EP0638664A1 - Process and apparatus for regenerating solutions containing metal ions and sulfuric acid - Google Patents

Process and apparatus for regenerating solutions containing metal ions and sulfuric acid Download PDF

Info

Publication number
EP0638664A1
EP0638664A1 EP94107412A EP94107412A EP0638664A1 EP 0638664 A1 EP0638664 A1 EP 0638664A1 EP 94107412 A EP94107412 A EP 94107412A EP 94107412 A EP94107412 A EP 94107412A EP 0638664 A1 EP0638664 A1 EP 0638664A1
Authority
EP
European Patent Office
Prior art keywords
anolyte
sulfuric acid
ions
cathode
catholyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94107412A
Other languages
German (de)
French (fr)
Inventor
Lothar Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Deutschland GmbH
Original Assignee
Heraeus Elektrochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Elektrochemie GmbH filed Critical Heraeus Elektrochemie GmbH
Publication of EP0638664A1 publication Critical patent/EP0638664A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/36Regeneration of waste pickling liquors

Definitions

  • the invention relates to a process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, in particular a solution containing zinc ions, nickel ions, iron ions and / or copper ions, in an electrolytic cell, the metal ions being deposited on the surface of the cathode and on the anode by water decomposition Oxygen and protons are formed and regenerated solution can be fed back to an upstream pickling process or extraction process, and a device.
  • Such a direct regeneration of a zinc chloride solution is known from DE-OS 25 39 137, according to which the chloride ion-containing solution is introduced into a cathode chamber of an electrolysis cell, which is divided into 3 chambers, namely an anode chamber, a cathode chamber and an electrolyte chamber arranged between them ; the anode chamber is bounded by a porous diaphragm of low permeability, which separates the anolyte from the electrolyte, the anolyte containing sulfuric acid.
  • the anions of the anolyte have an oxidation potential that is high enough to ensure that essentially only the decomposition of water at the anode takes place under operating conditions, while the cathode chamber is surrounded by a relatively high permeability through a diaphragm.
  • the anolyte has a substance capable of combining with the chloride ions entering the anode chamber so as to prevent oxidation of chloride ions at the anode.
  • the liquid level of the anolyte is kept, if necessary, by anolyte tracking so that the liquid level is above the liquid level of the neighboring electrolyte, in order to maintain the desired flow rate through the diaphragm to achieve the technical purposes.
  • the anolyte contains a silver sulfate additive in order to ensure the precipitation of the chloride as silver chloride.
  • a problem with this arrangement is the comparatively complex division of the electrolyte space into 3 chambers and the use of diaphragms, the permeability of which can change significantly in the course of the electrolytic process.
  • Other problems include the addition of chemicals to silver sulfate, the formation of silver chloride and its removal from the cell, and the risk of diaphragm blockages due to silver chloride precipitation.
  • EP-OS 0 435 382 discloses an electrolysis process for the treatment of old stains containing metal ions; there are cathode and anode compartments separated from each other by an anion exchange membrane, the anode compartment being filled with demetallized oxidizable or non-oxidizable pickling solution and the freely selectable potential of the cathode or anode being kept constant by means of a potential-controlled rectifier via a reference electrode; the metal ions are deposited on the cathode and the regenerated acid concentrated in the anode compartment is returned to the pickling bath.
  • EP-OS 0 435 382 does not provide any information on the treatment of a solution containing a metal ion with a sulfuric acid concentration, such as is in practice for example in the range from 60 to 80 g / l for a pickling solution to be regenerated.
  • the invention has for its object to provide a method by which sulfuric acid pickling or extraction solutions heavily contaminated with metal ions can be largely de-metallized, while at the same time a pure, highly concentrated sulfuric acid is to be obtained.
  • the cathodic deposition of hydrogen as can occur in particular in aqueous solutions with a relatively low metal ion concentration, should be avoided with certainty.
  • the process is to be used as an intermediate stage of a chlorine gas-free regeneration of pickling or extraction solutions.
  • a device for the regeneration of an aqueous solution containing metal ions and sulfuric acid in an electrolytic cell having at least one anode and one cathode each is to be specified, the electrolytic cell being divided into an anolyte space and a catholyte space by means of an ion exchange membrane, and the catholyte space having at least one opening for supply and removal of the solution containing metal ions and the anolyte space has at least one opening for the supply and removal of the regenerated solution.
  • the invention is achieved in that the solution containing metal ions is introduced as an anolyte with a sulfuric acid concentration in the range of 60-80 g / l into an electrolysis cell subdivided using a cation exchange membrane which is stable to sulfuric acid, and in that the cathodic deposition is carried out at a current density in the range of 50 up to 2500 A / m2, where cations as metal ions and hydrogen ions from the anolyte migrate and are discharged through the cation exchange membrane due to the voltage applied to the electrodes in the catholyte, the sulfuric acid concentration in the anolyte being constantly increased by anodic proton formation.
  • the concentrated sulfuric acid is removed from the anolyte.
  • a major advantage of the process is that the concentrated sulfuric acid can be returned to the pickling or extraction process as a fresh solution component in the manner of a cycle and that the cathodically deposited metal can also be recycled.
  • the process can be carried out either batchwise or continuously, with a solution being supplied as catholyte in batch operation, the sulfuric acid concentration of which corresponds in each case to the initial concentration of the anolyte; on the other hand, if the solution is continuously supplied as a catholyte, its sulfuric acid concentration must generally always be below the sulfuric acid concentration of the anolyte.
  • the cathode is removed from the catholyte space after reaching a predetermined layer thickness of the metal deposit; however, it is also possible to mechanically separate the metal deposition from the cathode and to remove the granules thus obtained from the cell.
  • the ion exchange membrane is designed as a cation exchange membrane and is stable to sulfuric acid and that metal deposited on the cathode can be removed from the cell.
  • the method according to the invention is preferably used as a subsequent method step in a pickling or extraction process in which in a first process step, a solution containing chloride ions is converted into a solution containing sulfate ions by means of ion exchange processes.
  • a major advantage of the invention is the fact that the metal can be separated from a sulfate solution containing metal ions in a simple, inexpensive manner, the sulfuric acid of the anolyte being concentrated in the form of a cycle, which in turn is used to continue the regeneration process .
  • the electrolysis device has a trough 1, the interior of which is divided into a catholyte space 3 and an anolyte space 4 by means of a cation exchange membrane 2.
  • the anode 8 located in the anolyte compartment 4 consists of a dimensionally stable valve metal electrode, in particular a titanium electrode, which is connected to the positive pole 10 of a DC voltage source 7.
  • the basic structure of such dimensionally stable valve metal electrodes, in particular titanium electrodes, is known from chloralkali electrolysis and is described, for example, in DE-OS 20 41 250.
  • the cathode 5 located in the catholyte chamber 3 is made of expanded copper, it is connected to the negative pole 6 of the DC voltage source 7 via a detachable electrical connection 9.
  • aqueous sulfuric acid solution which is fed in at the beginning of the process via feed line 11 to produce the ion line, water possibly being added during the electrolysis process and the additionally formed sulfuric acid being able to be removed via outlet 12 of the catholyte chamber 3 and the regeneration process, for example, one Pickling process can be fed again.
  • the sulfate solution containing zinc ions is fed, for example, continuously via feed line 15 to the anolyte compartment 4, the sulfuric acid concentration in practice the anolyte corresponds at most to that of the catholyte; the sulfuric acid concentration of the anolyte is in the range of 70 g / l.
  • the electrolysis process begins, the charge being transported by applying the voltage source 7 during the electrolysis through the ion exchange membrane 2 by means of the cations, which are symbolically designated by reference number 13.
  • the zinc ions are symbolically provided with reference number 14 and are discharged at the cathode 5, metallic zinc being deposited.
  • a decomposition of water takes place in the anolyte compartment 4, the oxygen being removed as gas from the open trough 1 and the hydrogen ions being recombined together with the sulfate ions to form sulfuric acid, which is concentrated in the course of the electrolysis process and discharged via outlet 16 to the pickling process.
  • the setting of the sulfuric acid concentration of the catholyte is carried out with the aid of pH-meters and a control circuit which maintains the predetermined sulfuric acid concentration or adjusts the sulfuric acid concentration of the catholyte by removing the concentrated sulfuric acid and supplying water via line 11.
  • the anolyte supplied as a pickling solution has a zinc ion concentration of approx.
  • the cathode 5 is made in the form of a copper-titanium or VA steel expanded metal, while the anode 8 consists of the dimensionally stable titanium anode already mentioned.
  • Zinc is applied to the cathode 5 in a compact deposition quality; however, it is also possible to separate the zinc in a dendrite deposition and then remove it from the cell trough.
  • the current density of the cathode is in the range of 50 to 2500 A / m2.
  • the same electrolysis device is preferably used in batch operation, the catholyte being removed continuously within certain concentration ranges, while the anolyte side is replenished in batches.
  • the sulfate solution containing zinc ions flowing from outlet 21 of a pickling device 20 is fed via feed line 15 to the anolyte compartment 4 of the electrolysis cell having a trough 1 with an ion exchange membrane 2, the zinc deposited in the catholyte compartment - represented schematically by reference numeral 22 - from the catholyte compartment 3 is discharged.
  • the one in the anolyte room 4 forming concentrated aqueous sulfuric acid solution is fed via outlet 16 and line 23 as a fresh component for the pickling process via feed 24 to the pickling device 20.
  • the process cycle of the solution containing sulfuric acid is shown in FIG. 2, the used pickling solution being fed as an aqueous sulfate solution containing metal ions to the electrolytic cell via outlet 21 of the pickling device 20 and feed line 15 to the anolyte compartment 4 of the cell, while the practically pure concentrated sulfuric acid is fed via line 23 is in turn fed to the pickling process.
  • the zinc that is deposited is removed from this cell cycle by removal from the cell; it can also be used again.
  • a NAFION membrane from Dupont is used as the cation exchange membrane.

Abstract

For regeneration, an aqueous solution containing metal ions and sulphuric acid, in particular a solution containing zinc ions, iron ions and/or copper ions, is introduced, for cathodic separation of the metal ions, into the anolyte space of an electrolysis cell subdivided by a cation exchange membrane into anolyte and catholyte space, metal ions and hydrogen ions migrating from the anolyte through the cation exchange membrane into the catholyte space as a result of the voltage applied at the electrodes and being discharged there, the sulphuric acid concentration in the anolyte constantly being increased as a result of anodic formation of protons. The regeneration is intended to be used as an intermediate stage of chlorine gas-free regeneration of pickling or extraction solutions. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wässrigen Lösung, insbesondere einer Zinkionen, Nickelionen, Eisenionen und/oder Kupferionen enthaltenden Lösung, in einer elektrolytischen Zelle, wobei die Metallionen auf der Oberfläche der Kathode abgeschieden werden und an der Anode durch Wasserzersetzung Sauerstoff und Protonen gebildet werden und regenerierte Lösung einem vorgeschalteten Beizprozeß oder Extraktionsvorgang wieder zuführbar ist, sowie eine Vorrichtung.The invention relates to a process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, in particular a solution containing zinc ions, nickel ions, iron ions and / or copper ions, in an electrolytic cell, the metal ions being deposited on the surface of the cathode and on the anode by water decomposition Oxygen and protons are formed and regenerated solution can be fed back to an upstream pickling process or extraction process, and a device.

Aus dem Lehrbuch "Praktische Galvanotechnik" aus dem Leuze Verlag, Saulgau/Württemberg, 1970 ist es gemäß der Seiten 537, 538 bekannt, Zink aus Sulfat-Elektrolyten kathodisch abzuscheiden. Solche Sulfat-Elektrolyte entstehen bei der Umwandlung von Zinkchlorid-Lösungen in Zinksulfat-Lösungen mittels Ionenaustauscher-Verfahren, wobei dieser vorgeschaltete Verfahrensschritt eine elektrolytische Behandlung von Chlorid-Elektrolyten vermeiden soll, weil bei der elektrolytischen Aufbereitung von Zinkchlorid-Elektrolyten Chlor entstehen würde und ein erhebliches Gefahrenpotential mit sich bringen würde.From the textbook "Practical Electroplating" from Leuze Verlag, Saulgau / Württemberg, 1970 it is known according to pages 537, 538 to cathodically deposit zinc from sulfate electrolytes. Such sulfate electrolytes result from the conversion of zinc chloride solutions into zinc sulfate solutions by means of ion exchange processes, this preceding process step being intended to avoid electrolytic treatment of chloride electrolytes, because chlorine would be formed during the electrolytic treatment of zinc chloride electrolytes and a considerable amount Would bring potential danger.

Eine solche direkte Regeneration einer Zinkchlorid-Lösung ist aus der DE-OS 25 39 137 bekannt, wonach die chloridionenhaltige Lösung in eine Kathodenkammer einer Elektrolysezelle eingeführt wird, die in 3 Kammern unterteilt ist, nämlich in eine Anodenkammer, eine Kathodenkammer und eine dazwischen angeordnete Elektrolytkammer; die Anodenkammer ist dabei von einem porösen Diaphragma von geringer Permeabilität umgrenzt, welche den Anolyten vom Elektrolyten trennt, wobei der Anolyt schwefelsäurehaltig ist. Die Anionen des Anolyten weisen ein Oxidationspotential auf, das hoch genug ist, um zu gewährleisten, das im wesentlichen nur die Zersetzung von Wasser an der Anode unter Betriebsbedingungen stattfindet, während die Kathodenkammer von einem Diaphragma verhältnismäßig hohe Permerabilität umgrenzt ist. Der Anolyt weist eine Substanz auf, die imstande ist, sich mit den Chloridionen, die in die Anodenkammer eintreten, zu verbinden, um so eine Oxidation von Chloridionen an der Anode zu verhindern. Der Flüssigkeitspegel des Anolyten wird ggf. durch Anolytnachführung stets so gehalten, daß der Flüssigkeitspegel oberhalb des Flüssigkeitspegels des benachbarten Elektrolyten liegt, um so die gewünschte Strömungsgeschwindigkeit durch das Diaphragma zur Erreichung der technischen Zwecke aufrechtzuerhalten. Um zu verhindern, daß Chloridionen die durch das Anodendiaphragma einsikkern, zu Chlorgas oxidiert werden, enthält der Anolyt einen Silbersulfatzusatz, um die Ausfällung des Chlorids als Silberchlorid sicherzustellen.Such a direct regeneration of a zinc chloride solution is known from DE-OS 25 39 137, according to which the chloride ion-containing solution is introduced into a cathode chamber of an electrolysis cell, which is divided into 3 chambers, namely an anode chamber, a cathode chamber and an electrolyte chamber arranged between them ; the anode chamber is bounded by a porous diaphragm of low permeability, which separates the anolyte from the electrolyte, the anolyte containing sulfuric acid. The anions of the anolyte have an oxidation potential that is high enough to ensure that essentially only the decomposition of water at the anode takes place under operating conditions, while the cathode chamber is surrounded by a relatively high permeability through a diaphragm. The anolyte has a substance capable of combining with the chloride ions entering the anode chamber so as to prevent oxidation of chloride ions at the anode. The liquid level of the anolyte is kept, if necessary, by anolyte tracking so that the liquid level is above the liquid level of the neighboring electrolyte, in order to maintain the desired flow rate through the diaphragm to achieve the technical purposes. In order to prevent chloride ions which seep through the anode diaphragm from being oxidized to chlorine gas, the anolyte contains a silver sulfate additive in order to ensure the precipitation of the chloride as silver chloride.

Als problematisch erweist sich bei dieser Anordnung, die verhältnismäßig aufwendige Aufteilung des Elektrolytraumes in 3 Kammern, sowie der Einsatz von Diaphragmen, deren Permeabilität sich im Laufe des elektrolytischen Prozesses stark verändern kann. Weitere Probleme sind in der Chemikalienzugabe von Silbersulfat, der Bildung von Silberchlorid und dessen Entfernung aus der Zelle sowie in der Gefahr von Diaphragmaverstopfungen durch Silberchlorid-Ausfällungen zu sehen.A problem with this arrangement is the comparatively complex division of the electrolyte space into 3 chambers and the use of diaphragms, the permeability of which can change significantly in the course of the electrolytic process. Other problems include the addition of chemicals to silver sulfate, the formation of silver chloride and its removal from the cell, and the risk of diaphragm blockages due to silver chloride precipitation.

Weiterhin sind in dem Buch "Angewandte Elektrochemie" von A. Schmidt, Verlag Chemie Weinheim 1976, auf Seite 210 Voraussetzungen genannt, nach denen Zink aus wässrigen Lösungen trotz seines elektronegativen Standardpotentials von -0,763V wegen der hohen Überspannung des Wasserstoffs am Zink abgeschieden werden kann; hierzu wird angeführt, daß für die Abscheidung von Zink eine relativ hohe Zink-Ionenkonzentration an der Kathode erforderlich ist, da sonst wegen der ansteigenden Schwefelsäure-Konzentration von einem gewissen Zeitpunkt ab an Stelle von Zink Wasserstoff kathodisch abgeschieden würde. Auf Seite 213 des gleichen Buches sind verschiedene Beispiele von Zink-Elektrolyse-Verfahren angegeben.Furthermore, in the book "Applied Electrochemistry" by A. Schmidt, Verlag Chemie Weinheim 1976, on page 210, conditions are mentioned according to which zinc can be separated from aqueous solutions despite its electronegative standard potential of -0.763V due to the high overvoltage of the hydrogen on the zinc ; for this purpose it is stated that a relatively high zinc ion concentration at the cathode is required for the deposition of zinc, since otherwise the hydrogen would be deposited cathodically instead of zinc due to the increasing sulfuric acid concentration. Different examples of zinc electrolysis processes are given on page 213 of the same book.

Aus der EP-OS 0 435 382 ist ein Elektrolyseverfahren zur Aufbereitung von Metallionen enthaltener Altbeizen bekannt; dabei sind Kathoden- und Anodenraum durch eine Anionen-Austauschermembran voneinander getrennt, wobei der Anodenraum mit entmetallisierter oxidierbarer oder nicht oxidierbarer Beizlösung gefüllt und das frei wählbare Potential der Kathode oder Anode mittels potentialgeregeltem Gleichrichter über eine Bezugselektrode konstant gehalten wird; dabei werden die Metallionen an der Kathode abgeschieden und die im Anodenraum aufkonzentrierte regenerierte Säure dem Beizbad wieder zugeführt.EP-OS 0 435 382 discloses an electrolysis process for the treatment of old stains containing metal ions; there are cathode and anode compartments separated from each other by an anion exchange membrane, the anode compartment being filled with demetallized oxidizable or non-oxidizable pickling solution and the freely selectable potential of the cathode or anode being kept constant by means of a potential-controlled rectifier via a reference electrode; the metal ions are deposited on the cathode and the regenerated acid concentrated in the anode compartment is returned to the pickling bath.

Hinweise auf die Behandlung von eine Metallionen enthaltenden Lösung mit einer Schwefelsäurekonzentration, wie sie in der Praxis beispielsweise im Bereich von 60 bis 80 g/l für eine zu regenerierende Beizlösung liegen, sind der EP-OS 0 435 382 jedoch nicht zu entnehmen.However, EP-OS 0 435 382 does not provide any information on the treatment of a solution containing a metal ion with a sulfuric acid concentration, such as is in practice for example in the range from 60 to 80 g / l for a pickling solution to be regenerated.

Die Erfindung stellt sich die Aufgabe, ein Verfahren anzugeben, durch das stark mit Metallionen belastete schwefelsaure Beiz- oder Extraktions-Lösungen möglichst weitgehend entmetallisiert werden können, wobei gleichzeitig eine reine, hochkonzentrierte Schwefelsäure gewonnen werden soll. Dabei soll die kathodische Abscheidung von Wasserstoff, wie sie insbesondere bei wässrigen Lösungen mit relativ geringer Metall-Ionenkonzentration auftreten kann, mit Sicherheit vermieden werden.The invention has for its object to provide a method by which sulfuric acid pickling or extraction solutions heavily contaminated with metal ions can be largely de-metallized, while at the same time a pure, highly concentrated sulfuric acid is to be obtained. The cathodic deposition of hydrogen, as can occur in particular in aqueous solutions with a relatively low metal ion concentration, should be avoided with certainty.

Das Verfahren soll als Zwischenstufe einer chlorgasfreien Regeneration von Beiz- oder Extraktions-Lösungen verwendet werden.The process is to be used as an intermediate stage of a chlorine gas-free regeneration of pickling or extraction solutions.

Weiterhin soll eine Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wässrigen Lösung in einer wenigstens jeweils eine Anode und eine Kathode aufweisenden Elektrolysezelle angegeben werden, wobei die Elektrolysezelle mittels einer IonenAustauschermembran in einen Anolytraum und einen Katholytraum unterteilt ist, und der Katholytraum wenigstens eine öffnung zur Zufuhr und Entnahme der Metallionen enthaltenden Lösung und der Anolytraum wenigstens eine Öffnung zur Zufuhr und Entnahme der regenerierten Lösung aufweist.Furthermore, a device for the regeneration of an aqueous solution containing metal ions and sulfuric acid in an electrolytic cell having at least one anode and one cathode each is to be specified, the electrolytic cell being divided into an anolyte space and a catholyte space by means of an ion exchange membrane, and the catholyte space having at least one opening for supply and removal of the solution containing metal ions and the anolyte space has at least one opening for the supply and removal of the regenerated solution.

Die Erfindung wird verfahrensgemäß dadurch gelöst, daß in eine unter Verwendung einer gegen Schwefelsäure stabilen Kationen-Austauschermembran unterteilte Elektrolysezelle die Metallionen enthaltende Lösung als Anolyt mit einer Schwefelsäurekonzentration im Bereich von 60-80 g/l eingebracht wird, und daß die kathodische Abscheidung bei einer Stromdichte im Bereich von 50 bis 2500 A/m² erfolgt, wobei Kationen als Metallionen und Wasserstoffionen aus dem Anolyten durch die Kationen-Austauschermembran aufgrund der an den Elektroden anliegenden Spannung in den Katholyten wandern und entladen werden, wobei durch anodische Bildung von Protonen die Schwefelsäurekonzentration im Anolyten ständig erhöht wird.According to the method, the invention is achieved in that the solution containing metal ions is introduced as an anolyte with a sulfuric acid concentration in the range of 60-80 g / l into an electrolysis cell subdivided using a cation exchange membrane which is stable to sulfuric acid, and in that the cathodic deposition is carried out at a current density in the range of 50 up to 2500 A / m², where cations as metal ions and hydrogen ions from the anolyte migrate and are discharged through the cation exchange membrane due to the voltage applied to the electrodes in the catholyte, the sulfuric acid concentration in the anolyte being constantly increased by anodic proton formation.

In einer bevorzugten Ausführungsform des Verfahrens wird die aufkonzentrierte Schwefelsäure aus dem Anolyten abgeführt.In a preferred embodiment of the process, the concentrated sulfuric acid is removed from the anolyte.

Weitere vorteilhafte Ausgestaltungen des Verfahrens sind in den Ansprüchen 3 bis 7 angegeben.Further advantageous refinements of the method are specified in claims 3 to 7.

Ein wesentlicher Vorteil des Verfahrens ist darin zu sehen, daß die aufkonzentrierte Schwefelsäure nach Art eines Kreislaufs dem Beiz- oder Extraktionsvorgang als frischer Lösungsbestandteil wieder zugeführt werden kann und daß das kathodisch abgeschiedene Metall ebenfalls einer Wiederverwertung zugeführt werden kann.A major advantage of the process is that the concentrated sulfuric acid can be returned to the pickling or extraction process as a fresh solution component in the manner of a cycle and that the cathodically deposited metal can also be recycled.

Das Verfahren kann sowohl chargenweise als auch kontinuierlich durchgeführt werden, wobei im Chargenbetrieb eine Lösung als Katholyt zugeführt wird, deren Schwefelsäurekonzentration jeweils der Anfangskonzentration des Anolyten entspricht; wird dagegen die Lösung als Katholyt kontinuierlich zugeführt, muß deren Schwefelsäurekonzentration in der Regel stets unterhalb der Schwefelsäurekonzentration des Anolyten liegen. Die Kathode wird nach Erreichen einer vorgegebenen Schichtstärke der Metallabscheidung aus dem Katholytraum entnommen; es ist jedoch auch möglich, die Metallabscheidung von der Kathode mechanisch abzutrennen und das so erhaltene Granulat aus der Zelle zu entnehmen.The process can be carried out either batchwise or continuously, with a solution being supplied as catholyte in batch operation, the sulfuric acid concentration of which corresponds in each case to the initial concentration of the anolyte; on the other hand, if the solution is continuously supplied as a catholyte, its sulfuric acid concentration must generally always be below the sulfuric acid concentration of the anolyte. The cathode is removed from the catholyte space after reaching a predetermined layer thickness of the metal deposit; however, it is also possible to mechanically separate the metal deposition from the cathode and to remove the granules thus obtained from the cell.

Die Aufgabe wird vorrichtungsgemäß dadurch gelöst, daß die Ionen-Austauschermembran als Kationen-Austauschermembran ausgebildet und gegenüber Schwefelsäure stabil ist und daß an der Kathode abgeschiedenes Metall aus der Zelle entnehmbar ist.The object is achieved in accordance with the device in that the ion exchange membrane is designed as a cation exchange membrane and is stable to sulfuric acid and that metal deposited on the cathode can be removed from the cell.

Weitere vorteilhafte Ausgestaltungen der Vorrichtung sind in den Ansprüchen 9 bis 14 angegeben.Further advantageous embodiments of the device are specified in claims 9 to 14.

Die Verwendung des erfindungsgemäßen Verfahrens erfolgt vorzugsweise als nachgeschalteter Verfahrensschritt in einem Beiz- oder Extraktionsvorgang, bei dem in einem ersten Verfahrensschritt eine Chloridionen enthaltende Lösung mittels Ionenaustauscherverfahren in eine Sulfationen enthaltende Lösung umgewandelt wird.The method according to the invention is preferably used as a subsequent method step in a pickling or extraction process in which in a first process step, a solution containing chloride ions is converted into a solution containing sulfate ions by means of ion exchange processes.

Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, daß aus einer metallionenhaltigen Sulfat-Lösung das Metall auf einfache, kostengünstige Weise abgeschieden werden kann, wobei gleichzeitig in Form eines Kreislaufs eine Aufkonzentration der Schwefelsäure des Anolyten erfolgt, welche wiederum zur Weiterführung des Regenerationsprozesses gebraucht wird.A major advantage of the invention is the fact that the metal can be separated from a sulfate solution containing metal ions in a simple, inexpensive manner, the sulfuric acid of the anolyte being concentrated in the form of a cycle, which in turn is used to continue the regeneration process .

Im folgenden ist der Gegenstand der Erfindung anhand der Figuren 1 und 2 näher erläutert.

Figur 1
zeigt schematisch im Längsschnitt eine Elektrolysezelle.
Figur 2
zeigt schematisch den Verfahrensablauf in Form eines Kreislaufs.
The subject matter of the invention is explained in more detail below with reference to FIGS. 1 and 2.
Figure 1
shows schematically in longitudinal section an electrolysis cell.
Figure 2
shows schematically the process flow in the form of a circuit.

Die Elektrolysevorrichtung weist gemäß Figur 1 , einen Trog 1 auf, dessen Innenraum mittels einer Kationen-Austauschermembran 2 in einen Katholytraum 3 und einen Anolytraum 4 unterteilt ist. Die im Anolytraum 4 befindliche Anode 8 besteht aus einer dimensionsstabilen Ventilmetall-Elektrode, insbesondere Titan-Elektrode, die mit dem positiven Pol 10 einer Gleichspannungsquelle 7 verbunden ist. Der prinzipielle Aufbau solcher dimensionsstabilen Ventilmetall-Elektroden, insbesondere Titan-Elektroden ist aus der Chloralkali-Elektrolyse bekannt und beispielsweise in der DE-OS 20 41 250 beschrieben.According to FIG. 1, the electrolysis device has a trough 1, the interior of which is divided into a catholyte space 3 and an anolyte space 4 by means of a cation exchange membrane 2. The anode 8 located in the anolyte compartment 4 consists of a dimensionally stable valve metal electrode, in particular a titanium electrode, which is connected to the positive pole 10 of a DC voltage source 7. The basic structure of such dimensionally stable valve metal electrodes, in particular titanium electrodes, is known from chloralkali electrolysis and is described, for example, in DE-OS 20 41 250.

Die im Katholytraum 3 befindliche Kathode 5 besteht aus Kupfer-Streckmetall, sie ist über einen lösbaren elektrischen Anschluß 9 mit dem negativen Pol 6 der Gleichspannungsquelle 7 verbunden. Im Katholytraum 3 befindet sich eine wässrige Schwefelsäure-Lösung, die zu Beginn des Verfahrens über Zuleitung 11 zur Erzeugung der Ionenleitung zugeführt wird, wobei während des Elektrolyseprozesses gegebenenfalls Wasser nachgeführt und die zusätzlich entstehende Schwefelsäure über Auslaß 12 des Katholytraumes 3 abführbar und dem Regenerationsprozeß beispielsweise einem Beizvorgang wieder zuführbar ist.The cathode 5 located in the catholyte chamber 3 is made of expanded copper, it is connected to the negative pole 6 of the DC voltage source 7 via a detachable electrical connection 9. In the catholyte chamber 3 there is an aqueous sulfuric acid solution which is fed in at the beginning of the process via feed line 11 to produce the ion line, water possibly being added during the electrolysis process and the additionally formed sulfuric acid being able to be removed via outlet 12 of the catholyte chamber 3 and the regeneration process, for example, one Pickling process can be fed again.

Die Zinkionen enthaltende Sulfat-Lösung wird über Zuleitung 15 dem Anolytraum 4 beispielsweise kontinuierlich zugeführt, wobei die Schwefelsäurekonzentration des Anolyten in der Praxis höchstens der des Katholyten entspricht; die Schwefelsäurekonzentration des Anolyten liegt im Bereich von 70 g/l. Nach Auffüllung von Anolyt- und Katholytraum beginnt der Elektrolyseprozeß, wobei durch Anlegung der Spannungsquelle 7 der Ladungstransport während der Elektrolyse durch die Ionenaustauschermembran 2 mittels der Kationen erfolgt, welche symbolisch mit Bezugsziffer 13 bezeichnet sind. Die Zinkionen sind symbolisch mit Bezugsziffer 14 versehen und werden an der Kathode 5 entladen, wobei metallisches Zink abgeschieden wird.The sulfate solution containing zinc ions is fed, for example, continuously via feed line 15 to the anolyte compartment 4, the sulfuric acid concentration in practice the anolyte corresponds at most to that of the catholyte; the sulfuric acid concentration of the anolyte is in the range of 70 g / l. After the anolyte and catholyte spaces have been filled, the electrolysis process begins, the charge being transported by applying the voltage source 7 during the electrolysis through the ion exchange membrane 2 by means of the cations, which are symbolically designated by reference number 13. The zinc ions are symbolically provided with reference number 14 and are discharged at the cathode 5, metallic zinc being deposited.

Im Anolytraum 4 erfolgt eine Zersetzung von Wasser, wobei der Sauerstoff als Gas aus dem oben offenen Trog 1 abgeführt wird und die Wasserstoffionen zusammen mit den Sulfationen zu Schwefelsäure rekombiniert werden, welche im Laufe des Elektrolyseprozesses aufkonzentriert wird und über Auslaß 16 zum Beizvorgang abgeführt wird. Die Einstellung der Schwefelsäurekonzentration des Katholyten erfolgt mit Hilfe von pH-Wert-Messern und einem Regelkreis, welcher durch Abfuhr der aufkonzentrierten Schwefelsäure und Zufuhr von Wasser über Leitung 11 die vorgegebene Schwefelsäurekonzentration aufrechterhält bzw. der Schwefelsäurekonzentration des Katholyten anpaßt. Der zugeführte Anolyt als BeizLösung weist eine Zinkionenkonzentration von ca. 170 g/l und eine Schwefelsäurekonzentration im Bereich von 70 g/l auf. Die Kathode 5 wird in Form eines Kupfer-Titan- oder VA-Stahlstreckmetalls ausgeführt, während die Anode 8 aus der bereits vorerwähnten dimensionsstabilen Titananode besteht. Auf der Kathode 5 wird Zink in einer kompakten Abscheidungsqualität aufgebracht; es ist jedoch auch möglich, das Zink in einer Dendritenabscheidung abzuscheiden und anschließend dem Zellentrog zu entnehmen. Die Stromdichte der Kathode liegt im Bereich von 50 bis 2500 A/m².A decomposition of water takes place in the anolyte compartment 4, the oxygen being removed as gas from the open trough 1 and the hydrogen ions being recombined together with the sulfate ions to form sulfuric acid, which is concentrated in the course of the electrolysis process and discharged via outlet 16 to the pickling process. The setting of the sulfuric acid concentration of the catholyte is carried out with the aid of pH-meters and a control circuit which maintains the predetermined sulfuric acid concentration or adjusts the sulfuric acid concentration of the catholyte by removing the concentrated sulfuric acid and supplying water via line 11. The anolyte supplied as a pickling solution has a zinc ion concentration of approx. 170 g / l and a sulfuric acid concentration in the range of 70 g / l. The cathode 5 is made in the form of a copper-titanium or VA steel expanded metal, while the anode 8 consists of the dimensionally stable titanium anode already mentioned. Zinc is applied to the cathode 5 in a compact deposition quality; however, it is also possible to separate the zinc in a dendrite deposition and then remove it from the cell trough. The current density of the cathode is in the range of 50 to 2500 A / m².

Die gleiche Elektrolysevorrichtung wird vorzugsweise im Chargen-Betrieb eingesetzt, wobei der Katholyt kontinuierlich innerhalb bestimmter Konzentrationsbereiche entnommen wird, während die Anolytseite chargenweise nachgefüllt wird.The same electrolysis device is preferably used in batch operation, the catholyte being removed continuously within certain concentration ranges, while the anolyte side is replenished in batches.

Gemäß Figur 2 wird die aus Auslaß 21 einer Beizvorrichtung 20 strömende Zinkionen enthaltende Sulfatlösung über Zuleitung 15 dem Anolytraum 4 der einen Trog 1 mit Ionen-Austauschermembran 2 aufweisenden Elektrolysezelle zugeführt, wobei das im Katholytraum abgeschiedene Zink - schematisch durch Bezugsziffer 22 dargestellt - aus dem Katholytraum 3 abgeführt wird. Die im Anolytraum 4 sich bildende aufkonzentrierte wässrige Schwefelsäurelösung wird über Auslaß 16 und Leitung 23 als frischer Bestandteil für den Beizvorgang über Zulauf 24 der Beizvorrichtung 20 zugeführt.According to FIG. 2, the sulfate solution containing zinc ions flowing from outlet 21 of a pickling device 20 is fed via feed line 15 to the anolyte compartment 4 of the electrolysis cell having a trough 1 with an ion exchange membrane 2, the zinc deposited in the catholyte compartment - represented schematically by reference numeral 22 - from the catholyte compartment 3 is discharged. The one in the anolyte room 4 forming concentrated aqueous sulfuric acid solution is fed via outlet 16 and line 23 as a fresh component for the pickling process via feed 24 to the pickling device 20.

Anhand der Figur 2 ist der verfahrensmäßige Kreislauf der Schwefelsäure enthaltenden Lösung gezeigt, wobei über Auslaß 21 der Beizvorrichtung 20 und Zuleitung 15 dem Anolytraum 4 der Zelle die verbrauchte Beizlösung als Metallionen enthaltende wässrige Sulfatlösung der Elektrolysezelle zugeführt wird, während die praktisch reine aufkonzentrierte Schwefelsäure über Leitung 23 wiederum dem Beizvorgang zugeführt wird.The process cycle of the solution containing sulfuric acid is shown in FIG. 2, the used pickling solution being fed as an aqueous sulfate solution containing metal ions to the electrolytic cell via outlet 21 of the pickling device 20 and feed line 15 to the anolyte compartment 4 of the cell, while the practically pure concentrated sulfuric acid is fed via line 23 is in turn fed to the pickling process.

Das abgeschiedene Zink wird durch Entnahme aus der Zelle diesem Kreislaufprozeß entnommen, es kann ebenfalls wieder verwendet werden. Als Kationen-Austauschermembran wird eine Membran des Typs NAFION der Firma Dupont eingesetzt.The zinc that is deposited is removed from this cell cycle by removal from the cell; it can also be used again. A NAFION membrane from Dupont is used as the cation exchange membrane.

Claims (14)

Verfahren zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wässrigen Lösung, insbesondere einer Zinkionen, Nickelionen, Eisenionen und/oder Kupferionen enthaltenden Lösung, in einer elektrolytischen Zelle, wobei die Metallionen auf der Oberfläche der Kathode abgeschieden werden und an der Anode durch Wasserzersetzung Sauerstoff und Protonen gebildet werden und regenerierte Lösung einem vorgeschalteten Beizprozeß oder Extraktionsvorgang wieder zuführbar ist, dadurch gekennzeichnet, daß in eine unter Verwendung einer gegen Schwefelsäure stabilen Kationen-Austauschermembran unterteilte Elektrolysezelle die Metallionen enthaltende Lösung als Anolyt mit einer Schwefelsäurekonzentration im Bereich von 60-80 g/l eingebracht wird, und daß die kathodische Abscheidung bei einer Stromdichte im Bereich von 50 bis 2500 A/m² erfolgt, wobei Kationen aus dem Anolyten durch die Kationen-Austauschermembran aufgrund der an den Elektroden anliegenden Spannung in den Katholyten wandern und entladen werden, wobei durch anodische Bildung von Protonen die Schwefelsäurekonzentration im Anolyten ständig erhöht wird.Process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, in particular a solution containing zinc ions, nickel ions, iron ions and / or copper ions, in an electrolytic cell, the metal ions being deposited on the surface of the cathode and oxygen and protons being formed on the anode by water decomposition and regenerated solution can be fed back to an upstream pickling process or extraction process, characterized in that the solution containing metal ions is introduced as an anolyte with a sulfuric acid concentration in the range of 60-80 g / l into an electrolysis cell subdivided using a cation exchange membrane which is stable against sulfuric acid , and that the cathodic deposition takes place at a current density in the range from 50 to 2500 A / m 2, cations from the anolyte through the cation exchange membrane due to the voltage applied to the electrodes in the catholyte migrate and be discharged, with the anodic formation of protons constantly increasing the sulfuric acid concentration in the anolyte. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aufkonzentrierte Schwefelsäure aus dem Anolyten abgeführt wird.A method according to claim 1, characterized in that the concentrated sulfuric acid is removed from the anolyte. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Elektrolysezelle als Anolyt chargenweise eine Lösung zugeführt wird, deren Schwefelsäurekonzentration jeweils der Anfangskonzentration des Katholyten entspricht.A method according to claim 1 or 2, characterized in that a batch is fed to the electrolytic cell as an anolyte, a solution whose sulfuric acid concentration corresponds in each case to the initial concentration of the catholyte. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Elektrolysezelle als Anolyt kontinuierlich eine Lösung zugeführt wird, deren Schwefelsäurekonzentration stets unterhalb der Schwefelsäurekonzentration des Katholyten liegt.A method according to claim 1 or 2, characterized in that a solution is continuously fed to the electrolytic cell as an anolyte, the sulfuric acid concentration of which is always below the sulfuric acid concentration of the catholyte. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach Erreichen einer vorgegebenen Menge die kathodische Metallabscheidung aus der Zelle entnommen wird.Method according to one of claims 1 to 4, characterized in that after reaching a predetermined amount, the cathodic metal deposition is removed from the cell. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Kathode nach Erreichen einer vorgegebenen Schichtstärke der Metallabscheidung aus der Zelle entnommen wird.A method according to claim 5, characterized in that the cathode is removed from the cell after reaching a predetermined layer thickness of the metal deposition. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Metallabscheidung nach Abtrennung von der Kathode aus der Zelle entnommen wird.A method according to claim 5, characterized in that the metal deposition is removed from the cell after separation from the cathode. Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wässrigen Lösung in einer wenigstens jeweils eine Anode und eine Kathode aufweisenden Elektrolysezelle, wobei die Elektrolysezelle mittels einer Ionen-Austauschermembran in einen Anolytraum und einen Katholytraum unterteilt ist, und der Katholytraum wenigstens eine Öffnung zur Zufuhr und Entnahme der Metallionen enthaltenden Lösung und der Anolytraum wenigstens eine Öffnung zur Zufuhr und Entnahme der regenerierten Lösung aufweist, dadurch gekennzeichnet,
daß die Ionen-Austauschermembran(2) als Kationen-Austauschermembran ausgebildet und gegenüber Schwefelsäure stabil ist und daß an der Kathode (5) abgeschiedenes Metall aus der Zelle entnehmbar ist.
Device for regenerating an aqueous solution containing metal ions and sulfuric acid in an electrolytic cell each having at least one anode and one cathode, the electrolytic cell being subdivided into an anolyte space and a catholyte space by means of an ion exchange membrane, and the catholyte space having at least one opening for supplying and removing the Solution containing metal ions and the anolyte space has at least one opening for supplying and removing the regenerated solution, characterized in that
that the ion exchange membrane (2) is designed as a cation exchange membrane and is stable to sulfuric acid and that metal deposited on the cathode (5) can be removed from the cell.
Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Kathode (5) zur Entnahme des abgeschiedenen Metalls elektrisch und mechanisch lösbar ist.Apparatus according to claim 8, characterized in that the cathode (5) for removing the deposited metal is electrically and mechanically detachable. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß eine Trenn- und Transporteinrichtung zur Abtrennung des abgeschiedenen Metalls von der Kathode (5) und zu dessen Ausbringung aus dem Katholytraum vorgesehen ist.Apparatus according to claim 9, characterized in that a separating and transport device is provided for separating the deposited metal from the cathode (5) and for its removal from the catholyte space. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Anode (8) im wesentlichen aus Ventilmetall besteht.Device according to claim 8, characterized in that the anode (8) consists essentially of valve metal. Vorrichtung nach Anspruch 8 oder 11, dadurch gekennzeichnet, daß die Anode (8) eine dimensionsstabile Elektrode auf der Basis von Titan ist.Device according to claim 8 or 11, characterized in that the anode (8) is a dimensionally stable electrode based on titanium. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, daß der Anolytraum (4) eine Öffnung zur Zufuhr von Wasser oder einer wässrigen Lösung aufweist.Device according to one of claims 8 to 12, characterized in that the anolyte compartment (4) has an opening for the supply of water or an aqueous solution. Vorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, daß der Katholytraum (3) eine Öffnung zur Zufuhr von Wasser oder einer wässrigen Lösung aufweist.Device according to one of claims 8 to 13, characterized in that the catholyte space (3) has an opening for the supply of water or an aqueous solution.
EP94107412A 1993-08-11 1994-05-13 Process and apparatus for regenerating solutions containing metal ions and sulfuric acid Withdrawn EP0638664A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326854A DE4326854A1 (en) 1993-08-11 1993-08-11 Process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, and device
DE4326854 1993-08-11

Publications (1)

Publication Number Publication Date
EP0638664A1 true EP0638664A1 (en) 1995-02-15

Family

ID=6494871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107412A Withdrawn EP0638664A1 (en) 1993-08-11 1994-05-13 Process and apparatus for regenerating solutions containing metal ions and sulfuric acid

Country Status (5)

Country Link
US (1) US5478448A (en)
EP (1) EP0638664A1 (en)
JP (1) JPH0780466A (en)
DE (1) DE4326854A1 (en)
SG (1) SG49791A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032525A1 (en) * 1997-01-28 1998-07-30 Pionetics Corporation Electrochemically assisted ion exchange
US7780833B2 (en) 2005-07-26 2010-08-24 John Hawkins Electrochemical ion exchange with textured membranes and cartridge
US7959780B2 (en) 2004-07-26 2011-06-14 Emporia Capital Funding Llc Textured ion exchange membranes
US8562803B2 (en) 2005-10-06 2013-10-22 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US9757695B2 (en) 2015-01-03 2017-09-12 Pionetics Corporation Anti-scale electrochemical apparatus with water-splitting ion exchange membrane
EP3279900A4 (en) * 2015-03-31 2018-12-05 Kurita Water Industries Ltd. Method and device for treating metal ion-containing liquids

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850524C2 (en) * 1998-11-03 2002-04-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Nitrate-free recycling pickling process for stainless steels
DE19850525A1 (en) * 1998-11-03 2000-05-04 Eilenburger Elektrolyse & Umwelttechnik Gmbh Regeneration of sulfuric acid-iron(III) sulfate pickling solution, used especially for special steels, involves perdisulfuric acid production in a spent solution electrolysis cell
GB9907848D0 (en) * 1999-04-07 1999-06-02 Shipley Co Llc Processes and apparatus for removal of copper from fluids
US7214443B2 (en) * 2002-02-12 2007-05-08 Plurion Limited Secondary battery with autolytic dendrites
KR100922954B1 (en) * 2003-02-13 2009-10-22 삼성전자주식회사 Digital signal processing apparatus of communication terminal for adaptably transmitting voice data to allotted up-link channel and voice data transmitting method thereof
JP4632350B2 (en) * 2004-12-02 2011-02-16 ミヨシ油脂株式会社 Removal of heavy metals from fishery processing residue
AU2007299519B2 (en) * 2006-09-21 2011-12-15 Qit-Fer & Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
CN102037160B (en) 2008-03-20 2013-11-13 力拓铁钛公司 Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes
EP2268852B1 (en) * 2008-04-11 2018-12-05 Electrochem Technologies & Materials Inc. Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
US9567678B2 (en) 2011-08-29 2017-02-14 Massachusetts Institute Of Technology Methods and systems for carrying out a pH-influenced chemical and/or biological reaction
WO2013033173A1 (en) 2011-08-29 2013-03-07 Massachusetts Institute Of Technology METHODS AND SYSTEMS FOR CARRYING OUT A pH-INFLUENCED CHEMICAL AND/OR BIOLOGICAL REACTION
CN104087938A (en) * 2014-06-18 2014-10-08 京东方科技集团股份有限公司 Etching-liquid storing apparatus and wet-method etching equipment
JP6428440B2 (en) * 2015-03-31 2018-11-28 栗田工業株式会社 Method and apparatus for processing iron group metal ion-containing liquid
JP6428441B2 (en) * 2015-03-31 2018-11-28 栗田工業株式会社 Acid waste liquid treatment apparatus and treatment method
CN112289962B (en) * 2020-10-16 2022-07-12 武汉华星光电半导体显示技术有限公司 Etching apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810686A (en) * 1954-11-09 1957-10-22 Rohm & Haas Electrolytic treatment of waste sulfate pickle liquor
FR1227199A (en) * 1958-06-19 1960-08-19 Chem Fab Budenheim Ag Process for regenerating pickling acids
JPS50151793A (en) * 1974-05-29 1975-12-05
EP0435382A1 (en) * 1989-12-28 1991-07-03 METALLGESELLSCHAFT Aktiengesellschaft Electrolytic process for treating waste pickling solutions or product streams containing metallic ions
WO1993006262A1 (en) * 1991-09-24 1993-04-01 Metallgesellschaft Aktiengesellschaft Method and device for recycling used pickling liquors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758770A (en) * 1969-11-28 1971-04-16 Loftfield Richard E Dimensionally stable anode
ZA745625B (en) * 1974-09-04 1975-12-31 Ato Platinum Mines Ltd Improvements in or relating to the electrolytic recovery of nickel and zinc
US4973380A (en) * 1983-10-06 1990-11-27 Olin Corporation Process for etching copper base materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810686A (en) * 1954-11-09 1957-10-22 Rohm & Haas Electrolytic treatment of waste sulfate pickle liquor
FR1227199A (en) * 1958-06-19 1960-08-19 Chem Fab Budenheim Ag Process for regenerating pickling acids
JPS50151793A (en) * 1974-05-29 1975-12-05
EP0435382A1 (en) * 1989-12-28 1991-07-03 METALLGESELLSCHAFT Aktiengesellschaft Electrolytic process for treating waste pickling solutions or product streams containing metallic ions
WO1993006262A1 (en) * 1991-09-24 1993-04-01 Metallgesellschaft Aktiengesellschaft Method and device for recycling used pickling liquors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRAMER H. C.: "Electrolytic Regeneration of Spent Pickling Solutions", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 47, no. 1, 1 January 1955 (1955-01-01), COLUMBUS US, pages 67 - 70, XP001306121 *
CHEMICAL ABSTRACTS, vol. 84, no. 16, 19 April 1976, Columbus, Ohio, US; abstract no. 109068p, KANAGAWA: "Recovery of iron and acid from waste acidse" page 226; column R; *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032525A1 (en) * 1997-01-28 1998-07-30 Pionetics Corporation Electrochemically assisted ion exchange
US7959780B2 (en) 2004-07-26 2011-06-14 Emporia Capital Funding Llc Textured ion exchange membranes
US7780833B2 (en) 2005-07-26 2010-08-24 John Hawkins Electrochemical ion exchange with textured membranes and cartridge
US8293085B2 (en) 2005-07-26 2012-10-23 Pionetics Corporation Cartridge having textured membrane
US8562803B2 (en) 2005-10-06 2013-10-22 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US9090493B2 (en) 2005-10-06 2015-07-28 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US9757695B2 (en) 2015-01-03 2017-09-12 Pionetics Corporation Anti-scale electrochemical apparatus with water-splitting ion exchange membrane
EP3279900A4 (en) * 2015-03-31 2018-12-05 Kurita Water Industries Ltd. Method and device for treating metal ion-containing liquids

Also Published As

Publication number Publication date
JPH0780466A (en) 1995-03-28
US5478448A (en) 1995-12-26
DE4326854A1 (en) 1995-02-16
SG49791A1 (en) 1998-06-15

Similar Documents

Publication Publication Date Title
EP0638664A1 (en) Process and apparatus for regenerating solutions containing metal ions and sulfuric acid
EP0878561B1 (en) Process and apparatus for the regeneration of tin plating solutions
DE1496886A1 (en) Method and device for the preparation of metal treatment solutions
DE2523950A1 (en) ELECTROCHEMICAL DEVICE AND ITS USE
DE10013339C1 (en) Process for regulating the concentration of metal ions in an electrolyte liquid comprises feeding part of the liquid through an auxiliary cell consisting of an insoluble auxiliary anode and an auxiliary cathode
EP0011800B1 (en) Etching process for copper and copper alloy surfaces
DE602004009572T2 (en) METHOD FOR REGENERATING IRON-BASED SOLID SOLUTIONS FOR USE IN THE PAINTING OR REFURBISHING OF COPPER OR COPPER ALLOYS AND DEVICE FOR CARRYING OUT THE METHOD
EP0575699A2 (en) Process and apparatus for regenerating metal ions and sulfuric acid containing aqueous solutions and use thereof
EP1015667B1 (en) Method and device for regulating the concentration of substances in electrolytes
EP0801692A2 (en) Electroplating plant
DE4407448C2 (en) Electrolysis process for regenerating an iron (III) chloride or iron (III) sulfate solution, in particular for spray etching steel
EP0612359B1 (en) Method for recycling used pickling liquors
EP0240589A1 (en) Process and apparatus for regenerating an electroless copper-plating bath
DE2818306A1 (en) PROCEDURE FOR IN-SITU REDUCTION OF ELECTRODE OVERVOLTAGE AND ELECTROLYSIS CELL FOR PERFORMING THE PROCEDURE
DE102021002197A1 (en) Device and method for coating a component or semi-finished product with a chromium layer
WO2000026440A2 (en) Circular method for pickling copper and copper alloys
EP0115791A1 (en) Process and apparatus for regenerating a copper-containing etching solution
DE3135195A1 (en) METHOD FOR THE ELECTROCHEMICAL DECOMPOSITION OF Nitric Acid
DE4229917C1 (en) Electrolytic bath for meter coating - has sec. anode contg. alkaline or ammonium soln. with acid added to electrolyte to compensate for pH rise
EP0748396B1 (en) Electrolysis process for regenerating a ferric chloride or sulphate solution, in particular for spray etching steel
DE4218916C2 (en) Use of a grid anode for electrolytic detoxification or regeneration of an aqueous solution containing cyanide
EP0079032B1 (en) Apparatus for electroplating a metallic workpiece
DE3330838C2 (en)
EP0141905B1 (en) Process for the electrochemical compensation of the oxidation in the electrochemical regeneration of copper etching solutions containing chloride
DE4345076C2 (en) Process for keeping constant or reducing the zinc content of weakly acidic, galvanic zinc baths

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE GB NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19971202