal bed and conveyed through it become. Thus, reproducible flow conditions in the Metal fill set. The deposition solution entering the cathode compartment can after passage of the metal fill in the upper region of the cathode space brought out by overflow from the cathode compartment again become. By setting a high flow rate through the bed can, the efficiency of the reduction of the substances of the redox system be increased in the oxidized form on the metal pieces, since the concentration overvoltage for these substances is reduced in the pieces.

    Die Hilfsanode wird von einem Anodenraum und die Metallstücke von einem Kathodenraum umgeben, in denen sich die Abscheidelösung befindet. Die beiden Räume sind durch zumindest partiell ionendurchlässige Mittel voneinander getrennt. Als ionendurchlässige Mittel können vorzugsweise flüssigkeitsdurchlässige, nichtleitende Gewebe eingesetzt werden, beispielsweise ein Polypropylengewebe. Dieses Material behindert die Konvektion zwischen den Elektrolyträumen.The auxiliary anode is made of an anode compartment and the metal pieces of one Surrounded cathode compartment, in which the deposition solution is located. The two Rooms are separated from each other by at least partially ion-permeable means separated. As ion-permeable means may preferably liquid-permeable, non-conductive fabrics are used, such as a polypropylene fabric. This material hinders convection between the electrolyte spaces.

    In einer alternativen Ausführungsform können auch lonenaustauschermembranen eingesetzt werden. Diese weisen den weiteren Vorteil auf, daß nicht nur die Konvektion zwischen Elektrolyträumen sondern auch die Migration selektiv behindert werden kann. Wenn beispielsweise eine Anionenaustauschermembran eingesetzt wird, können Anionen aus dem Kathodenraum in den Anodenraum gelangen, nicht jedoch Kationen aus dem Anodenraum in den Kathodenraum. Für den Fall, daß eine Kupferabscheidelösung mit Fe2+- und Fe3+-Ionen eingesetzt wird, werden die im Anodenraum durch Oxidation gebildeten Fe3+-Ionen nicht in den Kathodenraum überführt, so daß der Wirkungsgrad der erfindüngsgemäßen Vorrichtung nicht beeinträchtigt wird. Bei einer Überführung dieser Ionen in den Kathodenraum würden die Fe3+-Ionen in einer Konkurrenzreaktion zur Cu2+-Reduktion zu Fe2+-Ionen reduziert werden. Von daher sind Ionenaustauschermembranen als zumindest partiell ionendurchlässige Mittel unter technischen Gesichtspunkten besonders vorteilhaft. Allerdings sind diese Materialien auch teurer und mechanisch empfindlicher als die flüssigkeitsdurchtässigen Gewebe.In an alternative embodiment, ion exchange membranes can also be used. These have the further advantage that not only the convection between electrolyte spaces but also the migration can be selectively hindered. If, for example, an anion exchange membrane is used, anions can pass from the cathode space into the anode space, but not cations from the anode space into the cathode space. In the event that a Kupferabscheidelösung with Fe 2+ - and Fe 3+ ions is used, the Fe 3+ ions formed in the anode compartment by oxidation are not transferred into the cathode compartment, so that the efficiency of the erfindüngsgemäßen device is not affected. Upon transfer of these ions into the cathode space, the Fe 3+ ions would be reduced to Fe 2+ ions in a competing reaction for Cu 2+ reduction. Therefore, ion exchange membranes as at least partially ion-permeable agents from a technical point of view are particularly advantageous. However, these materials are also more expensive and mechanically more sensitive than the liquid permeable fabrics.

    Die Metallionenkonzentration in der Abscheidelösung kann beispielsweise durch Einstellen des Stromflusses zwischen der Hilfsanode und den Metallstücken reguliert werden. Hierzu wird der Strom über die Stromversorgung gesteuert. Für eine automatische Steuerung des Metallionengehaltes kann zusätzlich ein Sensor vorgesehen sein, mit dem die Metallionenkonzentration in der Lösung kontinuierlich gemessen wird. Hierzu kann beispielsweise die Extinktion der Abscheidelösung in einer separaten von der Lösung durchströmten Meßzelle photometrisch ermittelt und das Ausgangssignal der Meßzelle einem Komparator zugeführt werden. Die dabei entstehende Regelgröße kann dann in eine Steuergröße zur Einstellung des Stromes an der Stromversorgung umgesetzt werden. Über diesen Strom wird primär der Gehalt der Stoffe des Redoxsystems in der Elektrolytflüssigkeit beeinflußt. Dieser Gehalt beeinflußt wiederum die Auflösungsrate an den Metallstücken.The metal ion concentration in the deposition solution can be, for example by adjusting the current flow between the auxiliary anode and the metal pieces be regulated. For this purpose, the current is controlled by the power supply. For an automatic control of the metal ion content may additionally a sensor can be provided with which the metal ion concentration in the solution is measured continuously. For this example, the extinction the deposition solution in a separate flowed through by the solution Measuring cell determined photometrically and the output of the measuring cell a Comparator are supplied. The resulting control variable can then in a control variable for adjusting the current to the power supply implemented become. About this stream is primarily the content of the substances of the redox system in the electrolyte fluid. This content in turn influences the dissolution rate at the metal pieces.

    Die Elektrolytflüssigkeit wird von der Galvanisieranlage, in der sich die inerten Hauptanoden und das zu beschichtende Gut befinden, in einem Zwangsumlauf in den Metallionengenerator gefördert und von diesem wieder zurück in die Galvanisieranlage. Hierzu werden Pumpen eingesetzt, die die Flüssigkeit über geeignete Rohrleitungen in dem Zwangsumlauf fördern. Gegebenenfalls wird auch ein Vorratsbehälter eingesetzt, der zwischen der Galvanisieranlage und dem Metallionengenerator angeordnet ist. Dieser Vorratsbehälter dient beispielsweise dazu, die Elektrolytflüssigkeit für mehrere parallel betriebene Abscheidebehälter in einer Galvanisieranlage zu bevorraten. Hierzu können zwei Flüssigkeitskreisläufe gebildet werden, von denen einer zwischen den Abscheidebehältem und dem Vorratsbehälter, und ein zweiter zwischen dem Vorratsbehälter und dem Metallionengenerator gebildet ist. Außerdem können auch Filtermittel in den Umlauf eingefügt werden, um Verunreinigungen aus der Elektrolytflüssigkeit zu entfernen. Grundsätzlich kann der Metallionengenerator auch in dem Abscheidebehälter selbst plaziert werden, um möglichst kurze Strömungswege zu erreichen.The electrolyte liquid is removed from the galvanizing plant, in which the inert Main anodes and the material to be coated are in a forced circulation promoted in the metal ion generator and from this back into the Electroplating. For this purpose, pumps are used, which transfer the liquid promote suitable piping in the forced circulation. If necessary, will Also, a reservoir used between the galvanizing and the metal ion generator is arranged. This reservoir serves for example in addition, the electrolyte liquid for several parallel operated separation vessel to stockpile in a galvanizing plant. Two can do this Liquid circuits are formed, one of which between the Abscheidebehältem and the reservoir, and a second between the reservoir and the metal ion generator is formed. Besides, too Filter media are inserted into the circulation to remove contaminants from the electrolyte fluid to remove. In principle, the metal ion generator be placed in the separation vessel itself, as short as possible To achieve flow paths.

    Die Erfindung ist vorzugsweise für die Regulierung der Konzentration des Kupferionen-Gehaltes in Kupferbädern unter Verwendung von dimensionsstabilen, inerten Anoden im Abscheidebehälter geeignet, in denen zur Aufrechterhaltung der Konzentration der Kupferionen Fe2+- und Fe3+-Salze, vorzugsweise FeSO4/Fe2(SO4)3 oder Fe(NH4)2(SO4)2, bzw. andere Salze, enthalten sind. Die Erfindung ist grundsätzlich auch einsetzbar zum Regulieren der Metallionen-Konzentration in Bädern zum elektrolytischen Abscheiden anderer Metalle, beispielsweise von Zink, Nickel, Chrom, Zinn, Blei und deren Legierungen untereinander und mit anderen Elementen, beispielsweise mit Phosphor und/oder Bor. In diesem Fall sind gegebenenfalls andere Stoffe eines elektrochemisch reversibel umsetzbaren Redoxsystems zu verwenden, wobei das Redoxsystem in Abhängigkeit vom jeweiligen Abscheidungspotential ausgewählt wird. Beispielsweise können auch Verbindungen der Elemente Titan, Cer, Vanadin, Mangan, Chrom eingesetzt werden. Verwendbare Verbindungen sind beispielsweise Titanylschwefelsäure, Cer(IV)-sulfat, Alkalimetavanadat, Mangan(II)-sulfat und Alkalichromat oder -dichromat.The invention is preferably suitable for the regulation of the concentration of copper ion content in copper baths using dimensionally stable, inert anodes in the separation vessel in which Fe 2+ and Fe 3+ salts, preferably FeSO 4 / Fe, are used to maintain the concentration of the copper ions 2 (SO 4 ) 3 or Fe (NH 4 ) 2 (SO 4 ) 2 , or other salts are included. In principle, the invention can also be used for regulating the metal ion concentration in baths for the electrolytic deposition of other metals, for example zinc, nickel, chromium, tin, lead and their alloys with one another and with other elements, for example with phosphorus and / or boron Case, if appropriate, to use other substances of an electrochemically reversible redox system, wherein the redox system is selected depending on the respective deposition potential. For example, compounds of the elements titanium, cerium, vanadium, manganese, chromium can be used. Usable compounds are, for example, titanylsulfuric acid, cerium (IV) sulfate, alkali metal vanadate, manganese (II) sulfate and alkali chromate or dichromate.

    Das erfindungsgemäße Verfahren und die Vorrichtung sind besonders zur Anwendung in horizontalen Durchlaufanlagen zum Galvanisieren geeignet, in denen plattenförmiges Behandlungsgut, vorzugsweise Leiterplatten, in horizontaler oder vertikaler Lage und horizontaler Richtung linear fortbewegt und dabei mit der Elektrolytflüssigkeit in Kontakt gebracht werden. Das Verfahren kann natürlich auch zur Galvanisierung von Behandlungsgut in herkömmlichen Tauchanlagen eingesetzt werden, in die das Behandlungsgut meist in vertikaler Ausrichtung eingetaucht wird.The inventive method and apparatus are particularly applicable suitable for electroplating in horizontal flow systems in which plate-shaped material to be treated, preferably printed circuit boards, in horizontal or vertical position and horizontal direction linearly and thereby moving be brought into contact with the electrolyte liquid. The procedure can of course, also for the galvanization of material to be treated in conventional Diving facilities are used, in which the material to be treated mostly in vertical Orientation is immersed.

    Die Erfindung wird nachfolgend an Hand der Figuren näher erläutert. Es zeigen:

    Fig. 1:
    eine schematische Darstellung einer Anordnung zum Galvanisieren;
    Fig. 2:
    eine Darstellung des Metallionengenerators in einer ersten Ausführungsform im Querschnitt;
    Fig. 3:
    eine Darstellung des oberen Bereiches des Metallionengenerators in einer ersten Ausführungsform im Querschnitt;
    Fig. 4:
    eine Darstellung des Metallionengenerators in einer zweiten Ausführungsform im Querschnitt.
    The invention will be explained in more detail with reference to the figures. Show it:
    Fig. 1:
    a schematic representation of an arrangement for galvanizing;
    Fig. 2:
    a representation of the metal ion generator in a first embodiment in cross section;
    3:
    a representation of the upper portion of the metal ion generator in a first embodiment in cross section;
    4:
    a representation of the metal ion generator in a second embodiment in cross section.

    In Fig. 1 ist eine Anordnung zum Galvanisieren schematisch dargestellt, die einen Abscheidebehälter 1, einen Metallionengenerator 2 und einen Vorratsbehälter 3 aufweist. Der Abscheidebehälter 1 kann beispielsweise als Durchlaufanlage zur Behandlung von Leiterplatten ausgebildet sein, wobei vorzugsweise ein Sumpf vorgesehen ist, aus dem Elektrolytflüssigkeit zum Anschwallen, Anspritzen an die oder anderweitigen In-Kontakt-Bringen mit den Leiterplatten entnommen wird und nach dem Kontakt mit den Leiterplatten wieder zurückfließt. Der in Fig. 1 gezeigte Behälter 1 ist in diesem Falle der Sumpf.In Fig. 1 , an arrangement for electroplating is shown schematically, which has a separating vessel 1, a metal ion generator 2 and a reservoir 3 . The separation vessel 1 may be formed, for example, as a continuous system for the treatment of printed circuit boards, wherein preferably a sump is provided, is taken from the electrolyte liquid for swelling, spraying on or otherwise in contact Bring with the circuit boards and after contact with the circuit boards again flowing back. The container 1 shown in Fig. 1, the bottoms in this case.

    Die einzelnen Behälter sind mit der Elektrolytflüssigkeit gefüllt. Als Elektrolytflüssigkeit kann beispielsweise ein schwefelsaures Kupferbad eingesetzt werden, das Kupfersulfat, Schwefelsäure und Natriumchlorid sowie organische und anorganische Additive zur Steuerung der physikalischen Eigenschaften des abgeschiedenen Metalls enthält.The individual containers are filled with the electrolyte liquid. As electrolyte fluid For example, a sulphurous copper bath can be used, the copper sulfate, sulfuric acid and sodium chloride as well as organic and inorganic additives for controlling the physical properties of the contains deposited metal.

    Der Metallionengenerator 2 enthält eine Hilfsanode 20 und Metallstücke 30. Die Metallstücke 30 (nur ausschnittsweise dargestellt) ruhen als Schüttung auf einem Siebboden 31, der aus Titan hergestellt ist. Der Siebboden 31 und die Hilfsanode 20 sind über elektrische Zuleitungen 40,41 mit einer Gleichstromversorgung 50 verbunden. Der Siebboden 31 ist kathodisch gepolt und hierzu mit dem negativen Pol der Stromversorgung 50 verbunden. Die Hitfsanode 20 ist anodisch gepolt und mit dem positiven Pol der Stromversorgung 50 verbunden. Über den elektrischen Kontakt der Metallstücke 30 mit dem Siebboden 31 werden die Metallstücke 30 ebenfalls kathodisch polarisiert, so daß ein Stromfluß zwischen den Metallstücken 30 und der Hilfsanode 20 hergestellt wird. Zwischen dem die Hilfsanode 20 umgebenden Anodenraum 25 und dem Kathodenraum 35, in dem sich die Metallstücke 30 befinden, ist ein ionendurchlässiges Polypropylengewebe 21 eingespannt, um konvektiven Flüssigkeitsaustausch zwischen den Räumen 25 und 35 zu verhindern.The metal ion generator 2 includes an auxiliary anode 20 and metal pieces 30 . The metal pieces 30 (only partially shown) rest as a bed on a sieve bottom 31 , which is made of titanium. The sieve bottom 31 and the auxiliary anode 20 are connected via electrical supply lines 40,41 with a DC power supply 50 . The sieve bottom 31 is poled cathodically and for this purpose connected to the negative pole of the power supply 50 . The Hitfsanode 20 is poled anodically and connected to the positive pole of the power supply 50 . Via the electrical contact of the metal pieces 30 with the sieve bottom 31 , the metal pieces 30 are also cathodically polarized, so that a current flow between the metal pieces 30 and the auxiliary anode 20 is produced. Between the auxiliary anode 20 surrounding anode space 25 and the cathode space 35, in which the metal pieces 30 are located, an ion-permeable polypropylene fabric 21 is clamped to prevent convective fluid exchange between the spaces 25 and 35 .

    Der Abscheidebehälter 1 ist mit dem Vorratsbehälter 3 in einem ersten Flüssigkeitskreislauf verbunden: Elektrolytflüssigkeit wird im oberen Bereich des Abscheidebehälters 1 über die Rohrleitung 4 abgezogen und zum Vorratsbehälter 3 überführt. Beispielsweise kann die Flüssigkeit über ein Überlaufabteil aus dem Abscheidebehälter 1 abgezogen werden. Die im Vorratsbehälter 3 enthaltene Flüssigkeit wird im unteren Bereich des Behälters über eine Rohrleitung 5 mit einer Pumpe 6 abgezogen und über eine Filtereinheit 7, beispielsweise gewickelte Filterkerzen, geleitet. Die gefilterte Lösung wird über die Rohrleitung 8 in den Abscheidebehälter 1 zurückgeführt.The separation vessel 1 is connected to the reservoir 3 in a first fluid circuit: electrolyte liquid is withdrawn in the upper region of the separation vessel 1 via the pipe 4 and transferred to the reservoir 3 . For example, the liquid can be withdrawn from the separation tank 1 via an overflow compartment. The liquid contained in the reservoir 3 is withdrawn in the lower region of the container via a pipe 5 with a pump 6 and passed through a filter unit 7, for example, wound filter cartridges. The filtered solution is returned via the pipe 8 in the separation vessel 1 .

    Der Vorratsbehälter 3 ist ferner mit dem Metallionengenerator 2 über einen zweiten Flüssigkeitskreislauf verbunden: Flüssigkeit wird am Boden des Vorratsbehälters 3 über die Rohrleitung 9 abgeführt und im unteren Bereich unterhalb des Siebbodens 31 in den Metallionenbehälter 2 eingeleitet. Die Flüssigkeit wird über einen Überlauf im oberen Bereich des Kathodenraumes 35 aus dem Metallionengenerator 2 wieder abgezogen und über die Rohrleitung 10 in den Vorratsbehälter 3 zurückgeführt.The reservoir 3 is further connected to the metal ion generator 2 via a second fluid circuit: liquid is discharged at the bottom of the reservoir 3 via the pipe 9 and introduced in the lower region below the sieve bottom 31 in the metal ion container 2 . The liquid is withdrawn via an overflow in the upper region of the cathode chamber 35 from the metal ion generator 2 again and returned via the pipe 10 into the reservoir 3 .

    In Fig. 2 ist eine erste Ausführungsform des Metallionengenerators 2 im Querschnitt dargestellt. Der Metallionengenerator 2 besteht aus einem Rohrgehäuse 15, das beispielsweise aus Polypropylen besteht und das einen Boden 16 aufweist, ebenfalls beispielsweise aus Polypropylen. Das Rohrgehäuse 15 weist an der oberen Stirnseite eine Öffnung 17 auf. Im unteren Bereich des Rohrgehäuses 15 ist ein Flüssigkeitseinlaß 18 für die Elektrolytflüssigkeit vorgesehen. Im oberen Bereich ist in entsprechender Weise ein Flüssigkeitsauslaß 19 angeordnet. Der Querschnitt des Rohrgehäuses 15 ist vorzugsweise rechtekkig, quadratisch oder rund. 2 , a first embodiment of the metal ion generator 2 is shown in cross section. The metal ion generator 2 consists of a tube housing 15, which consists for example of polypropylene and which has a bottom 16 , also made of polypropylene, for example. The tubular housing 15 has an opening 17 on the upper end side. In the lower region of the tubular housing 15 , a liquid inlet 18 is provided for the electrolyte liquid. In the upper region, a liquid outlet 19 is arranged in a corresponding manner. The cross section of the tubular housing 15 is preferably rectangular, square or round.

    Im Metallionengenerator 2 befinden sich ein Anodenraum 25 und ein Kathodenraum 35. Der Anodenraum 25 und der Kathodenraum 35 sind durch eine Wand 24 und ein am unteren Rand der Wand 24 befestigtes ionendurchlässiges Gewebe 21 voneinander getrennt, in diesem Falle ein Polypropylengewebe. Dies ist im Detail in Fig. 3 dargestellt. Dadurch wird der konvektive Flüssigkeitsaustausch zwischen den beiden Räumen 25 und 35 weitgehend unterbunden. Die Wand 24 bildet eine obere Öffnung und ist am oberen stimseitigen Rand des Rohrgehäuses 15 befestigt (nicht dargestellt). In the metal ion generator 2 there are an anode chamber 25 and a cathode compartment 35. The anode compartment 25 and the cathode compartment 35 are separated from each other by a wall 24 and an ion-permeable fabric 21 fixed to the lower edge of the wall 24 , in this case a polypropylene fabric. This is shown in detail in Fig. 3 . As a result, the convective fluid exchange between the two chambers 25 and 35 is largely prevented. The wall 24 forms an upper opening and is fixed to the upper end edge of the tubular housing 15 (not shown).

    Im Anodenraum 25 ist die Hilfsanode 20 untergebracht. Im Kathodenraum 35 sind die Metallstücke 30 enthalten, in diesem Falle keine Phosphor enthattenden Kupferkugeln, beispielsweise mit einem Durchmesser von etwa 30 mm. Die Kupferkugeln 30 bilden eine Schüttung, die auf einem Titansieb 31 im unteren Bereich des Rohrgehäuses 15 ruht. Die Hilfsanode 20 ist an den positiven Pol und der Siebboden 31 an den negativen Pol einer Gleichstromversorgung angeschlossen. Die Verschraubungsstelle 38 für die anodische Stromzuleitung von der Gleichspannungsquelle zur Hilfsanode 20 und die kathodische Verschräubungsstelle 39 für die Stromleitung zum Siebboden 31 sind in Fig. 3 schematisch dargestellt. In diesem Falle sind die elektrischen Zuführungen für den Siebboden 31 nach oben aus dem Metallionengenerator 2 isoliert herausgeführt.In the anode compartment 25 , the auxiliary anode 20 is housed. In the cathode compartment 35 , the metal pieces 30 are included, in this case no phosphorus-containing copper balls, for example with a diameter of about 30 mm. The copper balls 30 form a bed which rests on a titanium sieve 31 in the lower region of the tubular housing 15 . The auxiliary anode 20 is connected to the positive pole and the sieve bottom 31 to the negative pole of a DC power supply. The Verschraubungsstelle 38 for the anodic current supply from the DC voltage source to the auxiliary anode 20 and the cathodic Verschräubungsstelle 39 for the power line to the sieve bottom 31 are shown schematically in Fig. 3 . In this case, the electrical feeds for the sieve bottom 31 are led out of the top of the metal ion generator 2 isolated.

    Das Rohr 9 führt über den Flüssigkeitseinlaß 18 in den Metallionengenerator 2. Der Flüssigkeitseinlaß 18 ist unterhalb des Siebes 31 vorgesehen. Das Sieb verhindert, daß Metallstücke oder Schlamm das Rohr 9 verstopfen können. Der Metallionengenerator 2 ist ferner am Flüssigkeitsauslaß 19 mit dem Rohr 10 verbunden. Der Flüssigkeitsauslaß 19 ist im oberen Bereich des Metallionengenerators 2 angeordnet. Um zu gewährleisten, daß der Metallionengenerator 2 stets bis zum Flüssigkeitsniveau 22 gefüllt ist, wird der Flüssigkeitsauslaß 19 als aus dem Rohrgehäuse 15 herausführende Rohrleitung 10 ausgebildet, die eine Austrittsöffnung 11 im oberen Bereich des Kathodenraumes 35 aufweist. Die Elektrolytflüssigkeit kann durch die Austrittsöffnung 11 aus dem Kathodenraum 35 in die Rohrleitung 10 austreten. Diese Austrittsöffnung 11 ist oberhalb des Niveaus der Hilfsanode 20 angeordnet, um zu gewährleisten, daß sich die Hilfsanode 20 stets innerhalb der Flüssigkeit befindet.The tube 9 leads via the liquid inlet 18 into the metal ion generator 2. The liquid inlet 18 is provided below the sieve 31 . The sieve prevents metal pieces or sludge from clogging the tube 9 . The metal ion generator 2 is further connected to the tube 10 at the liquid outlet 19 . The liquid outlet 19 is arranged in the upper region of the metal ion generator 2 . In order to ensure that the metal ion generator 2 is always filled up to the liquid level 22 , the liquid outlet 19 is formed as out of the pipe housing 15 leading pipe 10 having an outlet opening 11 in the upper region of the cathode space 35 . The electrolyte liquid can exit through the outlet opening 11 from the cathode chamber 35 into the pipe 10 . This exit opening 11 is located above the level of the auxiliary anode 20 to ensure that the auxiliary anode 20 is always within the liquid.

    Die vom Vorratsbehälter 3 oder direkt vom Abscheidebehälter 1 kommende Elektrolytflüssigkeit, die neben Kupferionen auch an der Hauptanode gebildete Fe3+-Ionen und gegebenenfalls zusätzlich Fe2+-Ionen enthält, wird über den Flüssigkeitseinlaß 18 in den Metallionengenerator 2 gepumpt. Die Flüssigkeit tritt dann in Richtung des Pfeiles 23 durch den Siebboden 31 hindurch in den Kathodenraum 35 ein, in dem sich die Kupferkugeln 30 befinden. Durch Reaktion der Fe3+-Ionen mit dem Kupfer werden Cu2+-Ionen gebildet, wobei gleichzeitig Fe2+-Ionen entstehen. Die Bildungsrate der Kupferionen kann durch kathodische Polarisierung der Kupferkugeln 30 über den Siebboden 31 reguliert werden: Durch Erhöhen des kathodischen Potentials an den Kupferkugeln 30 wird die Bildungsrate der Cu2+-Ionen zurückgedrängt. Die mit Cu2+-Ionen angereicherte Lösung tritt im oberen Bereich des Kathodenraumes 35 durch die Öffnung 11 über den Flüssigkeitsauslaß 19 aus dem Metallionengenerator 2 wieder aus. Durch Anlegen eines kathodischen Potentials an den Siebboden 31 und damit an die Kupferkugeln 30 und eines anodischen Potentials an die Hilfsanode 20 im Anodenraum 25 wird die elektrochemische Reaktion ermöglicht. Das im Anodenraum 25 enthaltene Wasser der Elektrolytflüssigkeit wird anodisch zu Sauerstoff oxidiert, das aus dem oberen Bereich des Metallionengenerators 2 durch die Öffnung 17 austritt. Gegebenenfalls werden auch noch im Anodenraum 25 enthaltene Fe2+-Ionen an der Hilfsanode 20 oxidiert. Da der Flüssigkeitsaustausch zwischen dem Kathodenraum 35 und dem Anodenraum 25 durch die Abtrennung 21,24 stark behindert wird, verarmen die Fe2+-Ionen im Anodenraum 25, so daß deren Konzentration im stationären Betrieb nahe Null ist.Coming from the reservoir 3 or directly from the separation vessel 1 electrolyte liquid containing in addition to copper ions also formed on the main anode Fe 3+ ions and optionally additionally contains Fe 2+ ions is pumped through the liquid inlet 18 into the metal ion generator 2 . The liquid then enters in the direction of the arrow 23 through the sieve bottom 31 into the cathode space 35 , in which the copper balls 30 are located. By reaction of the Fe 3+ ions with the copper, Cu 2+ ions are formed, at the same time Fe 2+ ions are formed. The rate of formation of the copper ions can be regulated by cathodic polarization of the copper balls 30 via the sieve bottom 31 : By increasing the cathodic potential on the copper balls 30 , the rate of formation of the Cu 2+ ions is suppressed. The enriched with Cu 2+ ions solution occurs in the upper region of the cathode chamber 35 through the opening 11 via the liquid outlet 19 from the metal ion generator 2 again. By applying a cathodic potential to the sieve bottom 31 and thus to the copper balls 30 and an anodic potential to the auxiliary anode 20 in the anode compartment 25 , the electrochemical reaction is made possible. The water of the electrolyte liquid contained in the anode chamber 25 is anodically oxidized to oxygen, which exits from the upper portion of the metal ion generator 2 through the opening 17 . Optionally, Fe 2+ ions contained in the anode space 25 are also oxidized on the auxiliary anode 20 . Since the fluid communication between the cathode chamber 35 and anode chamber 25 is greatly hindered by the separation 21,24 which deplete Fe 2+ ions in the anode compartment 25 so that their concentration in the steady-state operation is close to zero.

    In Fig. 4 ist eine zweite Ausführungsform des erfindungsgemäßen Metallionengenerators 2 dargestellt. Der Metallionengenerator 2 ist in diesem Falle ein Behälter mit Seitenwänden 15, die einen rechteckigen, quadratischen oder runden Grundriß des Metallionengenerators 2 bilden. Der Behälter weist außerdem einen Boden 16 auf. Die Wände 15 und der Boden 16 bestehen aus Polypropylen. Nach oben bildet der Metallionengenerator 2 eine Öffnung 17. FIG. 4 shows a second embodiment of the metal ion generator 2 according to the invention. The metal ion generator 2 in this case is a container with side walls 15 which form a rectangular, square or round outline of the metal ion generator 2 . The container also has a bottom 16 . The walls 15 and the bottom 16 are made of polypropylene. At the top, the metal ion generator 2 forms an opening 17.

    Der Metallionengenerator 2 weist wiederum einen Kathodenraum 35 und einen Anodenraum 25 auf. Die Räume 25 und 35 sind ferner durch eine ionendurchlässige Wand 21 voneinander getrennt, in diesem Falle eine Ionenaustauschermembran, vorzugsweise eine Anionenaustauschermembran, die senkrecht angeordnet ist. Ferner ist eine gelochte Wand 26 vorgesehen, die der Membran die nötige Stabilität verleiht.The metal ion generator 2 in turn has a cathode space 35 and an anode space 25 . The spaces 25 and 35 are further separated by an ion-permeable wall 21, in this case an ion exchange membrane, preferably an anion exchange membrane, which is arranged vertically. Further, a perforated wall 26 is provided, which gives the membrane the necessary stability.

    Im Kathodenraum 35 ist im unteren Bereich ein Siebboden 31 angeordnet, der durch ein Titannetz gebildet wird. Auf dem Siebboden 31 ruht eine Schüttung von Metallstücken 30 (nur ausschnittsweise dargestellt), hier Kupferkugeln mit einem Durchmesser von etwa 30 mm. Im Anodenraum ist eine Hilfsanode 20 untergebracht. Die Hilfsanode 20 ist an den positiven Pol und der Siebboden 31 an den negativen Pol einer Gleichstromversorgung angeschlossen (nicht dargestellt).In the cathode compartment 35 , a sieve bottom 31 is arranged in the lower region, which is formed by a titanium mesh. On the sieve bottom 31 rests a bed of metal pieces 30 (only partially shown), here copper balls with a diameter of about 30 mm. An auxiliary anode 20 is accommodated in the anode compartment. The auxiliary anode 20 is connected to the positive pole and the sieve bottom 31 to the negative pole of a DC power supply (not shown).

    Die Elektrolytflüssigkeit kann durch den unteren Flüssigkeitseinlaß 18 in den Metallionengenerator 2 eintreten. Der Flüssigkeitseinlaß 18 ist unterhalb des Siebbodens 31 angeordnet. Flüssigkeit kann über einen oberen Flüssigkeitsauslaß 19 aus dem Metallionengenerator 2 wieder austreten. Der Auslaß 19 ist im oberen Bereich des Kathodenraumes 35 angeordnet.The electrolyte liquid may enter the metal ion generator 2 through the lower liquid inlet 18 . The liquid inlet 18 is arranged below the sieve bottom 31 . Liquid can exit via an upper liquid outlet 19 from the metal ion generator 2 again. The outlet 19 is arranged in the upper region of the cathode space 35 .

    Die Funktionsweise des Metallionengenerators 2 in dieser Ausführungsform entspricht der der ersten Ausführungsform in den Fig. 2 und 3. Insoweit wird auf die vorstehenden Erklärungen Bezug genommen. The operation of the metal ion generator 2 in this embodiment is the same as that of the first embodiment in Figs. 2 and 3. In this regard, reference is made to the above explanations.

    Bezugsziffernliste:List of reference numerals:

    11
    Abscheidebehälterseparating vessel
    22
    MetallionengeneratorMetal ion generator
    33
    Vorratsbehälterreservoir
    4,5,8,9,104,5,8,9,10
    Rohrleitungenpiping
    66
    Pumpepump
    77
    Filtereinheitfilter unit
    1111
    Austrittsöffnungoutlet opening
    1515
    Rohrgehäuse des Metallionengenerators 2 Tube housing of the metal ion generator 2
    1616
    Boden des Metallionengenerators 2 Bottom of the metal ion generator 2
    1717
    stirnseitige obere Öffnung des Metallionengenerators 2 front-side upper opening of the metal ion generator second
    1818
    Flüssigkeitseinlaß in den Metallionengenerator 2 Liquid inlet into the metal ion generator 2
    1919
    Flüssigkeitsauslaß aus dem Metallionengenerator 2 Liquid outlet from the metal ion generator 2
    2020
    Hilfsanodeauxiliary anode
    2121
    ionendurchlässiges Mittel (Gewebe)ion-permeable agent (tissue)
    2222
    Flüssigkeitsniveauliquid level
    2323
    Strömungsrichtung der ElektrolytflüssigkeitFlow direction of the electrolyte liquid
    2424
    Wand zur Trennung des Anodenraumes 25 vom Kathodenraum 35 Wall for separating the anode compartment 25 from the cathode compartment 35
    2525
    Anodenraumanode chamber
    2626
    perforierte Trennwandperforated partition
    3030
    Metallstücke, KupferkugelnPieces of metal, copper balls
    3131
    Siebboden, TitannetzSieve bottom, titanium net
    3535
    Kathodenraumcathode space
    3838
    elektrischer Kontakt zur Stromzuführung zur Hilfsanode 20 electrical contact to the power supply to the auxiliary anode 20th
    3939
    elektrischer Kontakt zur Stromzuführung zum Siebboden 31 electrical contact to the power supply to the sieve bottom 31st
    4040
    elektrische Zuleitung zur Hilfsanode 20 electrical supply to the auxiliary anode 20th
    4141
    elektrische Zuleitung zum Siebboden 31 electrical supply to the sieve bottom 31
    5050
    Stromversorgung, GleichstromquellePower supply, DC source

    Claims (23)

    1. Method for regulating the concentration of metal ions in an electrolyte fluid used for the electrolytic deposition of metal and additionally containing substances of an electrochemically reversible redox system in an oxidised and in a reduced form, in which at least a portion of the electrolyte fluid is led through at least one auxiliary cell, each having at least one insoluble auxiliary anode and at least one auxiliary cathode between which a flow of current is generated by the application of a voltage,
      characterised in that
      pieces of the metal (30) to be deposited are used as at least one auxiliary cathode.
    2. Method according to claim 1, characterised in that anode spaces (25), which surround the auxiliary anodes (20), and cathode spaces (35), which surround the metal pieces (30), are separated from one another by means (21) which are at least partially permeable by ions.
    3. Method according to one of the preceding claims, characterised in that inert metal electrodes which have been activated with precious metals and/or mixed oxides are used as insoluble auxiliary anodes (20).
    4. Method according to one of the preceding claims, characterised in that the metal pieces (30) are used in the form of balls.
    5. Method according to one of the preceding claims, characterised in that the ratio of the surface of the metal pieces (30) to the surface of the at least one auxiliary anode (20) is set to a value of at least 4:1.
    6. Method according to one of the preceding claims, characterised in that the auxiliary cell (2) is in the form of a tubular metal ion generator and in that the at least one auxiliary anode (20) is arranged above the metal pieces (30).
    7. Method according to one of claims 1 to 5, characterised in that the auxiliary cell (2) is in the form of a metal ion generator and is vertically divided into an anode space (25) and a cathode space (35), the metal pieces (30) being arranged in the cathode space (35) and the at least one auxiliary anode (20) being arranged in the anode space (25).
    8. Method according to one of the preceding claims, characterised in that current is supplied to the metal pieces (30) via a sieve-shaped electrode (31).
    9. Method according to one of the preceding claims, characterised in that the at least partially ion-permeable means (21) is in the form of a woven cloth which is permeable by liquid.
    10. Method according to one of claims 1 to 8, characterised in that an ion exchange membrane is used as the ion-permeable means (21).
    11. Apparatus for the electrolytic deposition of metal which has an electrolyte fluid containing metal ions and additionally substances of an electrochemically reversible redox system in an oxidised and a reduced form, comprising
      I. an electroplating system having at least one main anode and
      II. at least one auxiliary cell which is in fluid connection with the electroplating system and comprises respectively
      a. at least one insoluble auxiliary anode,
      b. at least one auxiliary cathode comprising pieces of the metal (30)which is to be deposited, as well as
      c. at least one power supply for generating a flow of current between the at least one auxiliary anode and the at least one auxiliary cathode,
         characterised in that the main anode is insoluble.
    12. Apparatus according to claim 11, characterised in that at least partially ion-permeable means (21) are provided which separate from each other anode spaces (25), which surround the auxiliary anodes (20), and cathode spaces (35) which may be filled with the metal pieces (30).
    13. Apparatus according to one of claims 11 and 12, characterised in that the insoluble auxiliary anodes (20) are inert metal electrodes which have been activated with precious metals and/or mixed oxides.
    14. Apparatus according to one of claims 11 to 13, characterised in that the metal pieces (30) are metal balls.
    15. Apparatus according to one of claims 11 to 14, characterised in that the ratio of the surface of the metal pieces (30) to the surface of the at least one auxiliary anode (20) is at least 4:1.
    16. Apparatus according to one of claims 11 to 15, characterised in that the apparatus (2) is in the form of a tubular metal ion generator and in that the at least one auxiliary anode (20) is arranged above a space containing the metal pieces (30).
    17. Apparatus according to one of claims 11 to 15, characterised in that the apparatus (2) is vertically divided into the anode space (25) and the cathode space (35), the metal pieces (30) being able to be filled into the cathode space (35) and the at least one auxiliary anode (20) being arranged in the anode space (25).
    18. Apparatus according to one of claims 11 to 17, characterised in that a sieve-shaped electrode (31) is arranged in the cathode space (25) in such a way that current can be supplied to the metal pieces (30) via this electrode (31).
    19. Apparatus according to claim 18, characterised in that the sieve-shaped electrode (31) is arranged in the lower portion of the cathode space (35) in such a way that the metal pieces (30) can rest on it.
    20. Apparatus according to one of claims 11 to 19, characterised in that the at least partially ion-permeable means (21) is in the form of a woven cloth which is permeable by liquid.
    21. Apparatus according to one of claims 11 to 19, characterised in that the at least partially ion-permeable means (21) is an ion exchange membrane.
    22. Application of the method according to one of claims 1 to 10 for regulating the concentration of copper ions in a copper deposition solution used for the electrolytic deposition of copper and additionally containing Fe(II) and Fe(III) compounds.
    23. Use of the apparatus according to one of claims 11 to 21 for regulating the concentration of copper ions in a copper deposition solution used for the electrolytic deposition of copper and additionally containing Fe(II) and Fe(III) compounds.
    EP01915052A 2000-03-17 2001-02-23 Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof Expired - Lifetime EP1264010B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10013339A DE10013339C1 (en) 2000-03-17 2000-03-17 Process for regulating the concentration of metal ions in an electrolyte liquid comprises feeding part of the liquid through an auxiliary cell consisting of an insoluble auxiliary anode and an auxiliary cathode
    DE10013339 2000-03-17
    PCT/DE2001/000748 WO2001068953A1 (en) 2000-03-17 2001-02-23 Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof

    Publications (2)

    Publication Number Publication Date
    EP1264010A1 EP1264010A1 (en) 2002-12-11
    EP1264010B1 true EP1264010B1 (en) 2005-06-01

    Family

    ID=7635321

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01915052A Expired - Lifetime EP1264010B1 (en) 2000-03-17 2001-02-23 Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof

    Country Status (17)

    Country Link
    US (1) US6899803B2 (en)
    EP (1) EP1264010B1 (en)
    JP (1) JP4484414B2 (en)
    KR (1) KR100740817B1 (en)
    CN (1) CN1263900C (en)
    AT (1) ATE296910T1 (en)
    AU (1) AU4227801A (en)
    BR (1) BR0109167B1 (en)
    CA (1) CA2391038A1 (en)
    DE (2) DE10013339C1 (en)
    DK (1) DK1264010T3 (en)
    ES (1) ES2242737T3 (en)
    HK (1) HK1048145B (en)
    MX (1) MXPA02008974A (en)
    MY (1) MY127759A (en)
    TW (1) TW557332B (en)
    WO (1) WO2001068953A1 (en)

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003038158A2 (en) * 2001-10-25 2003-05-08 Infineon Technologies Ag Electroplating device and electroplating system for coating already conductive structures
    KR100861698B1 (en) * 2006-03-30 2008-11-11 삼두주식회사 Metal powder producing apparatus and method to produce metal powder
    US7759124B2 (en) * 2007-06-16 2010-07-20 Crown Packaging Technology, Inc. Blancher with automated process control
    JP4957906B2 (en) * 2007-07-27 2012-06-20 上村工業株式会社 Continuous electrolytic copper plating method
    EP2194165A1 (en) * 2008-10-21 2010-06-09 Rohm and Haas Electronic Materials LLC Method for replenishing tin and its alloying metals in electrolyte solutions
    US9404194B2 (en) 2010-12-01 2016-08-02 Novellus Systems, Inc. Electroplating apparatus and process for wafer level packaging
    KR101067694B1 (en) * 2011-05-20 2011-09-27 주식회사 삼원알텍 Copper eleminating system for anodizing treatment of metal
    KR101311274B1 (en) 2011-08-05 2013-09-25 주식회사 삼원알텍 Copper eleminating system for Anodizing Treatment of Metal
    US9534308B2 (en) 2012-06-05 2017-01-03 Novellus Systems, Inc. Protecting anodes from passivation in alloy plating systems
    KR20140034529A (en) * 2012-09-12 2014-03-20 삼성전기주식회사 Electro-copper plating apparatus
    US11180387B2 (en) 2013-06-24 2021-11-23 Thought Preserve, Llc Voltage-controlled, hydrodynamically isolated, ion-generation apparatus and method
    US10011505B2 (en) * 2013-06-24 2018-07-03 Thought Preserve, Llc Hydrodynamically isolated, ion-generator apparatus and method
    WO2016147709A1 (en) 2015-03-13 2016-09-22 奥野製薬工業株式会社 Electrolytic stripping agent for jig
    US10227707B2 (en) 2015-07-17 2019-03-12 Applied Materials, Inc. Inert anode electroplating processor and replenisher
    TWI615363B (en) * 2016-04-08 2018-02-21 科閎電子股份有限公司 Method for decreasing the concentration of at least one contamination cation in an electrolytic solution
    EP3875638A1 (en) * 2020-03-04 2021-09-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Method for preparing a medium containing foreign metal and metal salt from printed circuit board and / or substrate production
    KR102330351B1 (en) * 2021-07-23 2021-11-23 정채호 Supplying apparatus of balls for plating
    EP4339165A1 (en) * 2022-09-16 2024-03-20 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Separating a foreign metal from a process fluid, method and apparatus
    EP4400634A1 (en) 2023-01-13 2024-07-17 Atotech Deutschland GmbH & Co. KG Process for producing copper foil by electrolytic deposition of copper
    JP2024131366A (en) * 2023-03-16 2024-09-30 ユケン工業株式会社 Zinc melting method and zinc melting device

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA1062651A (en) * 1976-05-11 1979-09-18 Anthony P. Holko Process and apparatus for electrowinning metal from metal bearing solutions
    DD215589B5 (en) * 1983-05-11 1994-06-01 Heinz Dr Rer Nat Liebscher Process for electrolytic metal deposition in forced convection
    DD261613A1 (en) * 1987-06-05 1988-11-02 Leipzig Galvanotechnik METHOD FOR ELECTROLYTIC COPPER SEPARATION FROM ACID ELECTROLYTES WITH DIMENSION STABILIZED ANODE
    GB8921439D0 (en) 1989-09-22 1989-11-08 Electricity Council Improvements in or relating to the electrodeposition of zinc or zinc alloy coatings
    JPH04191394A (en) 1990-11-26 1992-07-09 Furukawa Electric Co Ltd:The Production of copper coated steel wire
    DE4344387C2 (en) 1993-12-24 1996-09-05 Atotech Deutschland Gmbh Process for the electrolytic deposition of copper and arrangement for carrying out the process
    DE19736350C1 (en) * 1997-08-21 1999-08-05 Atotech Deutschland Gmbh Process for regulating the concentration of substances in electrolytes and device for carrying out the process

    Also Published As

    Publication number Publication date
    DK1264010T3 (en) 2005-08-29
    MY127759A (en) 2006-12-29
    KR100740817B1 (en) 2007-07-19
    BR0109167A (en) 2002-11-26
    CN1418265A (en) 2003-05-14
    CN1263900C (en) 2006-07-12
    EP1264010A1 (en) 2002-12-11
    MXPA02008974A (en) 2003-04-25
    CA2391038A1 (en) 2001-09-20
    HK1048145B (en) 2005-07-29
    ES2242737T3 (en) 2005-11-16
    US6899803B2 (en) 2005-05-31
    WO2001068953A1 (en) 2001-09-20
    DE50106389D1 (en) 2005-07-07
    DE10013339C1 (en) 2001-06-13
    US20030000842A1 (en) 2003-01-02
    AU4227801A (en) 2001-09-24
    HK1048145A1 (en) 2003-03-21
    BR0109167B1 (en) 2011-06-14
    ATE296910T1 (en) 2005-06-15
    JP4484414B2 (en) 2010-06-16
    KR20020084086A (en) 2002-11-04
    TW557332B (en) 2003-10-11
    JP2003527490A (en) 2003-09-16

    Similar Documents

    Publication Publication Date Title
    EP1264010B1 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
    DE4344387C2 (en) Process for the electrolytic deposition of copper and arrangement for carrying out the process
    DE2437273C2 (en)
    DE2523950A1 (en) ELECTROCHEMICAL DEVICE AND ITS USE
    DE2316124A1 (en) METHOD AND DEVICE FOR REDUCING THE CONCENTRATION OF ANODIC OXIDIZABLE COMPOUNDS
    EP0638664A1 (en) Process and apparatus for regenerating solutions containing metal ions and sulfuric acid
    DE10025551C2 (en) Cathode for the electrochemical regeneration of permanganate etching solutions, process for their preparation and electrochemical regeneration device
    DE10326767B4 (en) A method of regenerating ferrous etchant solutions for use in etching or pickling copper or copper alloys, and an apparatus for performing the same
    DE2523117A1 (en) METHOD AND DEVICE FOR REGENERATING A PAPER SOLUTION
    DE102004026447B4 (en) Process and apparatus for separating sulfate ions from waters and for introducing buffer capacity into waters
    DE19736350C1 (en) Process for regulating the concentration of substances in electrolytes and device for carrying out the process
    DE69203600T3 (en) ELECTRODE FOR AN ELECTROLYTIC CELL, THEIR USE AND METHOD.
    WO1997015704A2 (en) Electroplating plant
    DE102007010408A1 (en) Electrolytic recovery of pure copper sulfate solution from impure process solution, deposits copper on cathode, replaces process solution with pure sulfuric acid, then reverses current
    DE102009039290A1 (en) Method for oxidation anodic treatment of electrically conductive, natural water and/or aqueous solution, comprises pressing a perforated structure in a cell housing on a cation exchanger membrane and a porous cathode plate
    DE69104166T2 (en) ELECTROLYSIS CELL FOR WASTEWATER TREATMENT.
    DE102005027735A1 (en) Electrochemical cell for the electrolysis of hydrogen chloride in solution has a gas outlet with intermediate closure to liquid collection container
    DE102021002197A1 (en) Device and method for coating a component or semi-finished product with a chromium layer
    DE102009004155A1 (en) Process and apparatus for regenerating peroxodisulfate pickling solutions
    DE19850318C2 (en) Process for the electrochemical oxidative degradation of organic compounds
    DE2929305C2 (en) Process and device for the continuous electrodeposition of manganese on steel
    DE4218843C2 (en) Process for the regeneration of an ammoniacal etchant and device for carrying out this process
    DE4218916C2 (en) Use of a grid anode for electrolytic detoxification or regeneration of an aqueous solution containing cyanide
    DE4229917C1 (en) Electrolytic bath for meter coating - has sec. anode contg. alkaline or ammonium soln. with acid added to electrolyte to compensate for pH rise
    DE2703456A1 (en) SOLDER ELECTROLYSIS DEVICE WITH MERCURY CATHOD

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020617

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20040521

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050601

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 50106389

    Country of ref document: DE

    Date of ref document: 20050707

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REG Reference to a national code

    Ref country code: HK

    Ref legal event code: GR

    Ref document number: 1048145

    Country of ref document: HK

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050901

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051107

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2242737

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20060302

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20070113

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20070115

    Year of fee payment: 7

    Ref country code: NL

    Payment date: 20070115

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20070117

    Year of fee payment: 7

    BERE Be: lapsed

    Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050601

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20080223

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20080901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080901

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080229

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080223

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20100222

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100223

    Year of fee payment: 10

    Ref country code: FI

    Payment date: 20100215

    Year of fee payment: 10

    Ref country code: FR

    Payment date: 20100226

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106389

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110228

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20120411

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110224

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20200220

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20200219

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50106389

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 296910

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20210223