JP2016191691A - Method for processing metal ion-containing acid liquid, and processing unit - Google Patents

Method for processing metal ion-containing acid liquid, and processing unit Download PDF

Info

Publication number
JP2016191691A
JP2016191691A JP2015073041A JP2015073041A JP2016191691A JP 2016191691 A JP2016191691 A JP 2016191691A JP 2015073041 A JP2015073041 A JP 2015073041A JP 2015073041 A JP2015073041 A JP 2015073041A JP 2016191691 A JP2016191691 A JP 2016191691A
Authority
JP
Japan
Prior art keywords
cathode
chamber
acid
catholyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015073041A
Other languages
Japanese (ja)
Inventor
真吾 宮本
Shingo Miyamoto
真吾 宮本
眞美 廣瀬
Masami Hirose
眞美 廣瀬
守 岩▲崎▼
Mamoru Iwasaki
守 岩▲崎▼
元浩 会沢
Motohiro Aizawa
元浩 会沢
信之 太田
Nobuyuki Ota
信之 太田
貴子 住谷
Takako Sumiya
貴子 住谷
一成 石田
Kazunari Ishida
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Original Assignee
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Hitachi GE Nuclear Energy Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015073041A priority Critical patent/JP2016191691A/en
Priority to PCT/JP2016/060328 priority patent/WO2016159051A1/en
Priority to EP16772932.6A priority patent/EP3279900B1/en
Priority to US15/562,750 priority patent/US20180079663A1/en
Publication of JP2016191691A publication Critical patent/JP2016191691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress unavailability of electrodeposition and deterioration in the electrodeposition rate that are caused by decrease in the pH of a catholyte attributed to concentration diffusion of an acid in the catholyte, which has entered from an acid liquid of an anode chamber through a cation exchange membrane to the catholyte, in a method in which an anode chamber including an anode and a cathode chamber including a cathode are separated from each other by a cation exchange membrane, an acid liquid containing a metal ion is introduced into the anode chamber, a catholyte is introduced into the cathode chamber, the metal ion in the liquid in the anode chamber is, by electrification between the anode and the cathode, made to permeate the cation exchange membrane to move into the catholyte, thereby depositing a metal onto the cathode.SOLUTION: A salt of an acid contained in an acid liquid introduced into an anode chamber is added to a catholyte introduced into a cathode chamber in advance to suppress concentration diffusion of the acid in the catholyte, which has entered from the acid liquid of the anode chamber through a cation exchange membrane to the catholyte. The addition of the salt to the cathode chamber enables reduction of an applied voltage, reduction in the amount of hydrogen generated at the cathode, and reduction of power consumption.SELECTED DRAWING: Figure 1

Description

本発明は、金属イオン含有酸液の処理方法及び処理装置に係り、詳しくは、鉄(Fe)、コバルト(Co)、ニッケル(Ni)といった金属イオンを含有する酸液から、当該イオンを除去する方法及び装置に関する。本発明は、特に、原子力発電所において発生する除染廃液や、原子力発電所で使用されたイオン交換樹脂から金属イオンを溶離させた溶離液等の原子力発電所等から生じる金属イオンを含有する酸廃液の処理に好適に用いられる。   The present invention relates to a processing method and a processing apparatus for a metal ion-containing acid solution, and more specifically, the ions are removed from an acid solution containing metal ions such as iron (Fe), cobalt (Co), and nickel (Ni). It relates to a method and a device. The present invention particularly relates to an acid containing metal ions generated from nuclear power plants such as decontamination waste liquid generated in nuclear power plants and eluents obtained by eluting metal ions from ion exchange resins used in nuclear power plants. It is suitably used for the treatment of waste liquid.

原子力発電所では、放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を化学的に除去した際に、多量の除染廃液が発生する。これらの除染廃液は、Fe、Co又はNiといった金属イオンを含んでおり、Co−60(コバルト60)、Ni−63(ニッケル63)といった放射性物質も多く含んでいる。通常、除染廃液は、イオン交換樹脂により溶解しているイオン成分が除去され、除染液として再利用される。このため、放射性物質を多く含むイオン交換樹脂の廃棄物が発生するという問題がある。   In a nuclear power plant, a large amount of decontamination waste liquid is generated when the radioactive material is chemically removed from the primary cooling system equipment and piping contaminated with the radioactive material and the metal member surface of the system including these. These decontamination waste liquids contain metal ions such as Fe, Co or Ni, and also contain a lot of radioactive substances such as Co-60 (cobalt 60) and Ni-63 (nickel 63). Usually, the decontamination waste liquid is reused as a decontamination liquid after the ionic components dissolved by the ion exchange resin are removed. For this reason, there exists a problem that the waste of the ion exchange resin containing many radioactive substances generate | occur | produces.

また、原子力発電所等において、原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂は、放射性物質を多く吸着しているため、高線量率の廃棄物として、発電所に設置された樹脂タンクに貯留されている。   In nuclear power plants, etc., ion exchange resins used to purify cooling water systems containing radioactive materials by directly touching fuel rods such as the reactor water purification system (CUW) and the fuel storage pool water purification system (FPC) Because it absorbs a lot of radioactive material, it is stored as a high dose rate waste in a resin tank installed at the power plant.

これらの放射性物質を含む廃棄物は、最終的にセメント等の固化助材と混練して安定化した後に、埋設処分される。埋設処分する際の費用は、内包する放射性物質の量で異なり、放射性物質濃度が高いほど高額となる。このため、高線量率の廃棄物はできるだけ減容した後に、固化体の埋設廃棄物とすることが経済的である。具体的には、イオン交換樹脂から放射性物質を固形物として分離し、遮蔽容器内に封じ込めることができれば、減容化の面で望ましい。放射性物質が除去された廃イオン交換樹脂は、処分費用が安価な低線量率の廃棄物であり、さらに、廃イオン交換樹脂を焼却可能なレベルまで放射性物質を除去できれば、焼却処理により、大幅な減容が達成できる。   Waste containing these radioactive substances is finally kneaded with a solidification aid such as cement and stabilized, and then buried. The cost for disposal is different depending on the amount of radioactive material contained, and the higher the concentration of radioactive material, the higher the cost. For this reason, it is economical to reduce the volume of waste with a high dose rate as much as possible and then use it as a solid waste. Specifically, it is desirable in terms of volume reduction if the radioactive substance can be separated from the ion exchange resin as a solid and can be contained in a shielding container. Waste ion exchange resin from which radioactive materials have been removed is a low-dose rate waste with low disposal costs, and if the radioactive materials can be removed to a level where incineration of the waste ion exchange resin can be achieved, incineration will significantly Volume reduction can be achieved.

このような高線量の廃樹脂の処理方法として、特許文献1や特許文献2に提案されるように、フェントン法や超臨界水酸化等の湿式酸化により廃樹脂を分解する方法があるが、これらの方法を適用した場合、いずれの場合も高線量率の廃液が多量に発生する。その高線量率の廃液を最終的に処分する際には、さらに蒸発濃縮し、その濃縮液をセメントと混練する等の方法により固化体として安定化することが必要となる。この場合、セメント等の固化助材を新たに添加するため、その分最終処分される高線量率の廃棄物量が増加し、廃棄物量の低減に至らないという問題がある。   As a method for treating such high-dose waste resin, there are methods of decomposing waste resin by wet oxidation such as Fenton method and supercritical water oxidation as proposed in Patent Document 1 and Patent Document 2. In this case, a large amount of waste liquid with a high dose rate is generated. When the waste liquid with a high dose rate is finally disposed of, it is necessary to stabilize it as a solidified body by a method such as evaporating and concentrating and kneading the concentrated liquid with cement. In this case, since a solidification aid such as cement is newly added, there is a problem that the amount of waste at a high dose rate to be finally disposed increases and the amount of waste cannot be reduced.

特許文献3には、廃樹脂に硫酸を通液し、イオン状の放射性物質を溶離し、溶離液から拡散透析により放射性物質を分離し、硫酸を循環再利用する技術が開示されている。また、特許文献4には、廃樹脂をシュウ酸水溶液に浸漬して表面の金属クラッドを溶解するとともに、樹脂に吸着している金属イオンをシュウ酸水溶液に溶離する廃樹脂処理方法が開示されている。これらの場合も、放射性物質を含む廃液が生成するが、その固化処理までは網羅されていない。   Patent Document 3 discloses a technique in which sulfuric acid is passed through waste resin, ionic radioactive substances are eluted, radioactive substances are separated from the eluent by diffusion dialysis, and sulfuric acid is circulated and reused. Patent Document 4 discloses a waste resin treatment method in which waste resin is immersed in an oxalic acid aqueous solution to dissolve the metal clad on the surface, and metal ions adsorbed on the resin are eluted into the oxalic acid aqueous solution. Yes. In these cases as well, waste liquid containing radioactive substances is generated, but the solidification process is not covered.

一方で、イオン状の放射性物質を含む廃液から放射性物質を除去する方法として、特許文献5には、放射性陽イオンが溶解した汚染除去溶液を、電着セルを通過させながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させて、汚染除去溶液を再生・再利用する技術が開示されている。その際に、放射性金属粒子を堆積させた陰極は、陰極液を陰極全体に注いで放射性金属粒子を脱離させるとの記載がある。   On the other hand, as a method for removing radioactive substances from waste liquid containing ionic radioactive substances, Patent Document 5 discloses that a decontamination solution in which radioactive cations are dissolved is energized while passing through an electrodeposition cell, and the radioactive cations are used. Has been disclosed in which a decontamination solution is regenerated and reused by depositing as a radioactive metal particle on a cathode. At that time, the cathode on which radioactive metal particles are deposited is described as pouring catholyte over the entire cathode to desorb the radioactive metal particles.

特公昭61−9599号公報Japanese Patent Publication No. 61-9599 特許第3657747号公報Japanese Patent No. 3657747 特開2004−28697号公報JP 2004-28697 A 特開2013−44588号公報JP 2013-44588 A 特許第4438988号公報Japanese Patent No. 4438898

特許文献5では、放射性陽イオンが溶解した汚染除去溶液を、直接電着セルの陰極側に導入しながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させているが、この方法では、陰極液性状は汚染除去溶液に依存して変化するため、陰極液を電着に適した液性状に調整することができない。汚染除去溶液が酸性の廃液の場合には、陰極表面で析出した放射性金属成分が酸性の廃液に再び溶解するため、析出が起こらないか、もしくは析出速度が著しく低下する。また、廃液が中性又はアルカリ性の場合には、陰極表面近傍で水酸化物の沈殿物が形成され、陰極表面に放射性金属を電着させて回収することが困難となる。このため、廃液から放射性物質を電着法により効率的に回収するためには、陰極室に直接廃液を導入するのは好ましくなく、陰極液を電着に適した液性とすることが重要となる。   In Patent Document 5, the decontamination solution in which the radioactive cation is dissolved is energized while being directly introduced into the cathode side of the electrodeposition cell, and the radioactive cation is deposited on the cathode as radioactive metal particles. Since the catholyte properties change depending on the decontamination solution, the catholyte cannot be adjusted to a liquid property suitable for electrodeposition. When the decontamination solution is an acidic waste solution, the radioactive metal component deposited on the cathode surface is dissolved again in the acidic waste solution, so that no precipitation occurs or the deposition rate is significantly reduced. In addition, when the waste liquid is neutral or alkaline, a hydroxide precipitate is formed in the vicinity of the cathode surface, and it becomes difficult to recover by depositing radioactive metal on the cathode surface. For this reason, in order to efficiently recover radioactive substances from the waste liquid by the electrodeposition method, it is not preferable to introduce the waste liquid directly into the cathode chamber, and it is important to make the catholyte liquid suitable for electrodeposition. Become.

そこで、本発明者らは、先願(特願2013−221322号)にて、陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離し、陽極室に金属イオン含有酸液を導入し、陰極室に陰極液を導入し、陽極と陰極間に通電することにより、陽極室内の液中の金属イオンをカチオン交換膜を透過させて陰極室内の液中に移動させ、陰極上に金属を析出させる方法を提案した。本先願発明では、金属イオン含有酸液を導入する陽極室と、その金属を析出させる陰極室をカチオン交換膜で隔離していることから、金属イオン含有酸液の液性状に左右されることなく、効率良く金属の電着が可能である。特に、金属イオン含有酸液が、酸廃液である場合、特許文献5のような従来法では陰極に電着する金属が溶解してしまったり、金属の電着速度が著しく低下したりするが、陽極室に酸廃液が導入されても、陰極室を電着に適した条件とすることができる。   In view of this, the inventors of the prior application (Japanese Patent Application No. 2013-221322) separated the anode chamber provided with the anode and the cathode chamber provided with the cathode with a cation exchange membrane, and the metal ion-containing acid in the anode chamber. The liquid is introduced, the catholyte is introduced into the cathode chamber, and energization is performed between the anode and the cathode, so that the metal ions in the liquid in the anode chamber pass through the cation exchange membrane and move into the liquid in the cathode chamber. A method of depositing metal on top was proposed. In the present invention, since the anode chamber for introducing the metal ion-containing acid solution and the cathode chamber for depositing the metal are separated by a cation exchange membrane, it depends on the liquid properties of the metal ion-containing acid solution. Therefore, it is possible to efficiently deposit metal. In particular, when the metal ion-containing acid solution is an acid waste solution, the metal electrodeposited on the cathode is dissolved in the conventional method such as Patent Document 5, or the electrodeposition rate of the metal is significantly reduced. Even if the acid waste liquid is introduced into the anode chamber, the cathode chamber can be in a condition suitable for electrodeposition.

しかしながら、本発明者らの検討により、先願発明の方法では、カチオン交換膜の種類や電流密度によって程度は異なるものの、陽極室の酸廃液中の酸が、濃度拡散によりカチオン交換膜を透過して、陰極室側に移行し、陰極液のpHが低下することにより、陰極への金属の電着が起こらないか、もしくは電着速度が低下するという現象が生じるという課題が見出された。
これは、陰極液のpHが低下することにより、陰極上に電着した金属が再溶解する速度が速くなるためであると考えられる。
However, according to the study of the present inventors, in the method of the prior invention, although the degree varies depending on the type and current density of the cation exchange membrane, the acid in the acid waste liquid in the anode chamber permeates the cation exchange membrane by concentration diffusion. Thus, there has been found a problem that a phenomenon occurs in which the metal electrode is not electrodeposited on the cathode or the electrodeposition speed is lowered by moving to the cathode chamber side and lowering the pH of the catholyte.
This is considered to be because the rate at which the metal electrodeposited on the cathode is redissolved increases as the pH of the catholyte decreases.

本発明は、陽極室と陰極室とをカチオン交換膜で隔離した電着槽にて、金属イオン含有酸液を電着処理するにあたって、陽極室内の酸が濃度拡散によりカチオン交換膜を透過し、陰極室に移行することを抑制することができる金属イオン含有酸液の処理方法及び処理装置を提供することを課題とする。   In the electrodeposition bath in which the anode chamber and the cathode chamber are separated from each other by a cation exchange membrane, the present invention allows the acid in the anode chamber to permeate through the cation exchange membrane by concentration diffusion, It aims at providing the processing method and processing apparatus of a metal ion containing acid solution which can suppress moving to a cathode chamber.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、上記先願発明の方法において、陽極室に導入される金属イオンを含む酸液に含まれる酸の塩を、陰極室に導入される陰極液に予め含有させておくことにより、陽極室内の酸が濃度拡散によりカチオン交換膜を透過して陰極室に移行することを抑制することができることが分かり、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention applied an acid salt contained in an acid solution containing metal ions introduced into the anode chamber in the cathode chamber. It was found that the inclusion in the catholyte introduced in advance can suppress the acid in the anode chamber from passing through the cation exchange membrane due to concentration diffusion and shifting to the cathode chamber, thereby completing the present invention. .

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離し、該陽極室に金属イオンを含む酸液を導入し、該陰極室に該酸の塩を含む陰極液を導入し、該陽極と該陰極間に通電することにより、該陽極室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理方法。 [1] An anode chamber having an anode and a cathode chamber having a cathode are separated by a cation exchange membrane, an acid solution containing metal ions is introduced into the anode chamber, and a cathode containing the acid salt in the cathode chamber By introducing a liquid and energizing between the anode and the cathode, metal ions in the liquid in the anode chamber are allowed to pass through the cation exchange membrane and move into the catholyte, and the metal is placed on the cathode. A method for treating a metal ion-containing acid solution, characterized by causing precipitation.

[2] 陽極を備えた陽極室と陰極を備えた陰極室との間に、該陽極室側及び陰極室側とイオン交換膜を介して隔離された1以上の中間室を設け、該陰極室と該陰極室に隣接する該中間室とはカチオン交換膜で隔離し、該陰極室に隣接した該中間室に金属イオンを含む酸液を導入し、該陰極室に該酸の塩を含む陰極液を導入し、該陽極と該陰極間に通電することにより、該陰極室に隣接した該中間室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理方法。 [2] Between the anode chamber provided with the anode and the cathode chamber provided with the cathode, the anode chamber side and one or more intermediate chambers separated from the cathode chamber side through an ion exchange membrane are provided, and the cathode chamber And an intermediate chamber adjacent to the cathode chamber are separated by a cation exchange membrane, an acid solution containing metal ions is introduced into the intermediate chamber adjacent to the cathode chamber, and a cathode including the acid salt in the cathode chamber Introducing a liquid and passing a current between the anode and the cathode to cause metal ions in the liquid in the intermediate chamber adjacent to the cathode chamber to pass through the cation exchange membrane and move into the catholyte, A method for treating a metal ion-containing acid solution, comprising depositing the metal on a cathode.

[3] 前記酸液は硫酸を含み、前記陰極液は硫酸塩を含むことを特徴とする[1]又は[2]に記載の金属イオン含有酸液の処理方法。 [3] The method for treating a metal ion-containing acid solution according to [1] or [2], wherein the acid solution contains sulfuric acid, and the catholyte contains a sulfate.

[4] 前記陰極室の前記塩の濃度は、モル濃度として、前記酸液中の酸の0.5〜2倍であることを特徴とする[1]乃至[3]のいずれかに記載の金属イオン含有酸液の処理方法。 [4] The concentration of the salt in the cathode chamber is 0.5 to 2 times the acid in the acid solution as a molar concentration, according to any one of [1] to [3] A method for treating a metal ion-containing acid solution.

[5] 前記陰極液は、ジカルボン酸及びその塩並びにトリカルボン酸及びその塩から選ばれる1種以上の添加剤を含むことを特徴とする[1]乃至[4]のいずれかに記載の金属イオン含有酸液の処理方法。 [5] The metal ion according to any one of [1] to [4], wherein the catholyte contains one or more additives selected from dicarboxylic acids and salts thereof and tricarboxylic acids and salts thereof. A method for treating the acid solution.

[6] 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを隔離するカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該陽極室に金属イオンを含む酸液を通液する通液手段と、該陰極室に該酸の塩を含む陰極液を通液する通液手段とを有し、該陽極と該陰極間に通電することにより、該陽極室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理装置。 [6] An electrodeposition chamber having an anode chamber having an anode, a cathode chamber having a cathode, a cation exchange membrane separating the anode chamber and the cathode chamber, and energization means for energizing between the anode and the cathode And a liquid passing means for passing an acid solution containing metal ions into the anode chamber, and a liquid passing means for passing a catholyte containing the acid salt into the cathode chamber, the anode and the cathode A metal ion containing the metal ion, wherein the metal ions in the liquid in the anode chamber are moved through the cation exchange membrane and moved into the catholyte by being energized between them, and the metal is deposited on the cathode Acid solution processing equipment.

[7] 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と該陰極室の間に該陽極室及び陰極室とイオン交換膜により隔離されて設けられた1以上の中間室とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該陰極室に隣接する該中間室に金属イオンを含む酸液を通液する通液手段と、該陰極室に該酸の塩を含む陰極液を通液する通液手段とを有し、該陰極室と該陰極室に隣接する該中間室とを隔離するイオン交換膜はカチオン交換膜であり、該陽極と該陰極間に通電することにより、該陰極室に隣接する該中間室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理装置。 [7] An anode chamber having an anode, a cathode chamber having a cathode, and at least one intermediate provided between the anode chamber and the cathode chamber and separated by the ion chamber and the anode chamber. An electrodeposition tank having a chamber; an energizing means for energizing between the anode and the cathode; a liquid passing means for passing an acid solution containing metal ions into the intermediate chamber adjacent to the cathode chamber; and An ion exchange membrane that separates the cathode chamber and the intermediate chamber adjacent to the cathode chamber is a cation exchange membrane. By energizing between the cathodes, the metal ions in the liquid in the intermediate chamber adjacent to the cathode chamber are moved through the cation exchange membrane and moved into the catholyte to deposit the metal on the cathode. An apparatus for treating a metal ion-containing acid solution.

[8] 前記酸液は硫酸を含み、前記陰極液は硫酸塩を含むことを特徴とする[6]又は[7]に記載の金属イオン含有酸液の処理装置。 [8] The processing apparatus for a metal ion-containing acid solution according to [6] or [7], wherein the acid solution contains sulfuric acid, and the catholyte contains a sulfate.

[9] 前記陰極室の前記塩の濃度は、モル濃度として、前記酸液中の酸の0.5〜2倍であることを特徴とする[6]乃至[8]のいずれかに記載の金属イオン含有酸液の処理装置。 [9] The concentration of the salt in the cathode chamber is 0.5 to 2 times the acid in the acid solution as a molar concentration, according to any one of [6] to [8] Metal ion containing acid solution processing equipment.

[10] 前記陰極液は、ジカルボン酸及びその塩並びにトリカルボン酸及びその塩から選ばれる1種以上の添加剤を含むことを特徴とする[6]乃至[9]のいずれかに記載の金属イオン含有酸液の処理装置。 [10] The metal ion according to any one of [6] to [9], wherein the catholyte contains one or more additives selected from dicarboxylic acids and salts thereof and tricarboxylic acids and salts thereof. Processing equipment for acid solution.

本発明によれば、陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離し、陽極室に金属イオンを含む酸液を導入し、陰極室に陰極液を導入し、陽極と陰極間に通電することにより、陽極室内の液中の金属イオンをカチオン交換膜を透過させて陰極液中に移動させて陰極上に金属を析出させる際に、予め陰極液にその酸の塩を添加しておくことにより、陽極室の酸液からカチオン交換膜を通して陰極液に酸が濃度拡散することを抑制することができ、陽極室からの酸の拡散で、陰極液のpHが低下することにより、金属の陰極への電着が起こらない、もしくは、金属の電着速度が低下するという現象を抑制して、安定した処理を行える。また、陰極室に酸の塩が存在することにより、印加電圧を低減することができ、陰極での水素発生量を低減できるとともに、電力量を低減することが可能となる。   According to the present invention, the anode chamber provided with the anode and the cathode chamber provided with the cathode are separated by the cation exchange membrane, the acid solution containing metal ions is introduced into the anode chamber, the catholyte is introduced into the cathode chamber, When the metal ions in the liquid in the anode chamber are moved through the cation exchange membrane and moved into the catholyte by depositing a metal between the anode and the cathode, the acid is previously added to the catholyte. By adding a salt, it is possible to suppress acid concentration diffusion from the acid solution in the anode chamber to the catholyte through the cation exchange membrane, and the pH of the catholyte decreases due to acid diffusion from the anode chamber. By doing so, it is possible to suppress the phenomenon that the electrodeposition of the metal does not occur on the cathode or the electrodeposition rate of the metal decreases, and a stable treatment can be performed. In addition, the presence of an acid salt in the cathode chamber makes it possible to reduce the applied voltage, reduce the amount of hydrogen generated at the cathode, and reduce the amount of electric power.

本発明の実施の形態の一例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows an example of embodiment of this invention. 本発明の実施の形態の他の例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows the other example of embodiment of this invention. 本発明の実施の形態の他の例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows the other example of embodiment of this invention. 実施例1〜3の陰極液のpHの経時変化を示すグラフである。It is a graph which shows the time-dependent change of pH of the catholyte of Examples 1-3. 実施例1〜3の模擬酸廃液のCo濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of Co density | concentration of the simulated acid waste liquid of Examples 1-3. 実施例1〜3の模擬酸廃液のFe濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of Fe density | concentration of the simulated acid waste liquid of Examples 1-3. 比較例1の陰極液のpHの経時変化を示すグラフである。6 is a graph showing the change over time in the pH of the catholyte of Comparative Example 1.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の金属イオン含有酸液の処理装置の実施の形態の一例を示す系統図である。
図1の電着装置は、電着槽1内の陽極2を備えた陽極室2Aと、陰極3を備えた陰極室3Aとをカチオン交換膜5で隔離し、陽極室2Aに金属イオン含有酸液を通液し、陰極室3Aに陰極液を通液し、図示しない電源により陽極2と陰極3間を通電することにより、陽極室2A内の液中の金属イオンをカチオン交換膜5を透過させて陰極室3A内の液中に移動させ、陰極3上に金属を析出させるものである。
FIG. 1 is a system diagram showing an example of an embodiment of a processing apparatus for a metal ion-containing acid solution of the present invention.
In the electrodeposition apparatus of FIG. 1, an anode chamber 2A provided with an anode 2 in an electrodeposition tank 1 and a cathode chamber 3A provided with a cathode 3 are separated by a cation exchange membrane 5, and an acid containing metal ions is contained in the anode chamber 2A. The liquid is passed through, the catholyte is passed through the cathode chamber 3A, and the anode 2 and the cathode 3 are energized by a power source (not shown), so that the metal ions in the liquid in the anode chamber 2A pass through the cation exchange membrane 5. The metal is deposited on the cathode 3 by being moved into the liquid in the cathode chamber 3A.

図1において、10は金属イオン含有酸液貯槽であり、金属イオン含有酸液を、ポンプPにより、配管11を経て陽極室2Aに導入し、排出液を配管12を経て金属イオン含有酸液貯槽10に戻す循環系が形成されている。また、20は、陰極液貯槽であり、ポンプPにより配管21を経て陰極液を陰極室3Aに導入し、排出液を配管22を経て陰極液貯槽20に戻す循環系が形成されている。 In FIG. 1, reference numeral 10 denotes a metal ion-containing acid solution storage tank. The metal ion-containing acid solution is introduced into the anode chamber 2 </ b> A through the pipe 11 by the pump P 1 , and the discharged liquid is fed through the pipe 12 to the metal ion-containing acid solution. A circulation system for returning to the storage tank 10 is formed. Further, 20 is a catholyte tank, a pump P 2 via the pipe 21 by introducing a catholyte to the cathode compartment 3A, the circulatory system back to the catholyte reservoir 20 to discharge fluid through the pipe 22 is formed.

カチオン交換膜を設けずに、酸性の金属イオン含有酸液(酸廃液)を直接陰極を浸漬した槽に導入してしまうと、適度にアルカリによりpHを調整しなければ、陰極に電着した金属が再溶解するか、電着自体が起こらないといった問題が生じる。これに対して、図1に示すようなカチオン交換膜を配した装置では、陰極側の陰極液を電着に適した条件にしておけば、廃液がpH2未満、特にpH1未満の強酸性であった場合であっても、良好に金属を電着除去することができる。   If an acidic metal ion-containing acid solution (acid waste solution) is directly introduced into a bath in which the cathode is immersed without providing a cation exchange membrane, the metal electrodeposited on the cathode unless the pH is appropriately adjusted with alkali. This causes problems such as redissolving or electrodeposition itself. On the other hand, in the apparatus provided with a cation exchange membrane as shown in FIG. 1, if the catholyte on the cathode side is in a condition suitable for electrodeposition, the waste liquid is strongly acidic with a pH of less than 2, particularly less than pH 1. Even in this case, the metal can be electrodeposited and removed satisfactorily.

また、強酸性の廃液から金属イオンを除去して液を再利用する場合、アルカリで廃液をpH調整してしまうと、強酸性の液としての再利用が困難となるが、図1の装置では、廃液の酸性度を低下させることなく、金属イオンをカチオン交換膜を通して廃液から除去し、処理液を再利用することが可能である。   In addition, when removing the metal ions from the strongly acidic waste liquid and reusing the liquid, if the pH of the waste liquid is adjusted with an alkali, it becomes difficult to reuse it as a strongly acidic liquid. Without reducing the acidity of the waste liquid, it is possible to remove the metal ions from the waste liquid through the cation exchange membrane and reuse the treatment liquid.

本発明において処理対象とする液、即ち、陽極室2Aに導入される液は、酸性の金属イオン含有液であり、金属イオンとともに、硫酸、塩酸、硝酸といった無機酸や、ギ酸、酢酸、シュウ酸といった有機酸の1種又は2種以上を含むものであるが、本発明では、図1に示すように、カチオン交換膜を通して、金属イオンを陰極液に移行させるため、金属イオン濃度が0.1〜10000mg/L、特に1〜1000mg/L程度の低濃度の廃液であっても効率良く処理することができる。   The liquid to be treated in the present invention, that is, the liquid introduced into the anode chamber 2A is an acidic metal ion-containing liquid, and together with metal ions, inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, formic acid, acetic acid and oxalic acid In the present invention, as shown in FIG. 1, the metal ions are transferred to the catholyte through the cation exchange membrane, so that the metal ion concentration is 0.1 to 10,000 mg. / L, particularly even a low concentration waste liquid of about 1 to 1000 mg / L can be treated efficiently.

このような金属イオン含有酸液の処理に際して、本発明では、陰極液に、陽極室2Aに導入される金属イオン含有酸液中の酸と同じ酸の塩を添加しておく。例えば、金属イオン含有酸液が硫酸を含む場合には、陰極液に硫酸塩を添加し、金属イオン含有酸液がシュウ酸を含む場合には、陰極液にシュウ酸塩を添加する。   In the treatment of such a metal ion-containing acid solution, in the present invention, the same acid salt as the acid in the metal ion-containing acid solution introduced into the anode chamber 2A is added to the catholyte. For example, when the metal ion-containing acid solution contains sulfuric acid, sulfate is added to the catholyte, and when the metal ion-containing acid solution contains oxalic acid, oxalate is added to the catholyte.

陰極液に添加する酸の塩は、金属イオン含有酸液中の酸と同じ酸の塩であって、水溶性のものであれば何でも良く、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩、鉄塩、コバルト塩、ニッケル塩等が例示される。酸の塩は、1種のみを用いてもよく、2種以上を混合して使用してもよい。   The acid salt added to the catholyte is the same acid salt as the acid in the metal ion-containing acid solution, and any salt can be used as long as it is water-soluble. Sodium salt, potassium salt, magnesium salt, calcium salt, iron Examples thereof include salts, cobalt salts, nickel salts and the like. Only 1 type may be used for the salt of an acid, and 2 or more types may be mixed and used for it.

陰極液に添加する酸の塩は、モル濃度として、金属イオン含有酸液中の酸の0.5〜2倍であることが好ましく、0.8〜1.5倍であることがより好ましく、1.0〜1.2倍であることがさらに好ましい。陰極液に添加する酸塩の添加量が少なすぎると、金属イオン含有酸液中の酸がカチオン交換膜を透過して陰極液に移行することを十分に抑制できなくなり、多すぎると、逆に陰極液中の酸の塩がカチオン交換膜を透過して金属イオン含有酸液に移行する恐れがある。   The acid salt added to the catholyte is preferably 0.5 to 2 times, more preferably 0.8 to 1.5 times the acid in the metal ion-containing acid solution, as a molar concentration. More preferably, it is 1.0 to 1.2 times. If the amount of acid salt added to the catholyte is too small, the acid in the metal ion-containing acid solution cannot be sufficiently prevented from passing through the cation exchange membrane and transferred to the catholyte. There is a possibility that the salt of the acid in the catholyte permeates the cation exchange membrane and moves to the metal ion-containing acid solution.

本発明で用いる、金属イオン含有酸液中の酸と同じ酸の塩を含む陰極液のpHは、1.5〜10とすることが好ましく、2〜9とすることがより好ましく、3〜8とすることがさらに好ましい。陰極液のpHが低すぎると、陰極上に電着した金属の再溶解が起こり、電着速度が低下する恐れがある。また、陰極液のpHが高すぎると、金属の水酸化物が液中に懸濁物質として発生しやすくなる。このため陰極液のpHが上記範囲外となる場合には、アルカリや酸により、適宜pH調整を行うのが好ましいが、本発明では、金属イオン含有酸液中の酸がカチオン交換膜を透過して陰極液に移行し、陰極液のpHが低下することを抑制できるため、pH調整剤としてのアルカリが必要なくなるか、その量を削減できる。   The pH of the catholyte containing the same acid salt as the acid in the metal ion-containing acid solution used in the present invention is preferably 1.5 to 10, more preferably 2 to 9, and 3 to 8 More preferably. When the pH of the catholyte is too low, re-dissolution of the electrodeposited metal occurs on the cathode, which may reduce the electrodeposition rate. On the other hand, when the pH of the catholyte is too high, metal hydroxide is likely to be generated as a suspended substance in the liquid. For this reason, when the pH of the catholyte is outside the above range, it is preferable to adjust the pH appropriately with an alkali or an acid. However, in the present invention, the acid in the metal ion-containing acid solution permeates the cation exchange membrane. Therefore, it is possible to prevent the pH of the catholyte from being lowered and the pH of the catholyte to be lowered, so that an alkali as a pH adjusting agent is not necessary or the amount thereof can be reduced.

また、本発明においては、陰極液に金属イオンの電着に適した錯化剤(以下、「本発明の添加剤」と称す場合がある。)を添加することが好ましい。   In the present invention, a complexing agent suitable for electrodeposition of metal ions (hereinafter sometimes referred to as “additive of the present invention”) is preferably added to the catholyte.

本発明の添加剤としては、分子内に2つのカルボキシル基を有するジカルボン酸及びその塩(以下、「ジカルボン酸(塩)」と称す場合がある。)、並びに分子内に3つのカルボキシル基を有するトリカルボン酸及びその塩(以下、「トリカルボン酸(塩)」と称す場合がある。)から選択されるものが好ましい。これらは1種のみを用いてもよく、2種以上を混合して使用してもよい。ジカルボン酸(塩)、トリカルボン酸(塩)は、そのキレート効果で電着中の懸濁物質の発生を抑制し、電着効果の向上に優れた効果を奏する。
これに対して、分子内に1つのカルボキシル基を持つモノカルボン酸では、金属イオンとの結合力が弱く、液中で金属の水酸化物からなる懸濁物質が発生する、陰極に均一に電着しないといった問題が生じる。また、分子内に4つ以上のカルボキシル基を有するカルボン酸を用いると、金属イオンとの結合力が強すぎて、液中に金属が保持され、電着の速度が著しく低下するという問題が生じる。
The additive of the present invention includes a dicarboxylic acid having two carboxyl groups in the molecule and a salt thereof (hereinafter sometimes referred to as “dicarboxylic acid (salt)”), and having three carboxyl groups in the molecule. Those selected from tricarboxylic acids and salts thereof (hereinafter sometimes referred to as “tricarboxylic acids (salts)”) are preferred. These may use only 1 type and may mix and use 2 or more types. Dicarboxylic acids (salts) and tricarboxylic acids (salts) suppress the generation of suspended substances during electrodeposition due to their chelating effects, and have an excellent effect in improving the electrodeposition effect.
In contrast, a monocarboxylic acid having one carboxyl group in the molecule has a weak binding force with metal ions, and a suspended substance composed of a metal hydroxide is generated in the liquid. Problems such as not wearing. Further, when a carboxylic acid having four or more carboxyl groups in the molecule is used, there is a problem that the binding force with metal ions is too strong, the metal is retained in the liquid, and the electrodeposition rate is significantly reduced. .

ジカルボン酸(塩)、トリカルボン酸(塩)としては、下記式(1)で表されるものが、特に、懸濁物質が生じにくく、かつ電着が速やかに進むようになる点で好ましい。下記式(1)で表されるジカルボン酸(塩)やトリカルボン酸(塩)は、分子内のカルボキシル基同士の間に1〜3個の炭素原子が存在するものであり、その形状に由来して、金属イオンとの間に適度な結合力が得られると推測される。   As the dicarboxylic acid (salt) and tricarboxylic acid (salt), those represented by the following formula (1) are particularly preferable in that suspended substances are hardly generated and electrodeposition proceeds rapidly. The dicarboxylic acid (salt) or tricarboxylic acid (salt) represented by the following formula (1) has 1 to 3 carbon atoms between the carboxyl groups in the molecule, and is derived from its shape. Thus, it is estimated that an appropriate binding force can be obtained with the metal ion.

OOC−(CHX−(NH)−(CX−CX−COOM
…(1)
(式(1)中、X,X,Xは各々独立にH又はOHを表し、X,Xは各々独立にH、OH又はCOOMを表し、M,M,Mは各々独立にH、1価のアルカリ金属又はアンモニウムイオンを表し、a,b,cは各々独立に0又は1の整数を表す。ただし、式(1)において、XとXは同時にCOOMとなることはない。)
M 1 OOC- (CHX 1) a - (NH) b - (CX 2 X 4) c -CX 3 X 5 -COOM 2
... (1)
(In the formula (1), X 1 , X 2 and X 3 each independently represent H or OH, X 4 and X 5 each independently represent H, OH or COOM 3 , M 1 , M 2 , M 3 each independently represent H, monovalent alkali metal or ammonium ion, and a, b, and c each independently represent an integer of 0 or 1. However, in Formula (1), X 4 and X 5 are simultaneously COOM 3 will never be reached.)

本発明に好適なジカルボン酸としては、例えば、シュウ酸(エタン二酸、HOOC−COOH)、マロン酸(プロパン二酸、HOOC−CH−COOH)、コハク酸(ブタン二酸、HOOC−CH−CH−COOH)、グルタル酸(ペンタン二酸、HOOC−CH−CH−CH−COOH)、リンゴ酸(2−ヒドロキシブタン二酸、HOOC−CH−CH(OH)−COOH)、酒石酸(2,3−ジヒドロキシブタン二酸、HOOC−CH(OH)−CH(OH)−COOH)、イミノ二酢酸(HOOC−CH−NH−CH−COOH)などが挙げられるが、マロン酸、コハク酸、リンゴ酸、酒石酸、イミノ二酢酸が特に好ましい。トリカルボン酸としては、クエン酸(HOOC−CH−COH(COOH)−CH−COOH)、1,2,3−プロパントリカルボン酸などが挙げられるが、クエン酸が特に好ましい。また、これらのジカルボン酸、トリカルボン酸の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩が挙げられる。 Suitable dicarboxylic acids in the present invention, for example, oxalic acid (ethanedioic acid, HOOC-COOH), malonic acid (propanedioic acid, HOOC-CH 2 -COOH), succinic acid (butanedioic acid, HOOC-CH 2 -CH 2 -COOH), glutaric acid (pentanedioic acid, HOOC-CH 2 -CH 2 -CH 2 -COOH), malic acid (2-hydroxybutanedioic acid, HOOC-CH 2 -CH (OH ) -COOH) , Tartaric acid (2,3-dihydroxybutanedioic acid, HOOC—CH (OH) —CH (OH) —COOH), iminodiacetic acid (HOOC—CH 2 —NH—CH 2 —COOH), etc. Acid, succinic acid, malic acid, tartaric acid and iminodiacetic acid are particularly preferred. Examples of the tricarboxylic acid include citric acid (HOOC—CH 2 —COH (COOH) —CH 2 —COOH), 1,2,3-propanetricarboxylic acid, and citric acid is particularly preferable. In addition, examples of salts of these dicarboxylic acids and tricarboxylic acids include alkali metal salts such as sodium salts and potassium salts, and ammonium salts.

本発明においては、金属イオン含有酸液が金属イオンを複数種含む場合、ジカルボン酸(塩)及び/又はトリカルボン酸(塩)と共にアンモニウム塩を共存させることが好ましい。例えば、CoとFeを含む金属イオン含有酸液を本発明により処理する場合、アンモニウム塩を添加しない場合には、通常FeよりもCoの方が電着速度が速く、Coの電着層の上にFeの電着層が生成する形となるが、アンモニウム塩を添加することにより、CoとFeの電着速度がほぼ同等となり、CoとFeが合金状に電着するようになる。CoとFeの電着速度が異なり、Co層とFe層に分かれて電着すると、CoとFeの物性の違いにより、電着物の浮きや剥がれが起きやすくなって、継続的な電着処理ができなくなる恐れがある。   In the present invention, when the metal ion-containing acid solution contains a plurality of types of metal ions, it is preferable that an ammonium salt coexists with a dicarboxylic acid (salt) and / or a tricarboxylic acid (salt). For example, when a metal ion-containing acid solution containing Co and Fe is treated according to the present invention, when no ammonium salt is added, Co is usually faster in electrodeposition than Fe, and the top of the Co electrodeposition layer In this case, an electrodeposited layer of Fe is formed, but by adding an ammonium salt, the electrodeposition rates of Co and Fe become substantially equal, and Co and Fe are electrodeposited in an alloy form. When the electrodeposition rates of Co and Fe are different and electrodeposition is performed by separating the Co layer and the Fe layer, the electrodeposition tends to float or peel off due to the difference in the physical properties of Co and Fe, and continuous electrodeposition processing is performed. There is a risk that it will not be possible.

アンモニウム塩としては、液中でアンモニウムイオンを生じるものであればよく、例えば、塩化アンモニウム、硫酸アンモニウム、シュウ酸アンモニウム及びクエン酸アンモニウムが好適である。これらのアンモニウム塩は、1種のみを用いてもよく、2種以上を混合して使用してもよい。特に、シュウ酸アンモニウム等のジカルボン酸アンモニウムやクエン酸アンモニウム等のトリカルボン酸アンモニウムを用いると、アンモニウム塩と本発明の添加剤とを兼ねることができ、ジカルボン酸やトリカルボン酸のキレート効果による懸濁物質の発生抑制効果とCoとFeの電着速度を調整できる効果を1剤で得ることが可能である。   Any ammonium salt may be used as long as it produces ammonium ions in the liquid. For example, ammonium chloride, ammonium sulfate, ammonium oxalate, and ammonium citrate are preferable. These ammonium salts may be used alone or in combination of two or more. In particular, if ammonium dicarboxylate such as ammonium oxalate or ammonium tricarboxylate such as ammonium citrate is used, the ammonium salt and the additive of the present invention can be used, and the suspended substance due to the chelating effect of dicarboxylic acid or tricarboxylic acid It is possible to obtain the effect of suppressing the generation of carbon and the effect of adjusting the electrodeposition rate of Co and Fe with one agent.

本発明で用いる陰極液中の上記の本発明の添加剤の濃度については特に制限はないが、陽極室に導入される金属イオン含有酸液中の金属イオンの合計モル濃度に対して、陰極室に導入される陰極液中の本発明の添加剤のモル濃度が0.1〜50倍、特に0.5〜10倍であることが好ましく、陰極液としては、例えば、本発明の添加剤を0.01〜20重量%、好ましくは0.1〜5重量%含むと共に、前述の酸の塩を前述の好適含有量で含む、pH1.5〜10、好ましくはpH2〜9の水溶液が用いられる。陰極液中の本発明の添加剤の量が少な過ぎると、本発明の添加剤を用いたことによる懸濁物質抑制の効果を十分に得ることができず、多過ぎるとキレート効果が大きくなり過ぎて電着速度が低下する。   The concentration of the above-mentioned additive of the present invention in the catholyte used in the present invention is not particularly limited, but the cathode chamber is based on the total molar concentration of metal ions in the metal ion-containing acid solution introduced into the anode chamber. The molar concentration of the additive of the present invention in the catholyte introduced into the catalyst is preferably 0.1 to 50 times, particularly preferably 0.5 to 10 times. As the catholyte, for example, the additive of the present invention is used. An aqueous solution having a pH of 1.5 to 10, preferably pH 2 to 9, containing 0.01 to 20% by weight, preferably 0.1 to 5% by weight and containing the aforementioned acid salt in the aforementioned preferred content is used. . If the amount of the additive of the present invention in the catholyte is too small, the effect of inhibiting suspended solids by using the additive of the present invention cannot be sufficiently obtained, and if too large, the chelate effect becomes too large. As a result, the electrodeposition rate decreases.

本発明の添加剤は、電着槽の陽極に接触してしまうと酸化分解してしまうが、本発明の電着槽は、カチオン交換膜により陽極室と陰極室が隔てられているため、添加剤が含まれる電着液は陽極と直接接触することはないことから、添加剤が酸化されて無駄に消費されることがない。そのため、本発明では、陰極液に補充する添加剤は非常に少ない量でよく、薬品使用量を少なくできる。   The additive of the present invention is oxidatively decomposed when it comes into contact with the anode of the electrodeposition tank, but the electrodeposition tank of the present invention is added because the anode chamber and the cathode chamber are separated by a cation exchange membrane. Since the electrodeposition liquid containing the agent does not come into direct contact with the anode, the additive is not oxidized and consumed wastefully. Therefore, in the present invention, the amount of additive to be replenished to the catholyte may be very small, and the amount of chemicals used can be reduced.

また、アンモニウム塩を用いる場合、アンモニウム塩は、陰極液中の濃度が0.01〜20重量%、好ましくは0.1〜5重量%となる量で用いることが好ましい。アンモニウム塩の濃度が低過ぎるとアンモニウム塩を用いたことによる上記効果を十分に得ることができず、高過ぎると効果の向上がなく、薬品使用量が多くなる。   When an ammonium salt is used, the ammonium salt is preferably used in an amount such that the concentration in the catholyte is 0.01 to 20% by weight, preferably 0.1 to 5% by weight. If the concentration of the ammonium salt is too low, the above effect due to the use of the ammonium salt cannot be sufficiently obtained, and if it is too high, the effect is not improved and the amount of chemicals used increases.

電着条件(電流値、電流密度、温度等)には特に制限はないが、電流密度については陰極面積に対して5〜600mA/cmとするのが電着効率の面で好ましい。 The electrodeposition conditions (current value, current density, temperature, etc.) are not particularly limited, but the current density is preferably 5 to 600 mA / cm 2 with respect to the cathode area in terms of electrodeposition efficiency.

本発明における金属イオン含有酸液は、通常、鉄、マンガン、コバルト及びニッケルのうち1種以上、特には鉄、コバルト及びニッケルのうちの1種以上の鉄族金属イオンを含有する酸液であることが好ましいが、鉄族金属以外の金属が含まれていても問題ない。特に、本発明は、原子力発電所において発生する除染廃液や、原子力発電所で使用されたイオン交換樹脂から金属イオンを溶離させた溶離液といった、原子力発電所等から生じる放射性金属イオン含有廃液、とりわけ、pHが2未満の酸廃液の処理に好適であり、これらの廃液から、金属イオンを効率的に除去して処理液を再利用することができる。   The metal ion-containing acid solution in the present invention is usually an acid solution containing one or more of iron, manganese, cobalt, and nickel, particularly one or more of iron group metal ions of iron, cobalt, and nickel. Although it is preferable, there is no problem even if a metal other than the iron group metal is contained. In particular, the present invention is a waste liquid containing radioactive metal ions generated from a nuclear power plant, such as a decontamination waste liquid generated in a nuclear power plant, or an eluent obtained by eluting metal ions from an ion exchange resin used in a nuclear power plant, In particular, it is suitable for the treatment of acid waste liquids having a pH of less than 2. From these waste liquids, metal ions can be efficiently removed and the treatment liquid can be reused.

以下に、本発明を、原子力発電所で使用された廃イオン交換樹脂の除染工程に適用した例を、図2を参照して説明する。図2において、図1に示す部材と同一機能を奏する部材には同一符号を付してある。   Below, the example which applied this invention to the decontamination process of the waste ion exchange resin used in the nuclear power plant is demonstrated with reference to FIG. In FIG. 2, members having the same functions as those shown in FIG.

図2の装置は、廃イオン交換樹脂から金属イオンを溶離させた溶離液を貯留する溶離液貯槽30と、廃イオン交換樹脂40が充填された充填塔である溶離槽8と、溶離槽8から排出される酸廃液を貯留する酸廃液貯槽である金属イオン含有酸液貯槽10と、金属イオン含有酸液貯槽(酸廃液貯槽)10からの酸廃液が導入される電着槽1と、電着槽1に供給される陰極液を貯留する陰極液貯槽20とを備える。電着槽1は、陽極2を有する陽極室2Aと陰極3を有する陰極室3Aとがカチオン交換膜5で隔離された構成とされており、金属イオン含有酸液貯槽(酸廃液貯槽)10からの酸廃液は陽極室2Aに通液され、陰極液は陰極室3Aに通液される。9A,9Bは熱交換器である。   The apparatus shown in FIG. 2 includes an eluent storage tank 30 that stores an eluent obtained by eluting metal ions from a waste ion exchange resin, an elution tank 8 that is a packed tower filled with a waste ion exchange resin 40, and an elution tank 8. A metal ion-containing acid solution storage tank 10 which is an acid waste solution storage tank for storing the discharged acid waste solution, an electrodeposition tank 1 into which the acid waste solution from the metal ion-containing acid solution storage tank (acid waste solution storage tank) 10 is introduced, and electrodeposition A catholyte storage tank 20 for storing the catholyte supplied to the tank 1. The electrodeposition tank 1 has a structure in which an anode chamber 2A having an anode 2 and a cathode chamber 3A having a cathode 3 are separated by a cation exchange membrane 5, and from a metal ion-containing acid solution storage tank (acid waste liquid storage tank) 10. The acid waste liquid is passed through the anode chamber 2A, and the catholyte is passed through the cathode chamber 3A. 9A and 9B are heat exchangers.

溶離液貯槽30内の溶離液は、ポンプPにより配管31を経て溶離槽8に送給される過程で熱交換器9Aで60℃以上、好ましくは70〜120℃、より好ましくは80〜100℃に加温された後、溶離槽8に上向流で通液され、流出液(酸廃液)は配管32を経て、熱交換器9Bで電着槽4内のカチオン交換膜8の劣化が小さい60℃未満の温度、例えば10℃以上60℃未満に冷却された後金属イオン含有酸液貯槽(酸廃液貯槽)10に送給される。金属イオン含有酸液貯槽(酸廃液貯槽)10内の酸廃液は、ポンプPにより配管11を経て電着槽1の陽極室2Aに導入され、電着処理液は配管34より溶離液貯槽30に循環され、溶離液として再利用される。 Eluent of the eluent storage tank 30 is a heat exchanger 9A 60 ° C. or higher in the process of being delivered to the elution tank 8 through the pipe 31 by the pump P 3, preferably 70 to 120 ° C., more preferably 80 to 100 After being heated to ° C., the elution tank 8 is passed upwardly, and the effluent (acid waste liquid) passes through the pipe 32, and the cation exchange membrane 8 in the electrodeposition tank 4 is deteriorated by the heat exchanger 9B. After cooling to a small temperature of less than 60 ° C., for example, 10 ° C. or more and less than 60 ° C., the metal ion-containing acid solution storage tank (acid waste liquid storage tank) 10 is fed. Acid waste liquid metal ion-containing acid solution storage tank (acid waste liquid storage tank) 10 is pumped P 1 is introduced into the anode chamber 2A of the through pipe 11 electrodeposition tank 1, electrodeposition processing liquid eluent tank 30 from line 34 And recycled as eluent.

一方、電着槽1の陰極室3Aには、陰極液貯槽20内の陰極液がポンプPにより配管21を経て導入され、配管22を経て陰極液貯槽20に戻される。
溶離液貯槽30には適宜酸が配管33より補給され、陰極液貯槽20には配管23より陰極液が補給される。
On the other hand, the catholyte in the catholyte storage tank 20 is introduced into the cathode chamber 3A of the electrodeposition tank 1 through the pipe 21 by the pump P2, and returned to the catholyte storage tank 20 through the pipe 22.
The eluent storage tank 30 is appropriately replenished with acid through a pipe 33, and the catholyte storage tank 20 is replenished with a catholyte through a pipe 23.

この装置では、加熱された溶離液を廃イオン交換樹脂40が充填された溶離槽8に通液することにより、廃イオン交換樹脂40に吸着しているイオン状の放射性核種が溶離除去されるとともに、廃イオン交換樹脂40に混入又は樹脂粒子内に入り込んでいるクラッドが溶解除去される。廃イオン交換樹脂40と接触して、イオン状の放射性核種やクラッド溶解物を含む溶離液(酸廃液)は、金属イオン含有酸液貯槽(酸廃液貯槽)10を経て電着槽1の陽極室2Aに導入される。この電着槽1の陽極2と陰極3に通電することにより、酸廃液中の放射性金属イオンやクラッド由来の鉄イオン等の金属イオンがカチオン交換膜5を透過して陰極室3Aに移動して、陰極3上に電着される。電着槽1で金属イオンが除去された酸廃液の処理液は、溶離液貯槽30に戻され、循環再利用される。
陰極室3A内の陰極液は、ポンプPにより陰極液貯槽20との間を循環させ、陰極液の減少分を陰極液貯槽20に添加しつつ循環再利用する。
In this apparatus, by passing the heated eluent through the elution tank 8 filled with the waste ion exchange resin 40, the ionic radionuclide adsorbed on the waste ion exchange resin 40 is eluted and removed. Then, the clad mixed in the waste ion exchange resin 40 or entering the resin particles is dissolved and removed. In contact with the waste ion exchange resin 40, the eluent (acid waste liquid) containing ionic radionuclides and clad dissolved material passes through the metal ion-containing acid liquid storage tank (acid waste liquid storage tank) 10 and the anode chamber of the electrodeposition tank 1. 2A. By energizing the anode 2 and the cathode 3 of the electrodeposition tank 1, metal ions such as radioactive metal ions in the acid waste liquid and iron ions derived from the cladding permeate the cation exchange membrane 5 and move to the cathode chamber 3A. Electrodeposited on the cathode 3. The acid waste liquid treatment liquid from which metal ions have been removed in the electrodeposition tank 1 is returned to the eluent storage tank 30 and recycled.
The catholyte in the cathode chamber 3 </ b > A is circulated between the catholyte storage tank 20 by the pump P < b > 2, and the reduced amount of the catholyte is circulated and reused while being added to the catholyte storage tank 20.

図2の装置で、廃イオン交換樹脂の除染に用いる溶離液としては60℃以上に加温した酸溶離液を用いることが好ましく、このように加温した酸溶離液を用いることにより、廃イオン交換樹脂のカチオン交換樹脂に吸着している放射性金属イオンをHイオンとイオン交換して溶離除去できるとともに、廃イオン交換樹脂中に混入しているクラッドをも効率良く溶解除去することが可能となる。 In the apparatus of FIG. 2, it is preferable to use an acid eluent heated to 60 ° C. or higher as the eluent used for decontamination of the waste ion exchange resin. The radioactive metal ions adsorbed on the cation exchange resin of the ion exchange resin can be eluted and removed by ion exchange with H + ions, and the clad mixed in the waste ion exchange resin can be efficiently dissolved and removed. It becomes.

酸溶離液としては、硫酸、塩酸、硝酸といった無機酸や、ギ酸、酢酸、シュウ酸といった有機酸の水溶液を用いることができる。これらの酸は1種のみを用いてもよく、2種以上を混合して用いてもよいが、加温して用いる際に揮発しにくく、危険物に該当しない硫酸及び/又はシュウ酸を用いることが好ましい。   As the acid eluent, an aqueous solution of an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, or an organic acid such as formic acid, acetic acid or oxalic acid can be used. These acids may be used alone or as a mixture of two or more, but sulfuric acid and / or oxalic acid that does not easily volatilize when heated and used and does not fall under hazardous materials is used. It is preferable.

溶離液中の酸濃度は、用いる酸に応じて好適な濃度が存在し、例えば、硫酸濃度は、5〜40重量%が好ましく、10〜30重量%がより好ましい。また、シュウ酸濃度は、0.1〜40重量%が好ましく、1〜20重量%がより好ましい。上記範囲よりも酸濃度が低いと、クラッドの主成分であるヘマタイト(α−Fe)の溶解効率が低下する。即ち、クラッドは、廃イオン交換樹脂に混入又は樹脂内に入り込んだ形で存在しており、その主成分が難溶性のヘマタイトであり、低濃度の酸では溶解することは困難である。溶離液中の酸濃度が高いと後段の電着槽における、水素発生量が過多となり、電着効率が低下する。 The acid concentration in the eluent has a suitable concentration depending on the acid used. For example, the sulfuric acid concentration is preferably 5 to 40% by weight, more preferably 10 to 30% by weight. The oxalic acid concentration is preferably 0.1 to 40% by weight, more preferably 1 to 20% by weight. When the acid concentration is lower than the above range, the dissolution efficiency of hematite (α-Fe 2 O 3 ), which is the main component of the cladding, is lowered. That is, the clad is present in a form mixed in or entering the waste ion exchange resin, the main component of which is hardly soluble hematite, and it is difficult to dissolve with a low concentration of acid. If the acid concentration in the eluent is high, the amount of hydrogen generated in the subsequent electrodeposition tank becomes excessive, and the electrodeposition efficiency decreases.

図2の装置では、放射性廃イオン交換樹脂に含まれているコバルト−60やニッケル−63のように、溶解することにより金属カチオンとなるものを陰極に電着させることにより、放射性物質を高濃縮することができる。一方で、放射線量が極低レベルに低減された廃イオン交換樹脂を得ることができ、処理後の廃イオン交換樹脂は焼却処理が可能となる。そして、廃イオン交換樹脂を焼却して焼却灰とすることにより1/100〜1/200の容量に廃棄物量を低減することができる。   In the apparatus of FIG. 2, the radioactive substance is highly concentrated by electrodepositing what becomes a metal cation upon dissolution, such as cobalt-60 and nickel-63 contained in the radioactive waste ion exchange resin. can do. On the other hand, it is possible to obtain a waste ion exchange resin whose radiation dose is reduced to an extremely low level, and the treated waste ion exchange resin can be incinerated. Then, the amount of waste can be reduced to a capacity of 1/100 to 1/200 by incinerating the waste ion exchange resin into incineration ash.

図3は、図1及び図2の装置における電着槽1の別の実施形態を示すものである。図3において、図1及び図2に示す部材と同一機能を奏する部材には同一符号を付してある。   FIG. 3 shows another embodiment of the electrodeposition tank 1 in the apparatus of FIGS. 1 and 2. 3, members having the same functions as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.

図3の電着槽1Aは、陽極2を備えた陽極室2Aと、陰極3を備えた陰極室3Aと、陽極室2Aと陰極室3Aの間に1以上の中間室4を備える。本実施形態では、中間室4は4室からなり、陽極室2A、第一中間室4A、第二中間室4B、第三中間室4C、第四中間室4D、陰極室3Aの順で、それぞれがイオン交換膜で隔離された構成とされている。   The electrodeposition tank 1A of FIG. 3 includes an anode chamber 2A including an anode 2, a cathode chamber 3A including a cathode 3, and one or more intermediate chambers 4 between the anode chamber 2A and the cathode chamber 3A. In the present embodiment, the intermediate chamber 4 is composed of four chambers, the anode chamber 2A, the first intermediate chamber 4A, the second intermediate chamber 4B, the third intermediate chamber 4C, the fourth intermediate chamber 4D, and the cathode chamber 3A, respectively. Is separated by an ion exchange membrane.

陽極室2Aと第一中間室4A、第二中間室4Bと第三中間室4C、及び、第四中間室4Dと陰極室3Aの間のイオン交換膜は、カチオン交換膜5が用いられる。また、第一中間室4Aと第二中間室4B、及び、第三中間室4Cと第四中間室4Dの間のイオン交換膜は、バイポーラ膜6が用いられる。バイポーラ膜6はカチオン交換基を持つ面とアニオン交換基を持つ面を有するイオン交換膜であり、カチオン交換基を持つ面を陰極室3A側、アニオン交換基を持つ面を陽極室2A側に向けて配置される。バイポーラ膜6をアニオン交換膜に代えることも可能であるが、アニオン交換膜に代えると、酸廃液中の酸がアニオン交換膜を透過して陰極液に移行し、陰極液のpHが低下してしまったり、酸廃液の酸性度が低下して、酸液として再利用しにくくなったりという問題が生じうる。   The cation exchange membrane 5 is used as the ion exchange membrane between the anode chamber 2A and the first intermediate chamber 4A, the second intermediate chamber 4B and the third intermediate chamber 4C, and the fourth intermediate chamber 4D and the cathode chamber 3A. Further, the bipolar membrane 6 is used as the ion exchange membrane between the first intermediate chamber 4A and the second intermediate chamber 4B and between the third intermediate chamber 4C and the fourth intermediate chamber 4D. The bipolar membrane 6 is an ion exchange membrane having a surface having a cation exchange group and a surface having an anion exchange group, with the surface having a cation exchange group facing the cathode chamber 3A and the surface having an anion exchange group facing the anode chamber 2A. Arranged. Although it is possible to replace the bipolar membrane 6 with an anion exchange membrane, when the anion exchange membrane is used, the acid in the acid waste liquid passes through the anion exchange membrane and moves to the catholyte, and the pH of the catholyte decreases. This may cause a problem that the acidity of the acid waste solution is lowered and the acid waste solution is difficult to be reused as an acid solution.

金属イオン含有酸液(酸廃液)は、配管11を経て、陽極室2A、第二中間室4B及び第四中間室4Dに並列で通液された後、配管12を経て排出され、金属イオン濃度が低減された酸液として再利用される。陰極液は、陰極液貯槽(図1、図2における陰極液貯槽20)から配管21を経て、第一中間室4Aに導入され、第一中間室4Aからの排出液は配管23を経て、第三中間室4Cに導入され、第三中間室4Cからの排出液は配管24を経て、陰極室3Aに導入され、陰極室3Aからの排出液は配管22を経て、陰極液貯槽に戻す循環系が形成されている。   The metal ion-containing acid solution (acid waste solution) is passed through the pipe 11 in parallel to the anode chamber 2A, the second intermediate chamber 4B, and the fourth intermediate chamber 4D, and then discharged through the pipe 12 to obtain a metal ion concentration. Is reused as a reduced acid solution. The catholyte is introduced into the first intermediate chamber 4A from the catholyte storage tank (catholyte storage tank 20 in FIGS. 1 and 2) via the pipe 21 and discharged from the first intermediate chamber 4A via the pipe 23. A circulation system that is introduced into the third intermediate chamber 4C, the discharged liquid from the third intermediate chamber 4C is introduced into the cathode chamber 3A through the pipe 24, and the discharged liquid from the cathode chamber 3A is returned to the catholyte storage tank through the pipe 22. Is formed.

図3の装置では、陽極2と陰極3に通電することにより、酸廃液中の金属イオンがカチオン交換膜5を透過して陰極液側に移動して、陰極3上に電着される。   In the apparatus of FIG. 3, when the anode 2 and the cathode 3 are energized, the metal ions in the acid waste liquid permeate the cation exchange membrane 5 and move to the catholyte side, and are electrodeposited on the cathode 3.

図3の電着槽1では、陽極室2Aに酸廃液が導入されているが、陽極室2Aには酸廃液は導入せず、別途陽極液槽を設け、陽極液槽と陽極室2Aとの間で陽極液を循環させる形態とすることが好ましい。その場合、陽極液には、硫酸や硫酸ナトリウム等の陽極反応により消費されにくい電解質を添加することが好ましい。なお、陰極液に本発明の添加剤を添加する場合には、陽極室2Aに陰極液を導入すると、陽極反応により添加剤が分解してしまうため、陽極室2Aには陰極液を導入しないことが好ましい。   In the electrodeposition tank 1 of FIG. 3, the acid waste liquid is introduced into the anode chamber 2A. However, the acid waste liquid is not introduced into the anode chamber 2A, and a separate anolyte tank is provided. It is preferable that the anolyte be circulated between them. In that case, it is preferable to add to the anolyte an electrolyte that is not easily consumed by the anodic reaction, such as sulfuric acid or sodium sulfate. In addition, when the additive of the present invention is added to the catholyte, if the catholyte is introduced into the anode chamber 2A, the additive is decomposed by the anodic reaction, so that the catholyte is not introduced into the anode chamber 2A. Is preferred.

また、図3では、酸廃液を陽極室2A、第二中間室4B及び第四中間室4Dに並列で通液しているが、陽極室2A、第二中間室4B、第四中間室4Dの順に直列で通液する形態とすることも可能である。   In FIG. 3, the acid waste liquid is passed through the anode chamber 2A, the second intermediate chamber 4B, and the fourth intermediate chamber 4D in parallel, but the anode chamber 2A, the second intermediate chamber 4B, and the fourth intermediate chamber 4D. It is also possible to adopt a form in which liquid is passed in series in order.

図1〜3は、本発明の実施に好適な処理装置の一例を示すものであって、本発明の処理装置は、何ら図示のものに限定されるものではない。
図1〜3の装置では、電着槽1は閉鎖系となっているが、陰極から水素ガスが発生するため、上部を開放した開放系とするのが好ましい。また、金属が電着した陰極を交換する際にも、電着槽の上部が開放されていた方が交換が容易となる。また、図2において、溶離液は、溶離槽8に上向流で通液されているが、下向流であってもよい。ただし、廃イオン交換樹脂が粉末状である場合には、通液の際に差圧上昇しやすいため、上向流とすることが好ましい。また、電着槽1において、酸廃液と陰極液とはカチオン交換膜5を介して逆方向に通液されてもよい。更に、溶離槽8に導入される溶離液と排出される酸廃液とを熱交換することも可能である。
1 to 3 show an example of a processing apparatus suitable for carrying out the present invention, and the processing apparatus of the present invention is not limited to the illustrated one.
Although the electrodeposition tank 1 is a closed system in the apparatus of FIGS. 1-3, since hydrogen gas is generated from a cathode, it is preferable to set it as the open system which opened the upper part. In addition, when replacing the cathode electrodeposited with metal, the replacement is easier if the upper part of the electrodeposition tank is open. In FIG. 2, the eluent is passed through the elution tank 8 in an upward flow, but may be a downward flow. However, when the waste ion exchange resin is in the form of a powder, it is preferable to make the flow upward because the differential pressure is likely to increase during liquid flow. In the electrodeposition tank 1, the acid waste liquid and the catholyte may be passed through the cation exchange membrane 5 in the opposite directions. Furthermore, it is possible to exchange heat between the eluent introduced into the elution tank 8 and the discharged acid waste liquid.

また、図3において、中間室4は、陽極室2Aと陰極室3Aとの間に、積層状に4室設けられているが、中間室は4室に限られず、1室であってもよく、2室、3室、或いは5室以上であってもよい。ただし、陽極室とこれと隣接する中間室との間はカチオン交換膜で隔離し、陰極室とこれと隣接する中間室との間はカチオン交換膜で隔離し、その他の中間室同士の間は、カチオン交換膜とバイポーラ膜とが交互になるように設けることが好ましい。
このように陽極室と陰極室との間に中間室を設けた構成では、電流密度を上げることなく、電着槽あたりの酸廃液から陰極液への金属イオンの移動速度を向上させることができる点において好ましい。
In FIG. 3, four intermediate chambers 4 are provided between the anode chamber 2 </ b> A and the cathode chamber 3 </ b> A in a stacked manner. However, the intermediate chamber is not limited to four chambers and may be a single chamber. Two, three, or five or more rooms may be used. However, the anode chamber and the adjacent intermediate chamber are separated by a cation exchange membrane, the cathode chamber and the adjacent intermediate chamber are separated by a cation exchange membrane, and between the other intermediate chambers The cation exchange membrane and the bipolar membrane are preferably provided alternately.
Thus, in the configuration in which the intermediate chamber is provided between the anode chamber and the cathode chamber, the moving speed of the metal ions from the acid waste liquid to the catholyte per electrodeposition tank can be improved without increasing the current density. It is preferable in terms.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1〜3>
金属イオン含有酸液として表1に示す性状の模擬酸廃液を用い、硫酸ナトリウムを添加した模擬電着液(陰極液)を調製して、図1の装置を用いて、Co、Feの電着試験を行った。陰極液の硫酸ナトリウムは、模擬酸廃液中の硫酸濃度と等モル濃度となるように添加した。電着条件は表1の通りである。陽極2はPtメッキTi板、陰極3はCu板を使用した。通電時間は8hrとし、陰極液貯槽20内の陰極液のpHと、金属イオン含有酸液貯槽10内の模擬酸廃液のCo、Fe濃度を連続的に計測した。
<Examples 1-3>
Using a simulated acid waste solution having the properties shown in Table 1 as the metal ion-containing acid solution, a simulated electrodeposition solution (catholyte) to which sodium sulfate has been added was prepared, and using the apparatus shown in FIG. A test was conducted. The sodium sulfate in the catholyte was added so as to have an equimolar concentration with the sulfuric acid concentration in the simulated acid waste solution. The electrodeposition conditions are as shown in Table 1. The anode 2 was a Pt-plated Ti plate, and the cathode 3 was a Cu plate. The energization time was 8 hours, and the pH of the catholyte in the catholyte storage tank 20 and the Co and Fe concentrations of the simulated acid waste liquid in the metal ion-containing acid solution storage tank 10 were continuously measured.

その結果、図4に示すように、陰極液に硫酸ナトリウムを添加することにより、陰極液のpH低下を抑制できることがわかった。また、電流密度を上げるほどCo、Feがカチオン交換膜を透過する速度が速くなるために陰極液のpHは大きくなり、pHを高く維持できることがわかった。
図5、6には、それぞれ模擬酸廃液中のCoとFe濃度の経時変化を示した。通電時間に伴い、模擬酸廃液中からCoとFeを除去できていることがわかる。
As a result, as shown in FIG. 4, it was found that by adding sodium sulfate to the catholyte, a decrease in the pH of the catholyte can be suppressed. It was also found that the pH of the catholyte increases because the rate at which Co and Fe permeate the cation exchange membrane increases as the current density increases, and the pH can be maintained high.
5 and 6 show the changes over time in the Co and Fe concentrations in the simulated acid waste liquid, respectively. It can be seen that Co and Fe can be removed from the simulated acid waste solution with the energization time.

Figure 2016191691
Figure 2016191691

<比較例1>
模擬廃イオン交換樹脂(粉末状カチオン交換樹脂10g、粉末状アニオン交換樹脂10gの混合物にCoとFeを付加したもの)を90℃の5重量%硫酸中で攪拌し、CoとFeを模擬廃イオン交換樹脂から溶離させて模擬酸廃液とした。
図2に示す装置を用いて、溶離処理後の模擬廃イオン交換樹脂を溶離槽8に充填し、模擬酸廃液を溶離液貯槽30に充填し、表2の条件でCo、Feの電着試験を行った。電着槽1内の陽極2はPtメッキTi板、陰極3はCu板を使用した。模擬酸廃液と電着液(陰極液)の循環量(ポンプP〜Pの流量)はともに1L/hrとした。
処理時間(通電時間)は24hrとし、陰極液貯槽20内の陰極液のpHを連続的に測定した。また、試験後の陰極の電着物を、塩酸(35%塩酸と純水の1:1混合液)と硝酸(60%硝酸と純水の1:1混合液)を2:3で混合した溶解液により完全に溶解させて、原子吸光光度計により電着量を測定した。
<Comparative Example 1>
Simulated waste ion exchange resin (a mixture of 10 g of powdered cation exchange resin and 10 g of powdered anion exchange resin added with Co and Fe) is stirred in 5% sulfuric acid at 90 ° C., and Co and Fe are simulated waste ions. The simulated acid waste solution was eluted from the exchange resin.
Using the apparatus shown in FIG. 2, the elution tank 8 is filled with the simulated waste ion exchange resin after the elution treatment, the simulated acid waste liquid is filled into the eluent storage tank 30, and the Co and Fe electrodeposition tests are performed under the conditions shown in Table 2. Went. The anode 2 in the electrodeposition tank 1 was a Pt-plated Ti plate, and the cathode 3 was a Cu plate. The circulation amounts of the simulated acid waste liquid and the electrodeposition liquid (catholyte) (flow rates of the pumps P 1 to P 3 ) were both 1 L / hr.
The treatment time (energization time) was 24 hr, and the pH of the catholyte in the catholyte storage tank 20 was continuously measured. Moreover, the electrodeposit after the test was dissolved by mixing hydrochloric acid (1: 1 mixture of 35% hydrochloric acid and pure water) and nitric acid (1: 1 mixture of 60% nitric acid and pure water) in a ratio of 2: 3. The solution was completely dissolved in the solution, and the amount of electrodeposition was measured with an atomic absorption photometer.

その結果、図7に示すように、陰極液のpHは処理時間に伴って低下し、pHは4.4から1程度まで低下した(水素イオン濃度として0.1mol/L程度上昇した。)。これは、模擬酸廃液中の硫酸が濃度拡散によりカチオン交換膜を透過して陰極液に移行したためである。また、陰極への電着量はCoが0.52mg、Feが12.8mgであり、電着率は模擬酸廃液中のCoの14%、Feの1.8%であり、電着効率は低かった。   As a result, as shown in FIG. 7, the pH of the catholyte decreased with the treatment time, and the pH decreased from 4.4 to about 1 (the hydrogen ion concentration increased by about 0.1 mol / L). This is because the sulfuric acid in the simulated acid waste liquid permeates the cation exchange membrane by concentration diffusion and moves to the catholyte. The electrodeposition amount on the cathode is 0.52 mg for Co and 12.8 mg for Fe, and the electrodeposition rate is 14% for Co and 1.8% for Fe in the simulated acid waste solution. It was low.

Figure 2016191691
Figure 2016191691

<実施例4>
模擬廃イオン交換樹脂(粉末状カチオン交換樹脂2g、粉末状アニオン交換樹脂2gの混合物にCoとFeを付加したもの)を90℃の5重量%硫酸中で攪拌し、CoとFeを模擬廃イオン交換樹脂から溶離させて模擬酸廃液とした。
図2の装置を用いて、溶離処理後の模擬廃イオン交換樹脂を溶離槽8に充填し、模擬酸廃液を溶離液貯槽30に充填し、表3の条件で処理時間(通電時間)48hrとしてCo、Feの電着試験を行った。それ以外の条件は比較例1と同様にして試験を行った。
その結果、陰極液のpHは低下は見られたものの48hrの通電でpH8.4からpH4.6までの低下(水素イオン濃度として2.5×10−5mol/L程度の上昇)で抑えられ、陰極への電着量はCoが1.1mg、Feが165mgであり、電着率は模擬酸廃液中のCoの98%、Feの87%であり、高い電着効率が得られた。
<Example 4>
A simulated waste ion exchange resin (a mixture of 2 g of powdered cation exchange resin and 2 g of powdered anion exchange resin with Co and Fe added) was stirred in 90 wt. The simulated acid waste solution was eluted from the exchange resin.
Using the apparatus of FIG. 2, the elution tank 8 is filled with the simulated waste ion exchange resin after the elution treatment, the simulated acid waste liquid is filled into the eluent storage tank 30, and the treatment time (energization time) is 48 hours under the conditions shown in Table 3. Co and Fe electrodeposition tests were performed. Other conditions were the same as in Comparative Example 1 and the test was performed.
As a result, although the pH of the catholyte was decreased, it was suppressed by a decrease from pH 8.4 to pH 4.6 (an increase of about 2.5 × 10 −5 mol / L as the hydrogen ion concentration) by energization for 48 hours. The amount of electrodeposition on the cathode was 1.1 mg for Co and 165 mg for Fe, and the electrodeposition rates were 98% for Co and 87% for Fe in the simulated acid waste solution, and high electrodeposition efficiency was obtained.

Figure 2016191691
Figure 2016191691

1,1A 電着槽
2 陽極
2A 陽極室
3 陰極
3A 陰極室
4 中間室
4A 第一中間室
4B 第二中間室
4C 第三中間室
4D 第四中間室
5 カチオン交換膜
6 バイポーラ膜
8 溶離槽
9A,9B 熱交換器
10 金属イオン含有酸液貯槽(酸廃液貯槽)
20 陰極液貯槽
30 溶離液貯槽
40 廃イオン交換樹脂
1, 1A Electrodeposition bath 2 Anode 2A Anode chamber 3 Cathode 3A Cathode chamber 4 Intermediate chamber 4A First intermediate chamber 4B Second intermediate chamber 4C Third intermediate chamber 4D Fourth intermediate chamber 5 Cation exchange membrane 6 Bipolar membrane 8 Elution tank 9A , 9B Heat exchanger 10 Metal ion-containing acid storage tank (acid waste liquid storage tank)
20 Catholyte storage tank 30 Eluent storage tank 40 Waste ion exchange resin

Claims (10)

陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離し、該陽極室に金属イオンを含む酸液を導入し、該陰極室に該酸の塩を含む陰極液を導入し、該陽極と該陰極間に通電することにより、該陽極室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理方法。   An anode chamber with an anode and a cathode chamber with a cathode are separated by a cation exchange membrane, an acid solution containing metal ions is introduced into the anode chamber, and a catholyte containing a salt of the acid is introduced into the cathode chamber The metal ions in the liquid in the anode chamber are transferred through the cation exchange membrane and moved into the catholyte by depositing the metal between the anode and the cathode, and the metal is deposited on the cathode. A method for treating a metal ion-containing acid solution. 陽極を備えた陽極室と陰極を備えた陰極室との間に、該陽極室側及び陰極室側とイオン交換膜を介して隔離された1以上の中間室を設け、該陰極室と該陰極室に隣接する該中間室とはカチオン交換膜で隔離し、該陰極室に隣接した該中間室に金属イオンを含む酸液を導入し、該陰極室に該酸の塩を含む陰極液を導入し、該陽極と該陰極間に通電することにより、該陰極室に隣接した該中間室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理方法。   Between the anode chamber provided with the anode and the cathode chamber provided with the cathode, there are provided one or more intermediate chambers separated from the anode chamber side and the cathode chamber side through an ion exchange membrane, the cathode chamber and the cathode The intermediate chamber adjacent to the chamber is separated by a cation exchange membrane, an acid solution containing metal ions is introduced into the intermediate chamber adjacent to the cathode chamber, and a catholyte containing the acid salt is introduced into the cathode chamber The metal ions in the liquid in the intermediate chamber adjacent to the cathode chamber are moved through the cation exchange membrane and moved into the catholyte by passing an electric current between the anode and the cathode. A method for treating a metal ion-containing acid solution, wherein the metal is precipitated. 前記酸液は硫酸を含み、前記陰極液は硫酸塩を含むことを特徴とする請求項1又は2に記載の金属イオン含有酸液の処理方法。   The method for treating a metal ion-containing acid solution according to claim 1 or 2, wherein the acid solution contains sulfuric acid, and the catholyte contains a sulfate. 前記陰極室の前記塩の濃度は、モル濃度として、前記酸液中の酸の0.5〜2倍であることを特徴とする請求項1乃至3のいずれかに記載の金属イオン含有酸液の処理方法。   4. The metal ion-containing acid solution according to claim 1, wherein a concentration of the salt in the cathode chamber is 0.5 to 2 times as much as an acid in the acid solution as a molar concentration. Processing method. 前記陰極液は、ジカルボン酸及びその塩並びにトリカルボン酸及びその塩から選ばれる1種以上の添加剤を含むことを特徴とする請求項1乃至4のいずれかに記載の金属イオン含有酸液の処理方法。   The treatment of a metal ion-containing acid solution according to any one of claims 1 to 4, wherein the catholyte contains one or more additives selected from dicarboxylic acids and salts thereof and tricarboxylic acids and salts thereof. Method. 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを隔離するカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該陽極室に金属イオンを含む酸液を通液する通液手段と、該陰極室に該酸の塩を含む陰極液を通液する通液手段とを有し、該陽極と該陰極間に通電することにより、該陽極室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理装置。   An anode chamber having an anode; a cathode chamber having a cathode; a cation exchange membrane that separates the anode chamber from the cathode chamber; an energizing means for energizing between the anode and the cathode; A liquid passing means for passing an acid solution containing metal ions into the anode chamber; and a liquid passing means for passing a catholyte containing the acid salt into the cathode chamber, and a current is passed between the anode and the cathode. The metal ion-containing acid solution is characterized in that metal ions in the liquid in the anode chamber permeate the cation exchange membrane and move into the catholyte, and deposit the metal on the cathode. Processing equipment. 陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と該陰極室の間に該陽極室及び陰極室とイオン交換膜により隔離されて設けられた1以上の中間室とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該陰極室に隣接する該中間室に金属イオンを含む酸液を通液する通液手段と、該陰極室に該酸の塩を含む陰極液を通液する通液手段とを有し、該陰極室と該陰極室に隣接する該中間室とを隔離するイオン交換膜はカチオン交換膜であり、該陽極と該陰極間に通電することにより、該陰極室に隣接する該中間室内の液中の金属イオンを該カチオン交換膜を透過させて該陰極液中に移動させ、該陰極上に該金属を析出させることを特徴とする金属イオン含有酸液の処理装置。   An anode chamber provided with an anode, a cathode chamber provided with a cathode, and at least one intermediate chamber provided between the anode chamber and the cathode chamber and separated by the ion exchange membrane. An electrodeposition tank having electricity, an energizing means for energizing between the anode and the cathode, a liquid passing means for passing an acid solution containing metal ions into the intermediate chamber adjacent to the cathode chamber, and a solution of the acid in the cathode chamber. An ion exchange membrane that separates the cathode chamber and the intermediate chamber adjacent to the cathode chamber is a cation exchange membrane, and has a liquid passage means for passing a catholyte containing salt. The metal ions in the liquid in the intermediate chamber adjacent to the cathode chamber are moved through the cation exchange membrane and moved into the catholyte, and the metal is deposited on the cathode. An apparatus for treating a metal ion-containing acid solution. 前記酸液は硫酸を含み、前記陰極液は硫酸塩を含むことを特徴とする請求項6又は7に記載の金属イオン含有酸液の処理装置。   The apparatus for treating a metal ion-containing acid solution according to claim 6 or 7, wherein the acid solution contains sulfuric acid, and the catholyte contains a sulfate. 前記陰極室の前記塩の濃度は、モル濃度として、前記酸液中の酸の0.5〜2倍であることを特徴とする請求項6乃至8のいずれかに記載の金属イオン含有酸液の処理装置。   The metal ion-containing acid solution according to any one of claims 6 to 8, wherein the concentration of the salt in the cathode chamber is 0.5 to 2 times as much as the acid in the acid solution as a molar concentration. Processing equipment. 前記陰極液は、ジカルボン酸及びその塩並びにトリカルボン酸及びその塩から選ばれる1種以上の添加剤を含むことを特徴とする請求項6乃至9のいずれかに記載の金属イオン含有酸液の処理装置。   The treatment of a metal ion-containing acid solution according to any one of claims 6 to 9, wherein the catholyte contains one or more additives selected from dicarboxylic acids and salts thereof and tricarboxylic acids and salts thereof. apparatus.
JP2015073041A 2015-03-31 2015-03-31 Method for processing metal ion-containing acid liquid, and processing unit Pending JP2016191691A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015073041A JP2016191691A (en) 2015-03-31 2015-03-31 Method for processing metal ion-containing acid liquid, and processing unit
PCT/JP2016/060328 WO2016159051A1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids
EP16772932.6A EP3279900B1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids
US15/562,750 US20180079663A1 (en) 2015-03-31 2016-03-30 Method and apparatus for treating acidic liquid containing metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073041A JP2016191691A (en) 2015-03-31 2015-03-31 Method for processing metal ion-containing acid liquid, and processing unit

Publications (1)

Publication Number Publication Date
JP2016191691A true JP2016191691A (en) 2016-11-10

Family

ID=57246531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073041A Pending JP2016191691A (en) 2015-03-31 2015-03-31 Method for processing metal ion-containing acid liquid, and processing unit

Country Status (1)

Country Link
JP (1) JP2016191691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384295B1 (en) * 2021-11-12 2022-05-25 인천화학 주식회사 Apparatus And Method For Recovering Nickel Or Nickel Compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384295B1 (en) * 2021-11-12 2022-05-25 인천화학 주식회사 Apparatus And Method For Recovering Nickel Or Nickel Compound

Similar Documents

Publication Publication Date Title
JP6221847B2 (en) Co and Fe electrodeposition method and apparatus
EP3279900B1 (en) Method and device for treating metal ion-containing liquids
WO2014153974A1 (en) Radioactive wastewater treating method
JP2007024644A (en) Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2015081381A (en) Method and apparatus for treating liquid containing iron-group metal ion
US10083769B2 (en) Treatment method and treatment apparatus of iron-group metal ion-containing liquid, method and apparatus for electrodepositing Co and Fe, and decontamination method and decontamination apparatus of radioactive waste ion exchange resin
JP5692400B2 (en) Method for removing rare earth impurities in electro nickel plating solution
JP6439242B2 (en) Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
EP0075882B1 (en) Process for regenerating cleaning fluid
JP6428441B2 (en) Acid waste liquid treatment apparatus and treatment method
CN109478437A (en) The method that metal surface in a kind of pair of nuclear energy power generation factory carries out decontamination
WO2015060250A1 (en) Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
JP6477160B2 (en) Method and apparatus for eluting spent ion exchange resin
JP2007211315A (en) Cleaning device for contaminated matter including heavy metal
JP5120533B2 (en) Cation removal device for plating solution additive and method for treating plating solution additive
WO2013038933A1 (en) Water treatment method
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JP2008180740A (en) Nuclear power plant constitutive member
JP6428440B2 (en) Method and apparatus for processing iron group metal ion-containing liquid
JP2019030836A (en) Method for dissolving used ion exchange resin, and elution apparatus
JPH0452916B2 (en)
JPH0240200B2 (en)
JP2004052058A (en) Method for recovering effective component from electrolytic phosphate chemical conversion treatment bath
JPH11192487A (en) Circulating water purifying and sterilizing device and method therefor
JPH024880B2 (en)