JP6428440B2 - Method and apparatus for processing iron group metal ion-containing liquid - Google Patents

Method and apparatus for processing iron group metal ion-containing liquid Download PDF

Info

Publication number
JP6428440B2
JP6428440B2 JP2015073042A JP2015073042A JP6428440B2 JP 6428440 B2 JP6428440 B2 JP 6428440B2 JP 2015073042 A JP2015073042 A JP 2015073042A JP 2015073042 A JP2015073042 A JP 2015073042A JP 6428440 B2 JP6428440 B2 JP 6428440B2
Authority
JP
Japan
Prior art keywords
electrodeposition
group metal
iron group
liquid
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073042A
Other languages
Japanese (ja)
Other versions
JP2016191692A (en
Inventor
真吾 宮本
真吾 宮本
守 岩▲崎▼
守 岩▲崎▼
元浩 会沢
元浩 会沢
太田 信之
信之 太田
貴子 住谷
貴子 住谷
石田 一成
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Original Assignee
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Hitachi GE Nuclear Energy Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015073042A priority Critical patent/JP6428440B2/en
Priority to US15/562,750 priority patent/US20180079663A1/en
Priority to PCT/JP2016/060328 priority patent/WO2016159051A1/en
Priority to EP16772932.6A priority patent/EP3279900B1/en
Publication of JP2016191692A publication Critical patent/JP2016191692A/en
Application granted granted Critical
Publication of JP6428440B2 publication Critical patent/JP6428440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、鉄族金属イオン含有液の処理方法及び処理装置に係り、詳しくは、鉄(Fe)、コバルト(Co)、ニッケル(Ni)といった鉄族金属イオンを含有する液から、当該イオンを除去する方法及び装置に関する。本発明は、特に、原子力発電所において発生する除染廃液や、原子力発電所で使用されたイオン交換樹脂から鉄族金属イオンを溶離させた溶離液等の原子力発電所等から生じる鉄族金属イオンを含有する廃液の処理に好適に用いられる。   The present invention relates to a processing method and a processing apparatus for an iron group metal ion-containing liquid. Specifically, the ion is extracted from a liquid containing iron group metal ions such as iron (Fe), cobalt (Co), and nickel (Ni). The present invention relates to a removal method and apparatus. The present invention particularly relates to iron group metal ions generated from nuclear power plants such as decontamination waste liquid generated in nuclear power plants and eluents obtained by eluting iron group metal ions from ion exchange resins used in nuclear power plants. It is suitably used for the treatment of waste liquid containing.

原子力発電所では、放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を化学的に除去した際に、多量の除染廃液が発生する。これらの除染廃液は、Fe、Co又はNiといった鉄族金属イオンを含んでおり、Co−60(コバルト60)、Ni−63(ニッケル63)といった放射性物質も多く含んでいる。通常、除染廃液は、イオン交換樹脂により溶解しているイオン成分が除去され、除染液として再利用される。このため、放射性物質を多く含むイオン交換樹脂の廃棄物が発生するという問題がある。   In a nuclear power plant, a large amount of decontamination waste liquid is generated when the radioactive material is chemically removed from the primary cooling system equipment and piping contaminated with the radioactive material and the metal member surface of the system including these. These decontamination waste liquids contain iron group metal ions such as Fe, Co, or Ni, and also contain a lot of radioactive substances such as Co-60 (cobalt 60) and Ni-63 (nickel 63). Usually, the decontamination waste liquid is reused as a decontamination liquid after the ionic components dissolved by the ion exchange resin are removed. For this reason, there exists a problem that the waste of the ion exchange resin containing many radioactive substances generate | occur | produces.

また、原子力発電所等において、原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂は、放射性物質を多く吸着しているため、高線量率の廃棄物として、発電所に設置された樹脂タンクに貯留されている。
これらの放射性物質を含む廃棄物は、最終的にセメント等の固化助材と混練して安定化した後に、埋設処分される。埋設処分する際の費用は、内包する放射性物質の量で異なり、放射性物質濃度が高いほど高額となる。このため、高線量率の廃棄物はできるだけ減容した後に、固化体の埋設廃棄物とすることが経済的である。具体的には、イオン交換樹脂から放射性物質を固形物として分離し、遮蔽容器内に封じ込めることができれば、減容化の面で望ましい。放射性物質が除去された廃イオン交換樹脂は、処分費用が安価な低線量率の廃棄物であり、さらに、廃イオン交換樹脂を焼却可能なレベルまで放射性物質を除去できれば、焼却処理により、大幅な減容が達成できる。
In nuclear power plants, etc., ion exchange resins used to purify cooling water systems containing radioactive materials by directly touching fuel rods such as the reactor water purification system (CUW) and the fuel storage pool water purification system (FPC) Because it absorbs a lot of radioactive material, it is stored as a high dose rate waste in a resin tank installed at the power plant.
Waste containing these radioactive substances is finally kneaded with a solidification aid such as cement and stabilized, and then buried. The cost for disposal is different depending on the amount of radioactive material contained, and the higher the concentration of radioactive material, the higher the cost. For this reason, it is economical to reduce the volume of waste with a high dose rate as much as possible and then use it as a solid waste. Specifically, it is desirable in terms of volume reduction if the radioactive substance can be separated from the ion exchange resin as a solid and can be contained in a shielding container. Waste ion exchange resin from which radioactive materials have been removed is a low-dose rate waste with low disposal costs, and if the radioactive materials can be removed to a level where incineration of the waste ion exchange resin can be achieved, incineration will significantly Volume reduction can be achieved.

このような高線量の廃樹脂の処理方法として、特許文献1や特許文献2に提案されるように、フェントン法や超臨界水酸化等の湿式酸化により廃樹脂を分解する方法があるが、これらの方法を適用した場合、いずれの場合も高線量率の廃液が多量に発生する。その高線量率の廃液を最終的に処分する際には、さらに蒸発濃縮し、その濃縮液をセメントと混練する等の方法により固化体として安定化することが必要となる。この場合、セメント等の固化助材を新たに添加するため、その分最終処分される高線量率の廃棄物量が増加し、廃棄物量の低減に至らないという問題がある。   As a method for treating such high-dose waste resin, there are methods of decomposing waste resin by wet oxidation such as Fenton method and supercritical water oxidation as proposed in Patent Document 1 and Patent Document 2. In this case, a large amount of waste liquid with a high dose rate is generated. When the waste liquid with a high dose rate is finally disposed of, it is necessary to stabilize it as a solidified body by a method such as evaporating and concentrating and kneading the concentrated liquid with cement. In this case, since a solidification aid such as cement is newly added, there is a problem that the amount of waste at a high dose rate to be finally disposed increases and the amount of waste cannot be reduced.

特許文献3には、廃樹脂に硫酸を通液し、イオン状の放射性物質を溶離し、溶離液から拡散透析により放射性物質を分離し、硫酸を循環再利用する技術が開示されている。また、特許文献4には、廃樹脂をシュウ酸水溶液に浸漬して表面の金属クラッドを溶解するとともに、樹脂に吸着している金属イオンをシュウ酸水溶液に溶離する廃樹脂処理方法が開示されている。これらの場合も、放射性物質を含む廃液が生成するが、その固化処理までは網羅されていない。   Patent Document 3 discloses a technique in which sulfuric acid is passed through waste resin, ionic radioactive substances are eluted, radioactive substances are separated from the eluent by diffusion dialysis, and sulfuric acid is circulated and reused. Patent Document 4 discloses a waste resin treatment method in which waste resin is immersed in an oxalic acid aqueous solution to dissolve the metal clad on the surface, and metal ions adsorbed on the resin are eluted into the oxalic acid aqueous solution. Yes. In these cases as well, waste liquid containing radioactive substances is generated, but the solidification process is not covered.

一方で、イオン状の放射性物質を含む廃液から放射性物質を除去する方法として、特許文献5には、放射性陽イオンが溶解した汚染除去溶液を、電着セルを通過させながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させて、汚染除去溶液を再生・再利用する技術が開示されている。その際に、放射性金属粒子を堆積させた陰極は、陰極液を陰極全体に注いで放射性金属粒子を脱離させるとの記載がある。   On the other hand, as a method for removing radioactive substances from waste liquid containing ionic radioactive substances, Patent Document 5 discloses that a decontamination solution in which radioactive cations are dissolved is energized while passing through an electrodeposition cell, and the radioactive cations are used. Has been disclosed in which a decontamination solution is regenerated and reused by depositing as a radioactive metal particle on a cathode. At that time, the cathode on which radioactive metal particles are deposited is described as pouring catholyte over the entire cathode to desorb the radioactive metal particles.

特許文献5では、放射性陽イオンが溶解した汚染除去溶液を、直接電着セルの陰極側に導入しながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させているが、この方法では、陰極液性状は汚染除去溶液に依存して変化するため、陰極液を電着に適した液性状に調整することができない。汚染除去溶液が酸性の廃液の場合には、陰極表面で析出した放射性金属成分が酸性の廃液に再び溶解するため、析出が起こらないか、もしくは析出速度が著しく低下する。また、廃液が中性又はアルカリ性の場合には、陰極表面近傍で水酸化物の沈殿物が形成され、陰極表面に放射性金属を電着させて回収することが困難となる。このため、廃液から放射性物質を電着法により効率的に回収するためには、陰極室に直接廃液を導入するのは好ましくなく、陰極液を電着に適した液性とすることが重要となる。   In Patent Document 5, the decontamination solution in which the radioactive cation is dissolved is energized while being directly introduced into the cathode side of the electrodeposition cell, and the radioactive cation is deposited on the cathode as radioactive metal particles. Since the catholyte properties change depending on the decontamination solution, the catholyte cannot be adjusted to a liquid property suitable for electrodeposition. When the decontamination solution is an acidic waste solution, the radioactive metal component deposited on the cathode surface is dissolved again in the acidic waste solution, so that no precipitation occurs or the deposition rate is significantly reduced. In addition, when the waste liquid is neutral or alkaline, a hydroxide precipitate is formed in the vicinity of the cathode surface, and it becomes difficult to recover by depositing radioactive metal on the cathode surface. For this reason, in order to efficiently recover radioactive substances from the waste liquid by the electrodeposition method, it is not preferable to introduce the waste liquid directly into the cathode chamber, and it is important to make the catholyte liquid suitable for electrodeposition. Become.

そこで、本発明者らは、特願2013−221322にて、鉄族金属イオン含有液の電着処理において、鉄族金属イオン含有廃液の液性状に影響を受けることなく、鉄族金属イオンを効率的に液中から析出させて除去する鉄族金属イオン含有液の処理方法及び処理装置を提案した。具体的には、陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離した電着槽の陽極室に鉄族金属イオン含有廃液を導入し、陰極室に陰極液を導入して、陽極と陰極間に通電することにより、陽極室内の液中の鉄族金属イオンを陰極室内の陰極液中に移動させて陰極上に鉄族金属を析出させるようにすることにより、鉄族金属イオン含有廃液の液性状に左右されることなく、適切な電着条件にて鉄族金属を電着除去することができるものである。   In view of this, the inventors of the Japanese Patent Application No. 2013-221322 efficiently used iron group metal ions without being affected by the liquid properties of the iron group metal ion-containing waste liquid in the electrodeposition treatment of the iron group metal ion-containing liquid. In particular, a processing method and a processing apparatus for an iron group metal ion-containing liquid that is deposited and removed from the liquid have been proposed. Specifically, iron group metal ion-containing waste liquid is introduced into the anode chamber of the electrodeposition tank in which the anode chamber with the anode and the cathode chamber with the cathode are separated by a cation exchange membrane, and the catholyte is introduced into the cathode chamber. Then, by applying current between the anode and the cathode, the iron group metal ions in the liquid in the anode chamber are moved into the catholyte in the cathode chamber so that the iron group metal is deposited on the cathode. The iron group metal can be electrodeposited and removed under appropriate electrodeposition conditions without being influenced by the liquid properties of the group metal ion-containing waste liquid.

特公昭61−9599号公報Japanese Patent Publication No. 61-9599 特許第3657747号公報Japanese Patent No. 3657747 特開2004−28697号公報JP 2004-28697 A 特開2013−44588号公報JP 2013-44588 A 特許第4438988号公報Japanese Patent No. 4438898 特願2013−221322Japanese Patent Application No. 2013-221322

本発明者らは、特願2013−221322による処理効率について更に検討を重ねた結果、この処理方法及び処理装置においては、陰極液中の鉄族金属の電着速度は比較的速やかであるものの、廃液(陽極液)から陰極液へ鉄族金属イオンを移動させる際の、鉄族金属イオンのカチオン交換膜透過速度が遅いために、この鉄族金属イオンのカチオン交換膜透過が処理速度の律速段階となることを見出した。   As a result of further examination of the processing efficiency according to Japanese Patent Application No. 2013-221322, the present inventors, in this processing method and processing apparatus, although the electrodeposition rate of the iron group metal in the catholyte is relatively rapid, When iron group metal ions are transferred from waste liquid (anolyte) to catholyte, the permeation rate of iron group metal ions through the cation exchange membrane is slow. I found out that

本発明は、特願2013−221322の発明を更に改良するものであって、鉄族金属イオンのカチオン交換膜透過速度を高めて処理効率を向上させた鉄族金属イオン含有液の処理方法及び処理装置を提供することを課題とする。   The present invention further improves the invention of Japanese Patent Application No. 2013-221322, and improves the processing efficiency by increasing the permeation rate of iron group metal ions through the cation exchange membrane, and the processing method and processing of the liquid containing iron group metal ions It is an object to provide an apparatus.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、カチオン交換膜を複数枚配した電気透析槽を用いることにより、電極面積に対して、鉄族金属イオンが透過するカチオン交換膜の膜面積を大きくとることができ、この結果、電流値を大きくすることなく、単位時間内の鉄族金属イオン量を大幅に増加させて、当該電気透析槽におけるカチオン交換膜透過速度を向上させることができること、また、電気透析槽と電着槽とを分けることにより、電気透析と電着のそれぞれに適した電流密度を設定できると共に、電着槽を簡素化し、使用済み電極の交換作業を簡易なものとすることができることがわかり、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a dialysis tank in which a plurality of cation exchange membranes are arranged, so that cation exchange that allows iron group metal ions to permeate the electrode area. The membrane area of the membrane can be increased. As a result, the permeation rate of the cation exchange membrane in the electrodialysis tank is improved by greatly increasing the amount of iron group metal ions per unit time without increasing the current value. In addition, by separating the electrodialysis tank and the electrodeposition tank, it is possible to set the current density suitable for each of electrodialysis and electrodeposition, simplify the electrodeposition tank, and replace the used electrode As a result, the present invention was completed.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを、カチオン交換膜を複数枚配した電気透析槽に導入し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析工程と、該電気透析槽から流出した鉄族金属イオンを含む電着液を、陽極と陰極を配した電着槽に導入し、該電着液中の該鉄族金属を陰極上に電着させて、該電着液から該鉄族金属イオンを除去する電着工程と、該電着工程で鉄族金属イオンが除去された電着液を前記電気透析工程に送給する電着液循環工程とを有することを特徴とする鉄族金属イオン含有液の処理方法。 [1] An iron group metal ion-containing solution and an electrodeposition solution containing a ligand that forms a complex with the iron group metal ion are introduced into an electrodialysis tank provided with a plurality of cation exchange membranes. An electrodialysis step of removing iron group metal ions in the iron group metal ion-containing liquid by allowing the iron group metal ions in the metal ion-containing liquid to pass through the cation exchange membrane and transfer to the electrodeposition liquid And introducing an electrodeposition liquid containing iron group metal ions flowing out of the electrodialysis tank into an electrodeposition tank provided with an anode and a cathode, and electrodepositing the iron group metal in the electrodeposition liquid on the cathode An electrodeposition process for removing the iron group metal ions from the electrodeposition liquid, and an electrodeposition liquid circulation process for feeding the electrodeposition liquid from which the iron group metal ions have been removed in the electrodeposition process to the electrodialysis process The processing method of the iron group metal ion containing liquid characterized by these.

[2] 前記鉄族金属イオン含有液は、原子力発電所の除染で発生するpH5未満の酸性除染廃液であり、前記電気透析工程で該廃液中の鉄族金属イオンを除去した後、除染液として再利用することを特徴とする[1]に記載の鉄族金属イオン含有液の処理方法。 [2] The iron group metal ion-containing liquid is an acid decontamination waste liquid having a pH of less than 5 that is generated by decontamination of a nuclear power plant, and after removing the iron group metal ions in the waste liquid in the electrodialysis step, The method for treating an iron group metal ion-containing solution according to [1], wherein the method is reused as a dyeing solution.

[3] 前記電気透析槽は、陽極及び陰極と、該陽極に対峙して配置された第1のバイポーラ膜と、該陰極に対峙して配置された第2のバイポーラ膜と、該第1のバイポーラ膜と第2のバイポーラ膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3のバイポーラ膜とを備え、該陽極と該第1のバイポーラ膜との間が陽極室、該陰極と該第2のバイポーラ膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該バイポーラ膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該バイポーラ膜との間が濃縮室となっており、該脱イオン室に前記鉄族金属イオン含有液を通液すると共に、該濃縮室に前記電着液を通液することを特徴とする[1]又は[2]に記載の鉄族金属イオン含有液の処理方法。 [3] The electrodialysis tank includes an anode and a cathode, a first bipolar membrane disposed opposite the anode, a second bipolar membrane disposed opposite the cathode, and the first bipolar membrane. A plurality of cation exchange membranes arranged between the bipolar membrane and the second bipolar membrane, and a third bipolar membrane arranged between the cation exchange membranes, the anode and the first An anode chamber between the bipolar membrane and a cathode chamber between the cathode and the second bipolar membrane, the cation exchange membrane and the bipolar membrane provided on the anode side of the cation exchange membrane; A deionization chamber, and a concentration chamber between the cation exchange membrane and the bipolar membrane provided on the cathode side of the cation exchange membrane, and the iron group metal ion-containing liquid in the deionization chamber And passing the electrodeposition liquid into the concentration chamber. Processing method of an iron group metal ion-containing solution according to [1] or [2] to symptoms.

[4] 前記電気透析槽は、陽極及び陰極と、該陽極に対峙して配置された第1の水素選択透過型カチオン交換膜と、該陰極に対峙して配置された第2の水素選択透過型カチオン交換膜と、該第1の水素選択透過型カチオン交換膜と第2の水素選択透過型カチオン交換膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3の水素選択透過型カチオン交換膜とを備え、該陽極と該第1の水素選択透過型カチオン交換膜との間が陽極室、該陰極と該第2の水素選択透過型カチオン交換膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該水素選択透過型カチオン交換膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該水素選択透過型カチオン交換膜との間が濃縮室となっており、該脱イオン室に前記鉄族金属イオン含有液を通液すると共に、該濃縮室に前記電着液を通液することを特徴とする[1]又は[2]に記載の鉄族金属イオン含有液の処理方法。 [4] The electrodialysis tank includes an anode and a cathode, a first hydrogen selective permeable cation exchange membrane disposed opposite to the anode, and a second hydrogen selective permeation disposed opposite to the cathode. Type cation exchange membranes, a plurality of cation exchange membranes arranged between the first hydrogen selective permeable cation exchange membrane and the second hydrogen selective permeable cation exchange membrane, and between the cation exchange membranes And a third hydrogen selective permeable cation exchange membrane disposed between the anode and the first hydrogen selective permeable cation exchange membrane, an anode chamber, the cathode and the second hydrogen selective permeable membrane. Between the cation exchange membrane is a cathode chamber, and between the cation exchange membrane and the hydrogen selective permeable cation exchange membrane provided on the anode side of the cation exchange membrane, a deionization chamber, the cation exchange The hydrogen provided on the cathode side of the membrane and the cation exchange membrane A concentration chamber is formed between the permselective cation exchange membrane, the iron group metal ion-containing liquid is passed through the deionization chamber, and the electrodeposition liquid is passed through the concentration chamber. The processing method of the iron group metal ion containing liquid as described in [1] or [2].

[5] 前記電着槽は、陽極を備えた陽極室と陰極を備えた陰極室とがカチオン交換膜で仕切られており、該陰極室に前記鉄族金属イオンを含む電着液を通液することを特徴とする[1]ないし[4]のいずれかに記載の鉄族金属イオン含有液の処理方法。 [5] In the electrodeposition tank, an anode chamber having an anode and a cathode chamber having a cathode are partitioned by a cation exchange membrane, and an electrodeposition solution containing the iron group metal ions is passed through the cathode chamber. The method for treating an iron group metal ion-containing liquid according to any one of [1] to [4].

[6] 前記電着槽の陰極室から流出した電着液が電着液貯槽を経て前記電気透析槽に導入され、前記電気透析槽から流出した前記鉄族金属イオンを含む電着液が該電着液貯槽を経て該電着槽の陰極室に導入されることを特徴とする[5]に記載の鉄族金属イオン含有液の処理方法。 [6] The electrodeposition liquid flowing out from the cathode chamber of the electrodeposition tank is introduced into the electrodialysis tank through an electrodeposition liquid storage tank, and the electrodeposition liquid containing the iron group metal ions flowing out from the electrodialysis tank is The method for treating a liquid containing an iron group metal ion according to [5], wherein the treatment is introduced into a cathode chamber of the electrodeposition tank through an electrodeposition liquid storage tank.

[7] 前記電気透析槽の陽極室及び/又は陰極室を通液した電極液が、電極液貯槽を経て前記電着槽の陽極室に通液され、該電着槽の陽極室から流出した陽極液が該電極液貯槽を経て前記電気透析槽の陽極室及び/又は陰極室に通液されることを特徴とする[5]又は[6]に記載の鉄族金属イオン含有液の処理方法。 [7] The electrode solution that has passed through the anode chamber and / or the cathode chamber of the electrodialysis tank is passed through the electrode solution storage tank to the anode chamber of the electrodeposition tank, and flows out of the anode chamber of the electrodeposition tank. The method for treating an iron group metal ion-containing solution according to [5] or [6], wherein the anolyte is passed through the electrode solution storage tank to the anode chamber and / or the cathode chamber of the electrodialysis tank. .

[8] 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極と陰極室との間に設けられた複数枚のカチオン交換膜とを有する電気透析槽と、該電気透析槽の陽極及び陰極間に通電する通電手段と、該電気透析槽に鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを通液する手段とを有し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析装置と、陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを仕切るカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該電着槽の陰極室に前記電気透析槽から流出した前記鉄族金属イオンを含む電着液を通液する手段とを有し、該鉄族金属イオンを含む電着液中の該鉄族金属を該陰極上に電着させて該電着液から該鉄族金属イオンを除去する電着装置と、該電着槽から流出した該鉄族金属イオンが除去された電着液を前記電気透析槽に送給する手段とを備えることを特徴とする鉄族金属イオン含有液の処理装置。 [8] An electrodialysis tank having an anode chamber having an anode, a cathode chamber having a cathode, and a plurality of cation exchange membranes provided between the anode and the cathode chamber; An energizing means for energizing between the anode and the cathode; and a means for passing an iron group metal ion-containing liquid through the electrodialysis tank and an electrodeposition liquid containing a ligand that forms a complex with the iron group metal ion. The iron group metal ions in the iron group metal ion-containing liquid are transferred to the electrodeposition liquid through the cation exchange membrane by passing the iron group metal ions in the iron group metal ion-containing liquid. An electrodialysis apparatus, an anode chamber having an anode, a cathode chamber having a cathode, an electrodeposition tank having a cation exchange membrane for partitioning the anode chamber and the cathode chamber, and between the anode and the cathode Energizing means for energizing, and the iron group metal ion flowing out from the electrodialysis tank into the cathode chamber of the electrodeposition tank. A means for passing an electrodeposition solution containing iron, and electrodepositing the iron group metal in the electrodeposition solution containing iron group metal ions on the cathode to form the iron group metal from the electrodeposition solution An iron group metal ion, comprising: an electrodeposition apparatus for removing ions; and means for feeding the electrodeposition liquid from which the iron group metal ions flowing out from the electrodeposition tank have been removed to the electrodialysis tank Processing equipment for contained liquid.

[9] 前記鉄族金属イオン含有液は、原子力発電所の除染で発生するpH5未満の酸性除染廃液であり、前記電気透析装置で鉄族金属イオンを除去した該廃液が除染液として再利用されることを特徴とする[8]に記載の鉄族金属イオン含有液の処理装置。 [9] The iron group metal ion-containing liquid is an acidic decontamination waste liquid having a pH of less than 5 generated by decontamination of a nuclear power plant, and the waste liquid from which iron group metal ions have been removed by the electrodialyzer is used as a decontamination liquid. The processing apparatus for an iron group metal ion-containing liquid according to [8], wherein the processing apparatus is reused.

[10] 前記電気透析槽は、陽極及び陰極と、該陽極に対峙して配置された第1のバイポーラ膜と、該陰極に対峙して配置された第2のバイポーラ膜と、該第1のバイポーラ膜と第2のバイポーラ膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3のバイポーラ膜とを備え、該陽極と該第1のバイポーラ膜との間が陽極室、該陰極と該第2のバイポーラ膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該バイポーラ膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該バイポーラ膜との間が濃縮室となっており、該脱イオン室に前記鉄族金属イオン含有液を通液する手段と、該濃縮室に前記電着液を通液する手段とを有することを特徴とする[8]又は[9]に記載の鉄族金属イオン含有液の処理装置。 [10] The electrodialysis tank includes an anode and a cathode, a first bipolar membrane disposed opposite the anode, a second bipolar membrane disposed opposite the cathode, and the first bipolar membrane. A plurality of cation exchange membranes arranged between the bipolar membrane and the second bipolar membrane, and a third bipolar membrane arranged between the cation exchange membranes, the anode and the first An anode chamber between the bipolar membrane and a cathode chamber between the cathode and the second bipolar membrane, the cation exchange membrane and the bipolar membrane provided on the anode side of the cation exchange membrane; A deionization chamber, and a concentration chamber between the cation exchange membrane and the bipolar membrane provided on the cathode side of the cation exchange membrane, and the iron group metal ion-containing liquid in the deionization chamber Means for passing the liquid and means for passing the electrodeposition liquid into the concentrating chamber Processor of iron group metal ion-containing solution having the constitution [8] or [9], further comprising.

[11] 前記電気透析槽は、陽極及び陰極と、該陽極に対峙して配置された第1の水素選択透過型カチオン交換膜と、該陰極に対峙して配置された第2の水素選択透過型カチオン交換膜と、該第1の水素選択透過型カチオン交換膜と第2の水素選択透過型カチオン交換膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3の水素選択透過型カチオン交換膜とを備え該陽極と該第1の水素選択透過型カチオン交換膜との間が陽極室、該陰極と該第2の水素選択透過型カチオン交換膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該水素選択透過型カチオン交換膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該水素選択透過型カチオン交換膜との間が濃縮室となっており、該脱イオン室に前記鉄族金属イオン含有液を通液する手段と、該濃縮室に前記電着液を通液する手段とを有することを特徴とする[8]又は[9]に記載の鉄族金属イオン含有液の処理装置。 [11] The electrodialysis tank includes an anode and a cathode, a first hydrogen selective permeation type cation exchange membrane disposed so as to face the anode, and a second hydrogen selective permeation disposed so as to face the cathode. Type cation exchange membranes, a plurality of cation exchange membranes arranged between the first hydrogen selective permeable cation exchange membrane and the second hydrogen selective permeable cation exchange membrane, and between the cation exchange membranes And a third hydrogen selective permeable cation exchange membrane disposed between the anode and the first hydrogen selective permeable cation exchange membrane, an anode chamber, the cathode and the second hydrogen selective permeable cation Between the exchange membrane is a cathode chamber, and between the cation exchange membrane and the hydrogen selective permeable cation exchange membrane provided on the anode side of the cation exchange membrane, a deionization chamber, the cation exchange membrane And the hydrogen provided on the cathode side of the cation exchange membrane A concentration chamber is formed between the permselective cation exchange membrane, means for passing the iron group metal ion-containing liquid into the deionization chamber, and means for passing the electrodeposition liquid into the concentration chamber; The processing apparatus for an iron group metal ion-containing liquid according to [8] or [9], wherein

[12] 更に電着液貯槽を備え、前記電着槽の陰極室から流出した電着液を該電着液貯槽に導入する手段と、該電着液貯槽内の電着液を該電着槽の陰極室に導入する手段と、前記電気透析槽の濃縮室から流出した電着液を該電着液貯槽に導入する手段と、該電着液貯槽内の電着液を前記電気透析槽の濃縮室に導入する手段とを有することを特徴とする[8]ないし[11]のいずれかに記載の鉄族金属イオン含有液の処理装置。 [12] Further comprising an electrodeposition liquid storage tank, means for introducing the electrodeposition liquid flowing out from the cathode chamber of the electrodeposition tank into the electrodeposition liquid storage tank, and the electrodeposition liquid in the electrodeposition liquid storage tank Means for introducing into the cathode chamber of the tank, means for introducing the electrodeposition liquid flowing out from the concentration chamber of the electrodialysis tank into the electrodeposition liquid storage tank, and the electrodeposition liquid in the electrodeposition liquid storage tank to the electrodialysis tank And an iron group metal ion-containing liquid treatment apparatus as set forth in any one of [8] to [11].

[13] 更に電極液貯槽を備え、前記電着槽の陽極室から流出した陽極液を該電極液貯槽に導入する手段と、該電極液貯槽内の電極液を該電着槽の陽極室に導入する手段と、前記電気透析槽の陽極室及び/又は陰極室から流出した電極液を該電極液貯槽に導入する手段と、該電極液貯槽内の電極液を前記電気透析槽の陽極室及び/又は陰極室に導入する手段とを有することを特徴とする[8]ないし[12]のいずれかに記載の鉄族金属イオン含有液の処理装置。 [13] An electrode liquid storage tank is further provided, and means for introducing the anolyte flowing out from the anode chamber of the electrodeposition tank into the electrode liquid storage tank; and the electrode liquid in the electrode liquid storage tank in the anode chamber of the electrodeposition tank Means for introducing, means for introducing the electrode liquid flowing out from the anode chamber and / or cathode chamber of the electrodialysis tank into the electrode liquid storage tank, and the electrode liquid in the electrode liquid storage tank to the anode chamber of the electrodialysis tank and And / or an iron group metal ion-containing liquid treating apparatus as set forth in any one of [8] to [12].

本発明によれば、律速過程となる鉄族金属イオンのカチオン交換膜透過速度を、電極面積に対してカチオン交換膜面積を大きくとることができ、これにより、電流値を大きくすることなく、処理速度を向上させることができる。また、電気透析槽と電着槽を分けることにより、電気透析と電着のそれぞれに適した電流密度を設定できると共に、電着槽構成を簡素化し、使用済み電極の交換作業を簡易に行うことができるようになる。   According to the present invention, the cation exchange membrane permeation rate of the iron group metal ions, which is the rate-determining process, can be increased with respect to the electrode area, and thereby the treatment can be performed without increasing the current value. Speed can be improved. In addition, by separating the electrodialysis tank and the electrodeposition tank, it is possible to set the current density suitable for each of electrodialysis and electrodeposition, simplify the electrodeposition tank configuration, and easily replace the used electrode Will be able to.

本発明の実施の形態の一例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows an example of embodiment of this invention. 本発明の実施の形態の他の例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows the other example of embodiment of this invention. (a)図は実施例1〜3及び比較例1,2における模擬廃液のCo濃度の経時変化を示すグラフであり、(b)図は同電着液のCo濃度の経時変化を示すグラフである。(A) The figure is a graph which shows a time-dependent change of Co density | concentration of the simulation waste liquid in Examples 1-3 and Comparative Examples 1 and 2, (b) A figure is a graph which shows the time-dependent change of Co density | concentration of the same electrodeposition liquid. is there. (a)図は実施例1〜3及び比較例1,2における模擬廃液のFe濃度の経時変化を示すグラフであり、(b)図は同電着液のFe濃度の経時変化を示すグラフである。(A) The figure is a graph which shows the time-dependent change of Fe density | concentration of the simulation waste liquid in Examples 1-3 and Comparative Examples 1 and 2, (b) The figure is a graph which shows the time-dependent change of Fe density | concentration of the electrodeposition liquid. is there.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

[鉄族金属イオン含有液の処理装置]
まず、図1,2を参照して本発明の鉄族金属イオン含有液の処理装置の実施の形態を説明する。
図1,2は、本発明の鉄族金属イオン含有液の処理装置の実施の形態の一例を示す系統図である。
なお、図1,2では、鉄族金属イオン含有液として、原子力発電所の除染工程で発生するpHが5未満の酸性除染廃液(以下、単に「廃酸」と記載する。)を処理し、電気透析槽で鉄族金属イオンを除去した後、除染液として再利用する場合を例示して本発明を説明するが、本発明は何らこの廃酸の処理に限定されるものではない。
[Processing equipment for iron group metal ion-containing liquid]
First, an embodiment of a processing apparatus for an iron group metal ion-containing liquid according to the present invention will be described with reference to FIGS.
1 and 2 are system diagrams showing an example of an embodiment of a processing apparatus for an iron group metal ion-containing liquid according to the present invention.
In FIGS. 1 and 2, an acidic decontamination waste liquid having a pH of less than 5 (hereinafter simply referred to as “waste acid”) generated in the decontamination process of a nuclear power plant is treated as the iron group metal ion-containing liquid. However, the present invention will be described by exemplifying a case where iron group metal ions are removed in an electrodialysis tank and then reused as a decontamination solution. However, the present invention is not limited to the treatment of this waste acid. .

図1の鉄族金属イオン含有液の処理装置は、電気透析槽10と、電着槽20を有する。
まず、電気透析槽10について説明する。電気透析槽10は、陽極11Aと陰極12Aとの間にバイポーラ膜BPとカチオン交換膜CMとが交互に配置されている。
陽極11Aに対峙してバイポーラ膜(第1のバイポーラ膜)BPが配置され、陽極11Aと第1のバイポーラ膜BPとの間が陽極室11とされている。
陰極12Aに対峙してバイポーラ膜BP(第2のバイポーラ膜)BPが配置され、陰極12Aと第2のバイポーラ膜BPとの間が陰極室12とされている。
The processing apparatus for an iron group metal ion-containing liquid in FIG. 1 includes an electrodialysis tank 10 and an electrodeposition tank 20.
First, the electrodialysis tank 10 will be described. In the electrodialysis tank 10, bipolar membranes BP and cation exchange membranes CM are alternately arranged between the anode 11A and the cathode 12A.
A bipolar film (first bipolar film) BP is arranged opposite to the anode 11A, and an anode chamber 11 is formed between the anode 11A and the first bipolar film BP.
A bipolar film BP (second bipolar film) BP is disposed opposite to the cathode 12A, and a cathode chamber 12 is formed between the cathode 12A and the second bipolar film BP.

陽極室11を区画形成する第1のバイポーラ膜BPと陰極室12を区画形成する第2のバイポーラ膜BPとの間には、所定の間隔をおいて複数枚(図1では3枚)のカチオン交換膜CMが配置され、カチオン交換膜CM同士の間に更に間隔をおいてバイポーラ膜(第3のバイポーラ膜)BPが配置されることにより、各々通液室が形成されている。   A plurality of (three in FIG. 1) cations are provided at a predetermined interval between the first bipolar film BP that partitions the anode chamber 11 and the second bipolar film BP that partitions the cathode chamber 12. The exchange membrane CM is arranged, and the bipolar membrane (third bipolar membrane) BP is arranged at a further interval between the cation exchange membranes CM, whereby a liquid passage chamber is formed.

カチオン交換膜CMの陽極11A側の室は、廃酸が通液される脱イオン室13であり、カチオン交換膜CMの陰極12A側の室は、電着液が通液される濃縮室14である。   The chamber on the anode 11A side of the cation exchange membrane CM is a deionization chamber 13 through which waste acid is passed, and the chamber on the cathode 12A side of the cation exchange membrane CM is in a concentration chamber 14 through which an electrodeposition solution is passed. is there.

バイポーラ膜BPとは、カチオン交換膜層とアニオン交換膜層が張り合わされた構造を持つイオン交換膜であり、陽極11A側にアニオン交換膜層を、陰極12A側にカチオン交換膜層を向けて配置される。バイポーラ膜BPは、電圧を印加しても、カチオンやアニオンを透過せず、バイポーラ膜BP内で水が水素イオンと水酸化物イオンに解離することにより通電される。   The bipolar membrane BP is an ion exchange membrane having a structure in which a cation exchange membrane layer and an anion exchange membrane layer are bonded to each other, and the anion exchange membrane layer is disposed on the anode 11A side and the cation exchange membrane layer is disposed on the cathode 12A side. Is done. Even if a voltage is applied, the bipolar membrane BP does not transmit cations or anions, and is energized by dissociating water into hydrogen ions and hydroxide ions in the bipolar membrane BP.

このため、図1の電気透析槽10では、陽極11Aと陰極12Aの間に電圧を印加することにより、脱イオン室13を流通する廃酸中の鉄族金属イオンが、カチオン交換膜CMを透過して、濃縮室14を流通する電着液中に移動する。これにより、廃酸中の鉄族金属イオンが除去される。廃酸中の酸イオン(ここでは硫酸イオンおよび硫酸水素イオン)は陽極11A側に電気的に引かれるが、バイポーラ膜BPは酸イオンを透過させないことから、廃酸中に留まるため、電気透析処理後の液は酸液として再利用可能となる。   For this reason, in the electrodialysis tank 10 of FIG. 1, the iron group metal ion in the waste acid which distribute | circulates the deionization chamber 13 permeate | transmits the cation exchange membrane CM by applying a voltage between the anode 11A and the cathode 12A. Then, it moves into the electrodeposition liquid flowing through the concentration chamber 14. Thereby, the iron group metal ion in a waste acid is removed. Acid ions (in this case, sulfate ions and hydrogen sulfate ions) in the waste acid are electrically attracted to the anode 11A side. However, since the bipolar membrane BP does not permeate the acid ions, it remains in the waste acid. The later liquid can be reused as an acid liquid.

図1では、ラインL,L1A,L1BとラインL1Cを経て電気透析槽10の脱イオン室13に導入された廃酸が、電気透析槽10における電気透析で鉄族金属イオンが除去された後、ラインL2A,L2B,L2CとラインLを経て除染工程へ返送され、再利用される。 In FIG. 1, the waste acid introduced into the deionization chamber 13 of the electrodialysis tank 10 through the lines L 1 , L 1A , L 1B and the line L 1C is removed from the iron group metal ions by electrodialysis in the electrodialysis tank 10. Then, it is returned to the decontamination process through the lines L 2A , L 2B , L 2C and the line L 2 and reused.

一方、電着液は、電着液貯槽40から、ポンプPにより、ラインLとラインL3A,L3B,L3Cを経て電気透析槽10の濃縮室14に導入される。電気透析槽10における電気透析で、脱イオン室13からカチオン交換膜CMを透過して濃縮室14に移動した鉄族金属イオンを含む電着液はラインL4A,L4B,L4CとラインLを経て電着液貯槽40に戻される。この電着液貯槽40内の電着液は、後述の通り、電着槽20で鉄族金属イオンが除去されるため、電気透析槽10には、この鉄族金属イオンが除去された電着液が送給される。 On the other hand, the electrodeposition liquid is conductive from the destination solution storage tank 40 by a pump P 1, line L 3 and the line L 3A, L 3B, it is introduced through the L 3C to concentrating compartment 14 of the electrodialysis cell 10. Electrodeposition solutions containing iron group metal ions that have permeated the cation exchange membrane CM from the deionization chamber 13 and moved to the concentration chamber 14 by electrodialysis in the electrodialysis tank 10 are line L 4A , L 4B , L 4C and line L 4 is returned to the electrodeposition liquid storage tank 40. As described later, since the iron group metal ions are removed from the electrodeposition liquid storage tank 40 in the electrodeposition tank 20, the electrodeposition liquid in the electrodeposition liquid storage tank 40 is electrodeposited from the iron group metal ions. Liquid is delivered.

電気透析槽10の陽極室11及び陰極室12には、電解質を含む電極液が循環流通される。電解質としては、陽極11Aでの酸化や陰極12Aでの還元、陰極12Aでの析出が起こらないものを選定する必要があり、硫酸もしくは硫酸のアルカリ金属塩が好適である。   An electrode solution containing an electrolyte is circulated in the anode chamber 11 and the cathode chamber 12 of the electrodialysis tank 10. It is necessary to select an electrolyte that does not cause oxidation at the anode 11A, reduction at the cathode 12A, or precipitation at the cathode 12A, and sulfuric acid or an alkali metal salt of sulfuric acid is preferable.

図1では、電着槽20の陽極液と共通の電極液貯槽30を設け、電極液貯槽30内の電極液をポンプPによりラインLを経て電気透析槽10の陽極室11に導入した後、ラインLを経て陰極室12に導入し、ラインLを経て電極液貯槽30に戻す循環系路と、電極液貯槽30内の電極液をポンプPによりラインLを経て電着槽20の陽極室21に導入し、ラインLを経て電極液貯槽30に戻す循環系路とを形成しているが、何らこの態様に限定されるものではなく、各電極室毎に電極液貯槽を設けてもよい。 In FIG. 1, an electrode liquid storage tank 30 common to the anolyte in the electrodeposition tank 20 is provided, and the electrode liquid in the electrode liquid storage tank 30 is introduced into the anode chamber 11 of the electrodialysis tank 10 via the line L 5 by the pump P 2 . Thereafter, the electrode is introduced into the cathode chamber 12 via the line L 6 and returned to the electrode liquid storage tank 30 via the line L 7 , and the electrode liquid in the electrode liquid storage tank 30 is electrodeposited via the line L 8 by the pump P 3. introduced into the anode compartment 21 of the tank 20, but are formed a circulation path for returning the electrode solution storage tank 30 via line L 9, is not limited in any way to this embodiment, electrode solution for each electrode chamber A storage tank may be provided.

図1の電気透析槽10では、カチオン交換膜CMを3枚設け、脱イオン室13を3室形成しているが、カチオン交換膜CMの枚数は、2枚以上であればよく、何ら3枚に限定されない。電気透析槽のカチオン交換膜の枚数を増やすほど、カチオン交換膜面積が大きくなり、鉄族金属イオンの透過速度は速くなるが、過度に枚数を増やすと、電気透析槽全体の抵抗が大きくなり、消費電力が上昇するとともに、電気透析槽内の温度上昇が起こる。電気透析槽の温度が40℃以上となるとイオン交換膜の劣化の恐れがあるため、電気透析槽の温度が上昇傾向にある場合は、電気透析槽内の温度が40℃以上にならないように、必要に応じて廃酸、電着液又は電極液を冷却することが好ましい。   In the electrodialysis tank 10 of FIG. 1, three cation exchange membranes CM are provided and three deionization chambers 13 are formed. However, the number of cation exchange membranes CM may be two or more, and any three of them. It is not limited to. As the number of cation exchange membranes in the electrodialysis tank increases, the cation exchange membrane area increases and the permeation rate of iron group metal ions increases, but if the number is increased excessively, the resistance of the entire electrodialysis tank increases. As the power consumption increases, the temperature in the electrodialysis tank increases. If the temperature of the electrodialysis tank becomes 40 ° C or higher, the ion exchange membrane may be deteriorated. Therefore, when the temperature of the electrodialysis tank tends to increase, the temperature in the electrodialysis tank should not exceed 40 ° C. It is preferable to cool the waste acid, electrodeposition liquid or electrode liquid as necessary.

また、図1では、脱イオン室13の廃酸と濃縮室14の電着液を同方向に通液させているが、これらは互いに反対方向に通液させてもよい。また、陽極室11及び陰極室12の電極液の通液方向についても特に制限はない。   In FIG. 1, the waste acid in the deionization chamber 13 and the electrodeposition solution in the concentration chamber 14 are passed in the same direction, but they may be passed in opposite directions. Moreover, there is no restriction | limiting in particular also about the flowing direction of the electrode liquid of the anode chamber 11 and the cathode chamber 12. FIG.

なお、電気透析槽10のカチオン交換膜CMとバイポーラ膜BPとの間には、膜のたわみ等で膜同士が密着して流路が塞がらないように、適当なスペーサを設けるのが好ましい。スペーサの形状は、流路が確保されるものであれば特に限定されず、網状、ハニカム状、ボール状等どのようなものでも採用可能である。スペーサの材質は、通液する液の性状に応じて選定することが好ましく、前述の廃酸を処理する場合は、耐酸性のあるものを選定する。   In addition, it is preferable to provide an appropriate spacer between the cation exchange membrane CM and the bipolar membrane BP of the electrodialysis tank 10 so as to prevent the membranes from coming into close contact with each other due to membrane deflection or the like. The shape of the spacer is not particularly limited as long as the flow path is secured, and any shape such as a net shape, a honeycomb shape, or a ball shape can be adopted. The material of the spacer is preferably selected according to the properties of the liquid to be passed, and when the above-mentioned waste acid is treated, a material having acid resistance is selected.

次に、電着槽20について説明する。
電着槽としては、図1に示すように、陽極21Aが配置された陽極室21と陰極22Aが配置された陰極室22とがカチオン交換膜CMで区画された2室型の電着槽20を使用するのが好適である。電気透析槽10から電着液貯槽40に送られた鉄族金属イオンを含んだ電着液は、ポンプPによりラインL10を経て電着槽20の陰極室22に導入される。電着槽20の陽極21Aと陰極22A間に電圧を印加することにより、電着液内の鉄族金属イオンは陰極22A上に鉄族金属として析出し、電着固定化される。
Next, the electrodeposition tank 20 will be described.
As the electrodeposition tank, as shown in FIG. 1, a two-chamber electrodeposition tank 20 in which an anode chamber 21 in which an anode 21A is arranged and a cathode chamber 22 in which a cathode 22A is arranged is partitioned by a cation exchange membrane CM. Is preferably used. Containing iron group metals ions electrodeposition solution sent to the electrodialysis cell 10 color electrodeposition solution storage tank 40 is introduced into the cathode chamber 22 of the via line L 10 by the pump P 4 electrodeposition tank 20. By applying a voltage between the anode 21A and the cathode 22A of the electrodeposition tank 20, the iron group metal ions in the electrodeposition liquid are deposited as an iron group metal on the cathode 22A and are electrodeposited and immobilized.

電着槽20の陽極液は電気透析槽10と同様に、陽極21Aでの酸化が起こらない電解質溶液を用いる。図1では、電着槽20の陽極液と、電気透析槽10の電極液を共通化しているが、これらは別々としてもよい。   As in the electrodialysis tank 10, an electrolytic solution that does not cause oxidation at the anode 21 </ b> A is used as the anolyte in the electrodeposition tank 20. In FIG. 1, the anolyte in the electrodeposition tank 20 and the electrode liquid in the electrodialysis tank 10 are shared, but these may be separated.

電気透析槽10と同様、陽極室21の陽極液の通液方向と、陰極室22の電着液の通液方向とは、図1のように同方向であってもよく、反対方向であってもよい。   As in the electrodialysis tank 10, the flow direction of the anolyte in the anode chamber 21 and the flow direction of the electrodeposition liquid in the cathode chamber 22 may be the same as shown in FIG. May be.

本発明における電気透析槽において、カチオン交換膜同士の間に配置するイオン交換膜については、鉄族金属イオンを透過させず(鉄族金属イオンが透過する膜を使用すると、カチオン交換膜を透過して電着液に移行した鉄族金属イオンが、その膜を透過して廃酸中に戻ってしまう)、かつ酸イオンも透過させない(酸イオンが透過する膜を使用すると、酸イオンがその膜を透過して、電着液または陽極室の電極液に移行してしまい、廃酸を酸液として再利用できなくなってしまう)ことが条件である。このような点から、バイポーラ膜に限らず、水素選択型カチオン交換膜を用いることもできる。水素選択透過型カチオン交換膜は、水素イオンの輸率(水素イオンの移動が電流に寄与する割合)が高いカチオン交換膜であり、上記の要求特性を満たすものである。水素選択透過型カチオン交換膜としては、市販品としてAGCエンジニアリング社のセレミオンCMFなどを採用することができる。   In the electrodialysis tank according to the present invention, the ion exchange membrane disposed between the cation exchange membranes does not permeate iron group metal ions (if a membrane through which iron group metal ions permeate is used, the ion exchange membrane permeates the cation exchange membrane. The iron group metal ions that have been transferred to the electrodeposition solution permeate the membrane and return to the waste acid) and do not allow the acid ions to permeate. In the electrodeposition solution or the electrode solution in the anode chamber, and the waste acid cannot be reused as an acid solution). From such a point, not only a bipolar membrane but also a hydrogen selective cation exchange membrane can be used. The hydrogen selective permeation type cation exchange membrane is a cation exchange membrane having a high hydrogen ion transport number (ratio in which the movement of hydrogen ions contributes to the current) and satisfies the above-mentioned required characteristics. As a hydrogen selective permeation type cation exchange membrane, AGC Engineering's Selemion CMF or the like can be adopted as a commercial product.

図2は、電気透析槽10において、バイポーラ膜BPの代りに水素選択透過型カチオン交換膜HCMを用いた点が異なり、その他の構成は図1と同一の構成とされている。図2において、図1におけると同一の機能を奏する部材には同一符号を付してある。   FIG. 2 is different from the electrodialysis tank 10 in that a hydrogen selective permeable cation exchange membrane HCM is used instead of the bipolar membrane BP, and other configurations are the same as those in FIG. 2, members having the same functions as those in FIG. 1 are denoted by the same reference numerals.

本発明においては、図1,2に示すように、電気透析槽と電着槽とを分けて設けているため、電気透析槽における鉄族金属イオンの透析速度と、電着槽における鉄族金属イオンの電着速度のそれぞれが最適となるように電流密度等の条件を設定することができる。
鉄族金属イオンの透析を行う電気透析槽の電流密度は、バイポーラ膜を用いた場合であっても水素選択透過型カチオン交換膜を用いた場合であっても、陰極面積に対して、10〜400mA/cmであることが好ましく、20〜200mA/cmであることがより好ましい。
また、電着槽の電流密度は、陰極面積に対して、5〜200mA/cmであることが好ましく、10〜150mA/cmであることがより好ましい。
In the present invention, as shown in FIGS. 1 and 2, since the electrodialysis tank and the electrodeposition tank are provided separately, the dialysis speed of the iron group metal ions in the electrodialysis tank, and the iron group metal in the electrodeposition tank Conditions such as current density can be set so that each of the ion deposition rates of ions is optimized.
The current density of the electrodialysis tank for dialysis of iron group metal ions is 10 to 10 with respect to the cathode area, regardless of whether a bipolar membrane or a hydrogen selective permeation cation exchange membrane is used. it is preferably 400 mA / cm 2, more preferably 20~200mA / cm 2.
Moreover, it is preferable that it is 5-200 mA / cm < 2 > with respect to a cathode area, and, as for the current density of an electrodeposition tank, it is more preferable that it is 10-150 mA / cm < 2 >.

また、本発明では、電気透析槽と電着槽とを分けて設けているため、電着槽の構成が簡易なものとなり、電着により鉄族金属が析出して付着した陰極を交換する際に、複雑な構成部材に作業が阻害されることなく、容易に交換作業を行うことができる。   Further, in the present invention, since the electrodialysis tank and the electrodeposition tank are provided separately, the structure of the electrodeposition tank is simplified, and when replacing the cathode on which the iron group metal is deposited and deposited by electrodeposition In addition, the replacement work can be easily performed without the work being hindered by complicated constituent members.

このように電気透析槽と電着槽とを有する本発明の鉄族金属イオン含有液の処理装置についても、原子力発電所で使用された廃イオン交換樹脂の除染工程に適用する場合には、特願2013−221322の図2におけると同様に、廃イオン交換樹脂から鉄族金属イオンを溶離させた溶離液を貯留する溶離液貯槽と、廃イオン交換樹脂が充填された充填塔である溶離槽と、溶離槽から排出される酸廃液を貯留する酸廃液貯槽である鉄族金属イオン含有液貯槽を設け、鉄族金属イオン含有液貯槽(酸廃液貯槽)からの酸廃液を、電気透析槽10の脱イオン室13に通液して鉄族金属イオンを除去した後、溶離液貯槽に循環させて溶離液として再利用することができる。   As described above, the iron group metal ion-containing liquid treatment apparatus of the present invention having an electrodialysis tank and an electrodeposition tank, when applied to the decontamination process of waste ion exchange resin used in nuclear power plants, As in FIG. 2 of Japanese Patent Application No. 2013-221322, an eluent storage tank that stores an eluent obtained by eluting iron group metal ions from a waste ion exchange resin, and an elution tank that is a packed tower filled with the waste ion exchange resin And an iron group metal ion-containing liquid storage tank that is an acid waste liquid storage tank for storing the acid waste liquid discharged from the elution tank, and the acid effluent from the iron group metal ion-containing liquid storage tank (acid waste liquid storage tank) After passing through the deionization chamber 13 to remove the iron group metal ions, the iron group metal ions can be circulated to the eluent storage tank and reused as the eluent.

[鉄族金属イオン含有液]
本発明で処理する鉄族金属イオン含有液は、通常、鉄、マンガン、コバルト及びニッケルのうち1種以上、特には鉄、コバルト及びニッケルのうちの1種以上のイオンを含有する液であるが、鉄族金属以外の金属が含まれていても問題ない。特に、本発明は、下記(i),(ii)のような、原子力発電所等から発生する放射性鉄族金属イオン含有廃液、とりわけ、pH5未満、更にはpHが2未満の酸廃液の処理に好適であり、これらの廃液から、鉄族金属イオンを効率的に除去して処理液を再利用することができる。
(i) 原子力発電所における放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を酸溶解した除染廃液
(ii) 原子力発電所での使用済イオン交換樹脂(原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂や、上記(i)の除染廃液から放射性金属イオンを除去するために使用されたイオン交換樹脂)から放射性金属イオンを除去するために酸溶離した溶離酸廃液
上記除染廃液や溶離酸廃液は鉄族金属イオンの一つである放射性コバルトを含むものであるが、本発明によれば、この放射性コバルトを電着槽の陰極上に、嵩が小さい金属態として安定固定化できるというメリットがある。
[Iron group metal ion-containing liquid]
The iron group metal ion-containing liquid to be treated in the present invention is usually a liquid containing one or more of iron, manganese, cobalt and nickel, particularly one or more of iron, cobalt and nickel. There is no problem even if metals other than iron group metals are included. In particular, the present invention is suitable for treating radioactive iron group metal ion-containing waste liquids generated from nuclear power plants, such as the following (i) and (ii), particularly acid waste liquids having a pH of less than 5 and further having a pH of less than 2. It is suitable, and iron group metal ions can be efficiently removed from these waste liquids, and the treatment liquid can be reused.
(i) Primary decontamination equipment and piping contaminated with radioactive materials at nuclear power plants, and decontamination waste liquid that dissolves radioactive materials from the surfaces of metal members of systems containing them
(ii) Used for purification of cooling water systems containing radioactive materials by directly touching fuel rods such as spent ion exchange resins (reactor water purification system (CUW), fuel storage pool water purification system (FPC)) at nuclear power plants. Ion-exchange resin or ion-exchange resin used to remove radioactive metal ions from the decontamination waste liquid of (i) above, elution acid waste liquid that is acid-eluted to remove radioactive metal ions from the above decontamination waste liquid or The elution acid waste liquid contains radioactive cobalt, which is one of iron group metal ions. According to the present invention, the radioactive cobalt can be stably fixed on the cathode of the electrodeposition tank as a metallic state with a small bulk. There is.

[電着液]
本発明で用いる電着液は、鉄族金属イオン含有液中の鉄族金属イオンと錯体を形成する配位子(以下「本発明の錯化剤」と称す場合がある。)を含むものであるが、電着液のpHが低すぎると、電着槽の陰極上に電着した鉄族金属の再溶解が起こり、電着速度が低下する恐れがある一方で、pHが高すぎると、鉄族金属の水酸化物が液中に懸濁物質として発生しやすくなる。このため電着液は、1〜9、特に2〜8となるように、必要に応じてアルカリや酸により適宜pH調整を行うのが好ましい。
[Electrodeposition liquid]
The electrodeposition liquid used in the present invention contains a ligand that forms a complex with an iron group metal ion in the iron group metal ion-containing liquid (hereinafter sometimes referred to as “complexing agent of the present invention”). If the pH of the electrodeposition solution is too low, re-dissolution of the iron group metal electrodeposited on the cathode of the electrodeposition tank may occur, and the electrodeposition rate may decrease. On the other hand, if the pH is too high, the iron group Metal hydroxide tends to be generated as a suspended substance in the liquid. For this reason, it is preferable to adjust pH suitably with an alkali or an acid as needed so that an electrodeposition liquid may be set to 1-9, especially 2-8.

本発明の錯化剤としては、分子内に2つのカルボキシル基を有するジカルボン酸及びその塩(以下、「ジカルボン酸(塩)」と称す場合がある。)、並びに分子内に3つのカルボキシル基を有するトリカルボン酸及びその塩(以下、「トリカルボン酸(塩)」と称す場合がある。)から選択されるものが好ましい。これらは1種のみを用いてもよく、2種以上を混合して使用してもよい。ジカルボン酸(塩)、トリカルボン酸(塩)は、そのキレート効果で電気透析中の懸濁物質の発生を抑制し、電気透析効果の向上に優れた効果を奏する。
これに対して、分子内に1つのカルボキシル基を持つモノカルボン酸では、鉄族金属イオンとの結合力が弱く、液中で鉄族金属の水酸化物からなる懸濁物質が発生する、電着時に陰極に均一に電着しないといった問題が生じる。また、分子内に4つ以上のカルボキシル基を有するカルボン酸を用いると、鉄族金属イオンとの結合力が強すぎて、液中に鉄族金属が保持され、電着の速度が著しく低下するという問題が生じる。
The complexing agent of the present invention includes dicarboxylic acid having two carboxyl groups in the molecule and a salt thereof (hereinafter sometimes referred to as “dicarboxylic acid (salt)”), and three carboxyl groups in the molecule. Those selected from the tricarboxylic acid and salts thereof (hereinafter sometimes referred to as “tricarboxylic acid (salt)”) are preferable. These may use only 1 type and may mix and use 2 or more types. Dicarboxylic acids (salts) and tricarboxylic acids (salts) suppress the generation of suspended substances during electrodialysis due to their chelating effect, and have an excellent effect in improving the electrodialysis effect.
In contrast, a monocarboxylic acid having one carboxyl group in the molecule has a weak binding force with an iron group metal ion and generates a suspended substance composed of an iron group metal hydroxide in the liquid. There is a problem that the electrode is not uniformly deposited on the cathode during deposition. In addition, when a carboxylic acid having four or more carboxyl groups in the molecule is used, the binding force with the iron group metal ion is too strong, the iron group metal is retained in the liquid, and the rate of electrodeposition is significantly reduced. The problem arises.

ジカルボン酸(塩)、トリカルボン酸(塩)としては、下記式(1)で表されるものが、特に、懸濁物質が生じにくく、かつ電気透析及び電着が速やかに進むようになる点で好ましい。下記式(1)で表されるジカルボン酸(塩)やトリカルボン酸(塩)は、分子内のカルボキシル基同士の間に1〜3個の炭素原子が存在するものであり、その形状に由来して、鉄族金属イオンとの間に適度な結合力が得られると推測される。   As dicarboxylic acids (salts) and tricarboxylic acids (salts), those represented by the following formula (1) are particularly difficult in that suspended substances are produced, and electrodialysis and electrodeposition proceed quickly. preferable. The dicarboxylic acid (salt) or tricarboxylic acid (salt) represented by the following formula (1) has 1 to 3 carbon atoms between the carboxyl groups in the molecule, and is derived from its shape. Thus, it is presumed that an appropriate binding force can be obtained with the iron group metal ion.

OOC−(CHX−(NH)−(CX−CX−COOM
…(1)
(式(1)中、X,X,Xは各々独立にH又はOHを表し、X,Xは各々独立にH、OH又はCOOMを表し、M,M,Mは各々独立にH、1価のアルカリ金属又はアンモニウムイオンを表し、a,b,cは各々独立に0又は1の整数を表す。ただし、式(1)において、XとXは同時にCOOMとなることはない。)
M 1 OOC- (CHX 1) a - (NH) b - (CX 2 X 4) c -CX 3 X 5 -COOM 2
... (1)
(In the formula (1), X 1 , X 2 and X 3 each independently represent H or OH, X 4 and X 5 each independently represent H, OH or COOM 3 , M 1 , M 2 , M 3 each independently represent H, monovalent alkali metal or ammonium ion, and a, b, and c each independently represent an integer of 0 or 1. However, in Formula (1), X 4 and X 5 are simultaneously COOM 3 will never be reached.)

本発明に好適なジカルボン酸としては、例えば、シュウ酸(エタン二酸、HOOC−COOH)、マロン酸(プロパン二酸、HOOC−CH−COOH)、コハク酸(ブタン二酸、HOOC−CH−CH−COOH)、グルタル酸(ペンタン二酸、HOOC−CH−CH−CH−COOH)、リンゴ酸(2−ヒドロキシブタン二酸、HOOC−CH−CH(OH)−COOH)、酒石酸(2,3−ジヒドロキシブタン二酸、HOOC−CH(OH)−CH(OH)−COOH)、イミノ二酢酸(HOOC−CH−NH−CH−COOH)などが挙げられるが、マロン酸、コハク酸、リンゴ酸、酒石酸、イミノ二酢酸が特に好ましい。トリカルボン酸としては、クエン酸(HOOC−CH−COH(COOH)−CH−COOH)、1,2,3−プロパントリカルボン酸などが挙げられるが、クエン酸が特に好ましい。また、これらのジカルボン酸、トリカルボン酸の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩が挙げられる。 Suitable dicarboxylic acids in the present invention, for example, oxalic acid (ethanedioic acid, HOOC-COOH), malonic acid (propanedioic acid, HOOC-CH 2 -COOH), succinic acid (butanedioic acid, HOOC-CH 2 -CH 2 -COOH), glutaric acid (pentanedioic acid, HOOC-CH 2 -CH 2 -CH 2 -COOH), malic acid (2-hydroxybutanedioic acid, HOOC-CH 2 -CH (OH ) -COOH) , Tartaric acid (2,3-dihydroxybutanedioic acid, HOOC—CH (OH) —CH (OH) —COOH), iminodiacetic acid (HOOC—CH 2 —NH—CH 2 —COOH), etc. Acid, succinic acid, malic acid, tartaric acid and iminodiacetic acid are particularly preferred. Examples of the tricarboxylic acid include citric acid (HOOC—CH 2 —COH (COOH) —CH 2 —COOH), 1,2,3-propanetricarboxylic acid, and citric acid is particularly preferable. In addition, examples of salts of these dicarboxylic acids and tricarboxylic acids include alkali metal salts such as sodium salts and potassium salts, and ammonium salts.

本発明においては、鉄族金属イオン含有液が鉄族金属イオンを複数種含む場合、ジカルボン酸(塩)及び/又はトリカルボン酸(塩)と共にアンモニウム塩を共存させることが好ましい。例えば、CoとFeを含む鉄族金属イオン含有液を本発明により処理する場合、アンモニウム塩を添加しない場合には、通常FeよりもCoの方が電着速度が速く、Coの電着層の上にFeの電着層が生成する形となるが、アンモニウム塩を添加することにより、CoとFeの電着速度がほぼ同等となり、CoとFeが合金状に電着するようになる。CoとFeの電着速度が異なり、Co層とFe層に分かれて電着すると、CoとFeの物性の違いにより、電着物の浮きや剥がれが起きやすくなって、継続的な電着処理ができなくなる恐れがある。   In the present invention, when the iron group metal ion-containing liquid contains a plurality of types of iron group metal ions, it is preferable that an ammonium salt coexists with dicarboxylic acid (salt) and / or tricarboxylic acid (salt). For example, when an iron group metal ion-containing liquid containing Co and Fe is treated according to the present invention, when no ammonium salt is added, Co is generally faster in electrodeposition than Fe, and the electrodeposition layer of Co An Fe electrodeposition layer is formed on the top, but by adding an ammonium salt, the electrodeposition rates of Co and Fe become substantially equal, and Co and Fe are electrodeposited in an alloy form. When the electrodeposition rates of Co and Fe are different and electrodeposition is performed by separating the Co layer and the Fe layer, the electrodeposition tends to float or peel off due to the difference in the physical properties of Co and Fe, and continuous electrodeposition processing is performed. There is a risk that it will not be possible.

アンモニウム塩としては、液中でアンモニウムイオンを生じるものであればよく、例えば、塩化アンモニウム、硫酸アンモニウム、シュウ酸アンモニウム及びクエン酸アンモニウムが好適である。これらのアンモニウム塩は、1種のみを用いてもよく、2種以上を混合して使用してもよい。特に、シュウ酸アンモニウム等のジカルボン酸アンモニウムやクエン酸アンモニウム等のトリカルボン酸アンモニウムを用いると、アンモニウム塩と本発明の錯化剤とを兼ねることができ、ジカルボン酸やトリカルボン酸のキレート効果による懸濁物質の発生抑制効果とCoとFeの電着速度を調整できる効果を1剤で得ることが可能である。   Any ammonium salt may be used as long as it produces ammonium ions in the liquid. For example, ammonium chloride, ammonium sulfate, ammonium oxalate, and ammonium citrate are preferable. These ammonium salts may be used alone or in combination of two or more. In particular, when ammonium dicarboxylate such as ammonium oxalate or ammonium tricarboxylate such as ammonium citrate is used, the ammonium salt and the complexing agent of the present invention can be used, and suspension due to the chelating effect of dicarboxylic acid or tricarboxylic acid It is possible to obtain the effect of suppressing the generation of substances and the effect of adjusting the electrodeposition rate of Co and Fe with one agent.

本発明で用いる電着液中の上記の本発明の錯化剤の濃度については特に制限はないが、電気透析槽の脱イオン室に導入される鉄族金属イオン含有液中の鉄族金属イオンの合計モル濃度に対して、電気透析槽の濃縮室に導入される電着液中の本発明の錯化剤のモル濃度が0.1〜50倍、特に0.5〜10倍であることが好ましく、電着液としては、例えば、本発明の錯化剤を0.01〜20重量%、好ましくは0.1〜5重量%含むpH1〜9、好ましくはpH2〜8の水溶液が用いられる。本発明の錯化剤の量が少な過ぎると、本発明の錯化剤を用いたことによる懸濁物質の発生抑制の効果を十分に得ることができず、多過ぎるとキレート効果が大きくなり過ぎて電着速度が低下する。   The concentration of the complexing agent of the present invention in the electrodeposition liquid used in the present invention is not particularly limited, but iron group metal ions in the liquid containing iron group metal ions introduced into the deionization chamber of the electrodialysis tank The molar concentration of the complexing agent of the present invention in the electrodeposition liquid introduced into the concentration chamber of the electrodialysis tank is 0.1 to 50 times, particularly 0.5 to 10 times the total molar concentration of As the electrodeposition solution, for example, an aqueous solution having a pH of 1 to 9, preferably pH 2 to 8, containing 0.01 to 20% by weight, preferably 0.1 to 5% by weight of the complexing agent of the present invention is used. . If the amount of the complexing agent of the present invention is too small, the effect of suppressing the generation of suspended matter due to the use of the complexing agent of the present invention cannot be sufficiently obtained, and if too large, the chelating effect becomes too large. As a result, the electrodeposition rate decreases.

本発明の錯化剤は、電着槽の陽極に接触してしまうと酸化分解してしまうが、図1,2に示すように、電気透析槽10では、電着液が流通する濃縮室14は直接陽極と触れることがなく、また、電着槽20では、カチオン交換膜CMにより陽極室21と陰極室22が隔てられ、本発明の錯化剤が含まれる電着液は陽極と直接接触することはないため、本発明の錯化剤が酸化されて無駄に消費されることがない。そのため、本発明では、電着液に補充する本発明の錯化剤は非常に少ない量でよく、薬品使用量を少なくできる。   The complexing agent of the present invention is oxidatively decomposed when it comes into contact with the anode of the electrodeposition tank. However, as shown in FIGS. In the electrodeposition tank 20, the anode chamber 21 and the cathode chamber 22 are separated by the cation exchange membrane CM, and the electrodeposition liquid containing the complexing agent of the present invention is in direct contact with the anode. Therefore, the complexing agent of the present invention is not oxidized and wasted. Therefore, in the present invention, the complexing agent of the present invention to be replenished to the electrodeposition solution may be in a very small amount, and the amount of chemicals used can be reduced.

また、アンモニウム塩を用いる場合、アンモニウム塩は、電着液中の濃度が0.01〜20重量%、好ましくは0.1〜5重量%となる量で用いることが好ましい。アンモニウム塩の濃度が低過ぎるとアンモニウム塩を用いたことによる上記効果を十分に得ることができず、高過ぎると効果の向上がなく、薬品使用量が多くなる。   Moreover, when using ammonium salt, it is preferable to use ammonium salt in the quantity from which the density | concentration in an electrodeposition liquid will be 0.01-20 weight%, Preferably it is 0.1-5 weight%. If the concentration of the ammonium salt is too low, the above effect due to the use of the ammonium salt cannot be sufficiently obtained, and if it is too high, the effect is not improved and the amount of chemicals used increases.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1〜3、比較例1,2]
<透析実験>
図1に示す装置(ただし、カチオン交換膜の枚数は表1に示す通り。)を用いて、表1に示す組成の廃酸(鉄さび(α−Fe)が混入し、コバルトを吸着した廃イオン交換樹脂から90℃の硫酸により溶離したpH1.2の酸性廃液)を模擬廃液として処理実験を行った。実験は、図示しない廃酸貯槽内にこの廃酸を400mL入れ、電気透析槽との間を循環させながら行った。表1に示す組成の電着液200mLは、電気透析槽と電着液貯槽との間を循環させ、電着液の電着槽への送液は行わず、電気透析槽での処理効果を確認した。なお、処理時の液温は30℃であった。
[Examples 1 to 3, Comparative Examples 1 and 2]
<Dialysis experiment>
Using the apparatus shown in FIG. 1 (however, the number of cation exchange membranes is as shown in Table 1), the waste acid (iron rust (α-Fe 2 O 3 ) having the composition shown in Table 1 is mixed and adsorbs cobalt. The treatment experiment was carried out using simulated waste liquid (acid waste liquid of pH 1.2, which was eluted from the waste ion exchange resin with sulfuric acid at 90 ° C.). In the experiment, 400 mL of this waste acid was placed in a waste acid storage tank (not shown) and circulated between the electrodialysis tank. 200 mL of the electrodeposition liquid having the composition shown in Table 1 is circulated between the electrodialysis tank and the electrodeposition liquid storage tank, and the treatment effect in the electrodialysis tank is not performed without feeding the electrodeposition liquid to the electrodeposition tank. confirmed. In addition, the liquid temperature at the time of a process was 30 degreeC.

透析実験条件は表1に示す通りであり、透析実験1では、バイポーラ膜で仕切られた陽極室と陰極室との間にカチオン交換膜を1枚のみ配置した。透析実験IIでは、バイポーラ膜で仕切られた陽極室と陰極室との間に、カチオン交換膜、バイポーラ膜、カチオン交換膜の順でカチオン交換膜とバイポーラ膜を交互に配置し、2枚のカチオン交換膜を設けた。透析実験IIIでは、バイポーラ膜で仕切られた陽極室と陰極室との間に、カチオン交換膜、バイポーラ膜、カチオン交換膜、バイポーラ膜、カチオン交換膜、バイポーラ膜、カチオン交換膜の順でカチオン交換膜とバイポーラ膜を交互に配置し、4枚のカチオン交換膜を設けた。   The dialysis experiment conditions are as shown in Table 1. In dialysis experiment 1, only one cation exchange membrane was placed between the anode chamber and the cathode chamber partitioned by the bipolar membrane. In dialysis experiment II, a cation exchange membrane and a bipolar membrane are alternately arranged in the order of a cation exchange membrane, a bipolar membrane, and a cation exchange membrane between an anode chamber and a cathode chamber separated by a bipolar membrane. An exchange membrane was provided. In dialysis experiment III, cation exchange is performed in the order of cation exchange membrane, bipolar membrane, cation exchange membrane, bipolar membrane, cation exchange membrane, bipolar membrane, and cation exchange membrane between the anode chamber and the cathode chamber separated by the bipolar membrane. Membranes and bipolar membranes were alternately arranged to provide four cation exchange membranes.

Figure 0006428440
Figure 0006428440

実施例1〜3、比較例1,2で採用した実験条件は以下の通りである。
比較例1:透析実験I(電流=1.20A(24.6mA/cm))
比較例2:透析実験I(電流=3.05A(62.5mA/cm))
実施例1:透析実験II(電流=3.05A(62.5mA/cm))
実施例2:透析実験III(電流=1.20A(24.6mA/cm))
実施例3:透析実験III(電流=3.05A(62.5mA/cm))
なお、実施例3では、3時間の通電で模擬廃液中のCo,Feの殆どが電着液側へ移行したため、通電は3時間で終了した。
The experimental conditions employed in Examples 1 to 3 and Comparative Examples 1 and 2 are as follows.
Comparative Example 1: Dialysis Experiment I (Current = 1.20 A (24.6 mA / cm 2 ))
Comparative example 2: Dialysis experiment I (current = 3.05 A (62.5 mA / cm 2 ))
Example 1: Dialysis experiment II (current = 3.05 A (62.5 mA / cm 2 ))
Example 2: Dialysis Experiment III (Current = 1.20 A (24.6 mA / cm 2 ))
Example 3: Dialysis experiment III (current = 3.05 A (62.5 mA / cm 2 ))
In Example 3, since most of Co and Fe in the simulated waste liquid moved to the electrodeposition liquid side after 3 hours of energization, the energization was completed in 3 hours.

模擬廃液のCo濃度の経時変化、電着液のCo濃度の経時変化をそれぞれ図3(a),(b)に示す。また、模擬廃液のFe濃度の経時変化、電着液のFe濃度の経時変化をそれぞれ図4(a),(b)に示す。
図3,4により、電気透析槽のカチオン交換膜の枚数を増やすほど、模擬廃液中のCo、Feがカチオン交換膜を透過して電着液側に移行する速度が速くなることが分かる。また、電流密度を24.6mA/cmから62.5mA/cmに上げることにより、その速度がより速くなることが分かる。
FIGS. 3A and 3B show the change over time in the Co concentration of the simulated waste liquid and the change over time in the Co concentration of the electrodeposition liquid, respectively. Further, FIGS. 4A and 4B show the temporal change of the Fe concentration of the simulated waste liquid and the temporal change of the Fe concentration of the electrodeposition liquid, respectively.
3 and 4, it can be seen that as the number of cation exchange membranes in the electrodialysis tank is increased, the rate at which Co and Fe in the simulated waste liquid permeate the cation exchange membrane and migrate to the electrodeposition solution side becomes faster. It can also be seen that the current density is increased by increasing the current density from 24.6 mA / cm 2 to 62.5 mA / cm 2 .

<電着実験>
6時間(実施例3では3時間)の透析実験を行った後の電着液を、電着液貯槽と電着槽の間をポンプで循環させながら、表2の条件で電着処理を行ったところ、いずれの電着液についても、24時間の通電でFe、Coともに電着液中濃度として1mg/L未満まで電着除去できた。いずれの実験においても、実験後の陰極面には銀白色の金属状の鉄とコバルトがめっきされていることを確認した。
<Electrodeposition experiment>
Electrodeposition treatment was carried out under the conditions shown in Table 2 while circulating the electrodeposition solution after performing the dialysis experiment for 6 hours (3 hours in Example 3) between the electrodeposition solution storage tank and the electrodeposition tank. As a result, any of the electrodeposition liquids could be electrodeposited and removed to a concentration of less than 1 mg / L in the electrodeposition liquid for both Fe and Co by energization for 24 hours. In any experiment, it was confirmed that the cathode surface after the experiment was plated with silver-white metallic iron and cobalt.

Figure 0006428440
Figure 0006428440

10 電気透析槽
11 陽極室
11A 陽極
12 陰極室
12A 陰極
13 脱イオン室
14 濃縮室
20 電着槽
21 陽極室
21A 陽極
22 陰極室
22A 陰極
30 電極液貯槽
40 電着液貯槽
CM カチオン交換膜
BP バイポーラ膜
CHM 水素選択透過型カチオン交換膜
DESCRIPTION OF SYMBOLS 10 Electrodialysis tank 11 Anode chamber 11A Anode 12 Cathode chamber 12A Cathode 13 Deionization chamber 14 Concentration chamber 20 Electrodeposition tank 21 Anode chamber 21A Anode 22 Cathode chamber 22A Cathode 30 Electrode liquid storage tank 40 Electrodeposition liquid storage CM Cation exchange membrane BP Bipolar Membrane CHM Hydrogen Permselective Cation Exchange Membrane

Claims (11)

鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを、カチオン交換膜を複数枚配した電気透析槽に導入し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析工程と、
該電気透析槽から流出した鉄族金属イオンを含む電着液を、陽極と陰極を配した電着槽に導入し、該電着液中の該鉄族金属を陰極上に電着させて、該電着液から該鉄族金属イオンを除去する電着工程と、
該電着工程で鉄族金属イオンが除去された電着液を前記電気透析工程に送給する電着液循環工程とを有し、
前記電気透析槽は、
陽極及び陰極と、
該陽極に対峙して配置された第1のバイポーラ膜と、
該陰極に対峙して配置された第2のバイポーラ膜と、
該第1のバイポーラ膜と第2のバイポーラ膜との間に、アニオン交換膜を介在させずに配置された複数枚のカチオン交換膜と、
該カチオン交換膜同士の間に配置された第3のバイポーラ膜と
を備え、
該陽極と該第1のバイポーラ膜との間が陽極室、該陰極と該第2のバイポーラ膜との間が陰極室となっており、
該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該バイポーラ膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該バイポーラ膜との間が濃縮室となっており、
該脱イオン室に前記鉄族金属イオン含有液を通液すると共に、該濃縮室に前記電着液を通液することを特徴とする鉄族金属イオン含有液の処理方法。
An iron group metal ion-containing solution and an electrodeposition solution containing a ligand that forms a complex with the iron group metal ion are introduced into an electrodialysis tank having a plurality of cation exchange membranes, and the iron group metal ion-containing solution is introduced. An electrodialysis step of removing the iron group metal ions in the iron group metal ion-containing liquid by passing the iron group metal ions in the liquid through the cation exchange membrane and transferring to the electrodeposition liquid;
An electrodeposition liquid containing iron group metal ions flowing out from the electrodialysis tank is introduced into an electrodeposition tank provided with an anode and a cathode, and the iron group metal in the electrodeposition liquid is electrodeposited on the cathode, An electrodeposition step of removing the iron group metal ions from the electrodeposition solution;
The electrodeposition solution to iron group metal ions have been removed by the electrodeposition process possess a transmission Kyusuru electrodeposition circulation step to the electrodialysis step,
The electrodialysis tank is
An anode and a cathode;
A first bipolar membrane disposed opposite the anode;
A second bipolar membrane disposed opposite the cathode;
A plurality of cation exchange membranes arranged without interposing an anion exchange membrane between the first bipolar membrane and the second bipolar membrane;
A third bipolar membrane disposed between the cation exchange membranes;
With
Between the anode and the first bipolar film is an anode chamber, and between the cathode and the second bipolar film is a cathode chamber,
A space between the cation exchange membrane and the bipolar membrane provided on the anode side of the cation exchange membrane is a deionization chamber, and the cation exchange membrane and the bipolar membrane provided on the cathode side of the cation exchange membrane. There is a concentration chamber in between.
A method for treating an iron group metal ion-containing liquid , wherein the iron group metal ion-containing liquid is passed through the deionization chamber and the electrodeposition liquid is passed through the concentration chamber .
鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを、カチオン交換膜を複数枚配した電気透析槽に導入し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析工程と、
該電気透析槽から流出した鉄族金属イオンを含む電着液を、陽極と陰極を配した電着槽に導入し、該電着液中の該鉄族金属を陰極上に電着させて、該電着液から該鉄族金属イオンを除去する電着工程と、
該電着工程で鉄族金属イオンが除去された電着液を前記電気透析工程に送給する電着液循環工程とを有し、
前記電気透析槽は、
陽極及び陰極と、
該陽極に対峙して配置された第1の水素選択透過型カチオン交換膜と、
該陰極に対峙して配置された第2の水素選択透過型カチオン交換膜と、
該第1の水素選択透過型カチオン交換膜と第2の水素選択透過型カチオン交換膜との間に配置された複数枚のカチオン交換膜と、
該カチオン交換膜同士の間に配置された第3の水素選択透過型カチオン交換膜と
を備え、
該陽極と該第1の水素選択透過型カチオン交換膜との間が陽極室、該陰極と該第2の水素選択透過型カチオン交換膜との間が陰極室となっており、
該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該水素選択透過型カチオン交換膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該水素選択透過型カチオン交換膜との間が濃縮室となっており、
該脱イオン室に前記鉄族金属イオン含有液を通液すると共に、該濃縮室に前記電着液を通液することを特徴とする鉄族金属イオン含有液の処理方法。
An iron group metal ion-containing solution and an electrodeposition solution containing a ligand that forms a complex with the iron group metal ion are introduced into an electrodialysis tank having a plurality of cation exchange membranes, and the iron group metal ion-containing solution is introduced. An electrodialysis step of removing the iron group metal ions in the iron group metal ion-containing liquid by passing the iron group metal ions in the liquid through the cation exchange membrane and transferring to the electrodeposition liquid;
An electrodeposition liquid containing iron group metal ions flowing out from the electrodialysis tank is introduced into an electrodeposition tank provided with an anode and a cathode, and the iron group metal in the electrodeposition liquid is electrodeposited on the cathode, An electrodeposition step of removing the iron group metal ions from the electrodeposition solution;
The electrodeposition solution to iron group metal ions have been removed by the electrodeposition process possess a transmission Kyusuru electrodeposition circulation step to the electrodialysis step,
The electrodialysis tank is
An anode and a cathode;
A first hydrogen permselective cation exchange membrane disposed opposite the anode;
A second hydrogen permselective cation exchange membrane disposed opposite the cathode;
A plurality of cation exchange membranes disposed between the first hydrogen selective permeable cation exchange membrane and the second hydrogen selective permeable cation exchange membrane;
A third hydrogen permselective cation exchange membrane disposed between the cation exchange membranes;
With
Between the anode and the first hydrogen selective permeable cation exchange membrane is an anode chamber, and between the cathode and the second hydrogen selective permeable cation exchange membrane is a cathode chamber,
A space between the cation exchange membrane and the hydrogen selective permeable cation exchange membrane provided on the anode side of the cation exchange membrane is provided on the cathode side of the cation exchange membrane and the cation exchange membrane. A concentration chamber is formed between the hydrogen selective permeation type cation exchange membrane,
A method for treating an iron group metal ion-containing liquid , wherein the iron group metal ion-containing liquid is passed through the deionization chamber and the electrodeposition liquid is passed through the concentration chamber .
前記鉄族金属イオン含有液は、原子力発電所の除染で発生するpH5未満の酸性除染廃液であり、前記電気透析工程で該廃液中の鉄族金属イオンを除去した後、除染液として再利用することを特徴とする請求項1又は2に記載の鉄族金属イオン含有液の処理方法。 The iron group metal ion-containing liquid is an acid decontamination waste liquid having a pH of less than 5 that is generated by decontamination of a nuclear power plant, and after removing iron group metal ions in the waste liquid in the electrodialysis step, the decontamination liquid is used. The method for treating a liquid containing an iron group metal ion according to claim 1 or 2 , wherein the liquid is reused. 前記電着槽は、
陽極を備えた陽極室と陰極を備えた陰極室とがカチオン交換膜で仕切られており、該陰極室に前記鉄族金属イオンを含む電着液を通液することを特徴とする請求項1ないしのいずれか1項に記載の鉄族金属イオン含有液の処理方法。
The electrodeposition tank is
2. An anode chamber having an anode and a cathode chamber having a cathode are partitioned by a cation exchange membrane, and an electrodeposition solution containing the iron group metal ions is passed through the cathode chamber. The processing method of the iron group metal ion containing liquid of any one of thru | or 3 .
前記電着槽の陰極室から流出した電着液が電着液貯槽を経て前記電気透析槽に導入され、前記電気透析槽から流出した前記鉄族金属イオンを含む電着液が該電着液貯槽を経て該電着槽の陰極室に導入されることを特徴とする請求項に記載の鉄族金属イオン含有液の処理方法。 The electrodeposition liquid flowing out from the cathode chamber of the electrodeposition tank is introduced into the electrodialysis tank through the electrodeposition liquid storage tank, and the electrodeposition liquid containing the iron group metal ions flowing out from the electrodialysis tank is the electrodeposition liquid. The method for treating an iron group metal ion-containing liquid according to claim 4 , wherein the treatment is performed through a storage tank and introduced into the cathode chamber of the electrodeposition tank. 前記電気透析槽の陽極室及び/又は陰極室を通液した電極液が、電極液貯槽を経て前記電着槽の陽極室に通液され、該電着槽の陽極室から流出した陽極液が該電極液貯槽を経て前記電気透析槽の陽極室及び/又は陰極室に通液されることを特徴とする請求項又はに記載の鉄族金属イオン含有液の処理方法。 The electrode liquid that has passed through the anode chamber and / or the cathode chamber of the electrodialysis tank is passed through the electrode liquid storage tank to the anode chamber of the electrodeposition tank, and the anolyte that has flowed out of the anode chamber of the electrodeposition tank is 6. The method for treating an iron group metal ion-containing solution according to claim 4 or 5 , wherein the solution is passed through the electrode solution storage tank to the anode chamber and / or the cathode chamber of the electrodialysis tank. 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極と陰極室との間に設けられた複数枚のカチオン交換膜とを有する電気透析槽と、該電気透析槽の陽極及び陰極間に通電する通電手段と、該電気透析槽に鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを通液する手段とを有し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析装置と、
陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを仕切るカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該電着槽の陰極室に前記電気透析槽から流出した前記鉄族金属イオンを含む電着液を通液する手段とを有し、該鉄族金属イオンを含む電着液中の該鉄族金属を該陰極上に電着させて該電着液から該鉄族金属イオンを除去する電着装置と、
該電着槽から流出した該鉄族金属イオンが除去された電着液を前記電気透析槽に送給する手段と
を備え
前記電気透析槽は、
陽極及び陰極と、
該陽極に対峙して配置された第1のバイポーラ膜と、
該陰極に対峙して配置された第2のバイポーラ膜と、
該第1のバイポーラ膜と第2のバイポーラ膜との間に、アニオン交換膜を介在させずに配置された複数枚のカチオン交換膜と、
該カチオン交換膜同士の間に配置された第3のバイポーラ膜と
を備え、
該陽極と該第1のバイポーラ膜との間が陽極室、該陰極と該第2のバイポーラ膜との間が陰極室となっており、
該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該バイポーラ膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該バイポーラ膜との間が濃縮室となっており、
該脱イオン室に前記鉄族金属イオン含有液を通液する手段と、
該濃縮室に前記電着液を通液する手段とを有することを特徴とする鉄族金属イオン含有液の処理装置。
An electrodialysis tank having an anode chamber with an anode, a cathode chamber with a cathode, and a plurality of cation exchange membranes provided between the anode and the cathode chamber, and an anode and a cathode of the electrodialysis tank Energizing means for energizing in between, means for passing an iron group metal ion-containing liquid in the electrodialysis tank, and an electrodeposition liquid containing a ligand that forms a complex with the iron group metal ion, The iron group metal ions in the iron group metal ion-containing liquid are removed by passing the iron group metal ions in the iron group metal ion-containing liquid through the cation exchange membrane and transferring to the electrodeposition liquid. An electrodialyzer;
An electrodepositing chamber having an anode chamber having an anode, a cathode chamber having a cathode, a cation exchange membrane separating the anode chamber and the cathode chamber, energizing means for energizing the anode and the cathode, Means for passing the electrodeposition liquid containing the iron group metal ions flowing out from the electrodialysis tank to the cathode chamber of the electrodeposition tank, and the iron group metals in the electrodeposition liquid containing the iron group metal ions An electrodeposition apparatus for electrodepositing on the cathode to remove the iron group metal ions from the electrodeposition liquid;
Means for feeding the electrodeposition liquid from which the iron group metal ions flowing out of the electrodeposition tank have been removed to the electrodialysis tank ;
The electrodialysis tank is
An anode and a cathode;
A first bipolar membrane disposed opposite the anode;
A second bipolar membrane disposed opposite the cathode;
A plurality of cation exchange membranes arranged without interposing an anion exchange membrane between the first bipolar membrane and the second bipolar membrane;
A third bipolar membrane disposed between the cation exchange membranes;
With
Between the anode and the first bipolar film is an anode chamber, and between the cathode and the second bipolar film is a cathode chamber,
A space between the cation exchange membrane and the bipolar membrane provided on the anode side of the cation exchange membrane is a deionization chamber, and the cation exchange membrane and the bipolar membrane provided on the cathode side of the cation exchange membrane. There is a concentration chamber in between.
Means for passing the iron group metal ion-containing liquid through the deionization chamber;
Processor of iron group metal ion-containing solution, characterized in Rukoto to have a means for passing fluid the electrodeposition solution in the concentrating compartment.
陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極と陰極室との間に設けられた複数枚のカチオン交換膜とを有する電気透析槽と、該電気透析槽の陽極及び陰極間に通電する通電手段と、該電気透析槽に鉄族金属イオン含有液と、該鉄族金属イオンと錯体を形成する配位子を含む電着液とを通液する手段とを有し、該鉄族金属イオン含有液中の該鉄族金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該鉄族金属イオン含有液中の鉄族金属イオンを除去する電気透析装置と、
陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを仕切るカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該電着槽の陰極室に前記電気透析槽から流出した前記鉄族金属イオンを含む電着液を通液する手段とを有し、該鉄族金属イオンを含む電着液中の該鉄族金属を該陰極上に電着させて該電着液から該鉄族金属イオンを除去する電着装置と、
該電着槽から流出した該鉄族金属イオンが除去された電着液を前記電気透析槽に送給する手段と
を備え
前記電気透析槽は、
陽極及び陰極と、
該陽極に対峙して配置された第1の水素選択透過型カチオン交換膜と、
該陰極に対峙して配置された第2の水素選択透過型カチオン交換膜と、
該第1の水素選択透過型カチオン交換膜と第2の水素選択透過型カチオン交換膜との間に配置された複数枚のカチオン交換膜と、
該カチオン交換膜同士の間に配置された第3の水素選択透過型カチオン交換膜と
を備え
該陽極と該第1の水素選択透過型カチオン交換膜との間が陽極室、該陰極と該第2の水素選択透過型カチオン交換膜との間が陰極室となっており、
該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該水素選択透過型カチオン交換膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該水素選択透過型カチオン交換膜との間が濃縮室となっており、
該脱イオン室に前記鉄族金属イオン含有液を通液する手段と、
該濃縮室に前記電着液を通液する手段とを有することを特徴とする鉄族金属イオン含有液の処理装置。
An electrodialysis tank having an anode chamber with an anode, a cathode chamber with a cathode, and a plurality of cation exchange membranes provided between the anode and the cathode chamber, and an anode and a cathode of the electrodialysis tank Energizing means for energizing in between, means for passing an iron group metal ion-containing liquid in the electrodialysis tank, and an electrodeposition liquid containing a ligand that forms a complex with the iron group metal ion, The iron group metal ions in the iron group metal ion-containing liquid are removed by passing the iron group metal ions in the iron group metal ion-containing liquid through the cation exchange membrane and transferring to the electrodeposition liquid. An electrodialyzer;
An electrodepositing chamber having an anode chamber having an anode, a cathode chamber having a cathode, a cation exchange membrane separating the anode chamber and the cathode chamber, energizing means for energizing the anode and the cathode, Means for passing the electrodeposition liquid containing the iron group metal ions flowing out from the electrodialysis tank to the cathode chamber of the electrodeposition tank, and the iron group metals in the electrodeposition liquid containing the iron group metal ions An electrodeposition apparatus for electrodepositing on the cathode to remove the iron group metal ions from the electrodeposition liquid;
Means for feeding the electrodeposition liquid from which the iron group metal ions flowing out of the electrodeposition tank have been removed to the electrodialysis tank ;
The electrodialysis tank is
An anode and a cathode;
A first hydrogen permselective cation exchange membrane disposed opposite the anode;
A second hydrogen permselective cation exchange membrane disposed opposite the cathode;
A plurality of cation exchange membranes disposed between the first hydrogen selective permeable cation exchange membrane and the second hydrogen selective permeable cation exchange membrane;
A third hydrogen permselective cation exchange membrane disposed between the cation exchange membranes;
With
Between the anode and the first hydrogen selective permeable cation exchange membrane is an anode chamber, and between the cathode and the second hydrogen selective permeable cation exchange membrane is a cathode chamber,
A space between the cation exchange membrane and the hydrogen selective permeable cation exchange membrane provided on the anode side of the cation exchange membrane is provided on the cathode side of the cation exchange membrane and the cation exchange membrane. A concentration chamber is formed between the hydrogen selective permeation type cation exchange membrane,
Means for passing the iron group metal ion-containing liquid through the deionization chamber;
Processor of iron group metal ion-containing solution, characterized in Rukoto to have a means for passing fluid the electrodeposition solution in the concentrating compartment.
前記鉄族金属イオン含有液は、原子力発電所の除染で発生するpH5未満の酸性除染廃液であり、前記電気透析装置で鉄族金属イオンを除去した該廃液が除染液として再利用されることを特徴とする請求項7又は8に記載の鉄族金属イオン含有液の処理装置。 The iron group metal ion-containing liquid is an acidic decontamination waste liquid having a pH of less than 5 generated by decontamination of a nuclear power plant, and the waste liquid from which iron group metal ions have been removed by the electrodialyzer is reused as a decontamination liquid. The processing apparatus of the iron group metal ion containing liquid of Claim 7 or 8 characterized by the above-mentioned. 更に電着液貯槽を備え、前記電着槽の陰極室から流出した電着液を該電着液貯槽に導入する手段と、該電着液貯槽内の電着液を該電着槽の陰極室に導入する手段と、前記電気透析槽の濃縮室から流出した電着液を該電着液貯槽に導入する手段と、該電着液貯槽内の電着液を前記電気透析槽の濃縮室に導入する手段とを有することを特徴とする請求項ないしのいずれか1項に記載の鉄族金属イオン含有液の処理装置。 And a means for introducing the electrodeposition liquid flowing out from the cathode chamber of the electrodeposition tank into the electrodeposition liquid storage tank, and the electrodeposition liquid in the electrodeposition liquid storage tank for supplying the electrodeposition liquid in the electrodeposition tank. Means for introducing into the chamber; means for introducing the electrodeposition liquid flowing out from the concentration chamber of the electrodialysis tank into the electrodeposition liquid storage tank; and the electrodeposition liquid in the electrodeposition liquid storage tank for the concentration chamber of the electrodialysis tank processor of iron group metal ion-containing solution according to any one of claims 7 to 9, characterized in that it has means for introducing into. 更に電極液貯槽を備え、前記電着槽の陽極室から流出した陽極液を該電極液貯槽に導入する手段と、該電極液貯槽内の電極液を該電着槽の陽極室に導入する手段と、前記電気透析槽の陽極室及び/又は陰極室から流出した電極液を該電極液貯槽に導入する手段と、該電極液貯槽内の電極液を前記電気透析槽の陽極室及び/又は陰極室に導入する手段とを有することを特徴とする請求項ないし10のいずれか1項に記載の鉄族金属イオン含有液の処理装置。 A means for introducing the anolyte flowing out from the anode chamber of the electrodeposition tank into the electrode liquid storage tank; and a means for introducing the electrode liquid in the electrode liquid tank into the anode chamber of the electrodeposition tank. And means for introducing the electrode liquid flowing out from the anode chamber and / or cathode chamber of the electrodialysis tank into the electrode liquid storage tank; and the electrode liquid in the electrode liquid storage tank as the anode chamber and / or cathode of the electrodialysis tank The treatment apparatus for an iron group metal ion-containing liquid according to any one of claims 7 to 10 , further comprising means for introducing the chamber into the chamber.
JP2015073042A 2015-03-31 2015-03-31 Method and apparatus for processing iron group metal ion-containing liquid Active JP6428440B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015073042A JP6428440B2 (en) 2015-03-31 2015-03-31 Method and apparatus for processing iron group metal ion-containing liquid
US15/562,750 US20180079663A1 (en) 2015-03-31 2016-03-30 Method and apparatus for treating acidic liquid containing metal ions
PCT/JP2016/060328 WO2016159051A1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids
EP16772932.6A EP3279900B1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073042A JP6428440B2 (en) 2015-03-31 2015-03-31 Method and apparatus for processing iron group metal ion-containing liquid

Publications (2)

Publication Number Publication Date
JP2016191692A JP2016191692A (en) 2016-11-10
JP6428440B2 true JP6428440B2 (en) 2018-11-28

Family

ID=57246486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073042A Active JP6428440B2 (en) 2015-03-31 2015-03-31 Method and apparatus for processing iron group metal ion-containing liquid

Country Status (1)

Country Link
JP (1) JP6428440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219051B2 (en) * 2018-10-31 2023-02-07 三菱重工業株式会社 Acidic treatment liquid treatment apparatus and acidic treatment liquid treatment method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603593A (en) * 1983-06-20 1985-01-09 日立プラント建設株式会社 Method of electrolytically decontaminating radioactive metallic waste
DE4326854A1 (en) * 1993-08-11 1995-02-16 Heraeus Elektrochemie Process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, and device
JP2004028902A (en) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd Device for reducing amount of sodium sulfate and disposal system for radioactive ion exchange resin provided with the same
SI2268852T1 (en) * 2008-04-11 2019-09-30 Electrochem Technologies & Materials Inc. Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
JP2015081381A (en) * 2013-10-24 2015-04-27 栗田工業株式会社 Method and apparatus for treating liquid containing iron-group metal ion
JP6221847B2 (en) * 2013-10-24 2017-11-01 栗田工業株式会社 Co and Fe electrodeposition method and apparatus
JP6439242B2 (en) * 2013-10-24 2018-12-19 栗田工業株式会社 Decontamination method and decontamination apparatus for radioactive waste ion exchange resin

Also Published As

Publication number Publication date
JP2016191692A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6221847B2 (en) Co and Fe electrodeposition method and apparatus
EP3279900B1 (en) Method and device for treating metal ion-containing liquids
Alvarado et al. Electrodeionization: principles, strategies and applications
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
Khan et al. Electro-deionization (EDI) technology for enhanced water treatment and desalination: A review
JP5158634B2 (en) Treatment method of electroless nickel plating solution
JP6428441B2 (en) Acid waste liquid treatment apparatus and treatment method
WO2014153974A1 (en) Radioactive wastewater treating method
JP6439242B2 (en) Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
TWI638910B (en) The measurement method and processing device for liquid containing iron and metal, electrodeposition method and device for Co and Fe, and method for removing pollution of radioactive waste ion exchange resin and device for
KR20140049029A (en) Rechargeable electrochemical cells
JP2015081381A (en) Method and apparatus for treating liquid containing iron-group metal ion
JP5120533B2 (en) Cation removal device for plating solution additive and method for treating plating solution additive
JP6477160B2 (en) Method and apparatus for eluting spent ion exchange resin
JP6428440B2 (en) Method and apparatus for processing iron group metal ion-containing liquid
WO2015060250A1 (en) Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
JP2005536644A (en) Apparatus and method for regenerating an electroless metal plating bath
JP4853610B2 (en) Apparatus for regenerating plating solution containing sulfate ion and method for removing sulfate ion
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JP6692385B2 (en) Radioactive waste liquid treatment system
JP2019030836A (en) Method for dissolving used ion exchange resin, and elution apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method
GB2383275A (en) Ion exchange column regeneration by electrodialysis
JP5392448B2 (en) Electrodesalting apparatus operating method and electrodesalting apparatus
JP2012196630A (en) Treatment equipment and treatment method of acid liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250