JP6428441B2 - Acid waste liquid treatment apparatus and treatment method - Google Patents

Acid waste liquid treatment apparatus and treatment method Download PDF

Info

Publication number
JP6428441B2
JP6428441B2 JP2015073043A JP2015073043A JP6428441B2 JP 6428441 B2 JP6428441 B2 JP 6428441B2 JP 2015073043 A JP2015073043 A JP 2015073043A JP 2015073043 A JP2015073043 A JP 2015073043A JP 6428441 B2 JP6428441 B2 JP 6428441B2
Authority
JP
Japan
Prior art keywords
acid
waste liquid
cation exchange
acid waste
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073043A
Other languages
Japanese (ja)
Other versions
JP2016190225A (en
Inventor
真吾 宮本
真吾 宮本
眞美 廣瀬
眞美 廣瀬
元浩 会沢
元浩 会沢
太田 信之
信之 太田
貴子 住谷
貴子 住谷
石田 一成
一成 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Original Assignee
Kurita Water Industries Ltd
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Hitachi GE Nuclear Energy Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015073043A priority Critical patent/JP6428441B2/en
Priority to PCT/JP2016/060328 priority patent/WO2016159051A1/en
Priority to EP16772932.6A priority patent/EP3279900B1/en
Priority to US15/562,750 priority patent/US20180079663A1/en
Publication of JP2016190225A publication Critical patent/JP2016190225A/en
Application granted granted Critical
Publication of JP6428441B2 publication Critical patent/JP6428441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、金属イオンを含有する酸廃液の処理装置及び処理方法に係り、詳しくは、鉄(Fe)、コバルト(Co)、ニッケル(Ni)といった金属イオンを含有する酸廃液から、カチオン交換膜を用いた電気透析により、当該金属イオンを効率的に除去する装置及び方法に関する。本発明は、特に、原子力発電所において金属配管や機器の酸による除染で発生する除染廃液や、原子力発電所で使用されたイオン交換樹脂から金属イオンを溶離させた溶離液等の原子力発電所等から生じる金属イオンを含有する酸廃液の処理に好適に用いられる。   The present invention relates to a processing apparatus and a processing method for an acid waste solution containing metal ions, and more specifically, from an acid waste solution containing metal ions such as iron (Fe), cobalt (Co), and nickel (Ni), to a cation exchange membrane. The present invention relates to an apparatus and a method for efficiently removing the metal ions by electrodialysis using a slag. The present invention particularly relates to nuclear power generation such as decontamination waste liquid generated by acid decontamination of metal pipes and equipment in nuclear power plants, and eluent obtained by eluting metal ions from ion exchange resins used in nuclear power plants. It is suitably used for the treatment of acid waste liquid containing metal ions generated from places.

原子力発電所では、放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を化学的に除去した際に、多量の除染廃液が発生する。これらの除染廃液は、金属イオン、特に、Fe、Co又はNiといった鉄族金属イオンを含んでおり、Co−60(コバルト60)、Ni−63(ニッケル63)といった放射性物質も多く含んでいる。通常、除染廃液は、イオン交換樹脂により溶解しているイオン成分が除去され、除染液として再利用される。このため、放射性物質を多く含むイオン交換樹脂の廃棄物が発生するという問題がある。   In a nuclear power plant, a large amount of decontamination waste liquid is generated when the radioactive material is chemically removed from the primary cooling system equipment and piping contaminated with the radioactive material and the metal member surface of the system including these. These decontamination waste liquids contain metal ions, particularly iron group metal ions such as Fe, Co or Ni, and also contain a large amount of radioactive substances such as Co-60 (cobalt 60) and Ni-63 (nickel 63). . Usually, the decontamination waste liquid is reused as a decontamination liquid after the ionic components dissolved by the ion exchange resin are removed. For this reason, there exists a problem that the waste of the ion exchange resin containing many radioactive substances generate | occur | produces.

また、原子力発電所等において、原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂は、放射性物質を多く吸着しているため、高線量率の廃棄物として、発電所に設置された樹脂タンクに貯留されている。   In nuclear power plants, etc., ion exchange resins used to purify cooling water systems containing radioactive materials by directly touching fuel rods such as the reactor water purification system (CUW) and the fuel storage pool water purification system (FPC) Because it absorbs a lot of radioactive material, it is stored as a high dose rate waste in a resin tank installed at the power plant.

これらの放射性物質を含む廃棄物は、最終的にセメント等の固化助材と混練して安定化した後に、埋設処分される。埋設処分する際の費用は、内包する放射性物質の量で異なり、放射性物質濃度が高いほど高額となる。このため、高線量率の廃棄物はできるだけ減容した後に、固化体の埋設廃棄物とすることが経済的である。具体的には、イオン交換樹脂から放射性物質を固形物として分離し、その固形物を遮蔽容器内に封じ込めることができれば、減容化の面で望ましい。放射性物質が除去された廃イオン交換樹脂は、処分費用が安価な低線量率の廃棄物であり、さらに、廃イオン交換樹脂を焼却可能なレベルまで放射性物質を除去できれば、焼却処理により、大幅な減容が達成できる。   Waste containing these radioactive substances is finally kneaded with a solidification aid such as cement and stabilized, and then buried. The cost for disposal is different depending on the amount of radioactive material contained, and the higher the concentration of radioactive material, the higher the cost. For this reason, it is economical to reduce the volume of waste with a high dose rate as much as possible and then use it as a solid waste. Specifically, it is desirable in terms of volume reduction if the radioactive substance can be separated from the ion exchange resin as a solid and the solid can be enclosed in a shielding container. Waste ion exchange resin from which radioactive materials have been removed is a low-dose rate waste with low disposal costs, and if the radioactive materials can be removed to a level where incineration of the waste ion exchange resin can be achieved, incineration will significantly Volume reduction can be achieved.

このような高線量の廃樹脂の処理方法として、特許文献1や特許文献2に提案されるように、フェントン法や超臨界水酸化等の湿式酸化により廃樹脂を分解する方法があるが、これらの方法を適用した場合、いずれの場合も高線量率の廃液が多量に発生する。その高線量率の廃液を最終的に処分する際には、さらに蒸発濃縮し、その濃縮液をセメントと混練する等の方法により固化体として安定化することが必要となる。この場合、セメント等の固化助材を新たに添加するため、その分最終処分される高線量率の廃棄物量が増加し、廃棄物量の低減に至らないという問題がある。   As a method for treating such high-dose waste resin, there are methods of decomposing waste resin by wet oxidation such as Fenton method and supercritical water oxidation as proposed in Patent Document 1 and Patent Document 2. In this case, a large amount of waste liquid with a high dose rate is generated. When the waste liquid with a high dose rate is finally disposed of, it is necessary to stabilize it as a solidified body by a method such as evaporating and concentrating and kneading the concentrated liquid with cement. In this case, since a solidification aid such as cement is newly added, there is a problem that the amount of waste at a high dose rate to be finally disposed increases and the amount of waste cannot be reduced.

特許文献3には、廃樹脂に硫酸を通液し、イオン状の放射性物質を溶離し、溶離液から拡散透析により放射性物質を分離し、硫酸を循環再利用する技術が開示されている。また、特許文献4には、廃樹脂をシュウ酸水溶液に浸漬して表面の金属クラッドを溶解するとともに、樹脂に吸着している金属イオンをシュウ酸水溶液に溶離する廃樹脂処理方法が開示されている。これらの場合も、放射性物質を含む廃液が生成するが、その固化処理までは網羅されていない。   Patent Document 3 discloses a technique in which sulfuric acid is passed through waste resin, ionic radioactive substances are eluted, radioactive substances are separated from the eluent by diffusion dialysis, and sulfuric acid is circulated and reused. Patent Document 4 discloses a waste resin treatment method in which waste resin is immersed in an oxalic acid aqueous solution to dissolve the metal clad on the surface, and metal ions adsorbed on the resin are eluted into the oxalic acid aqueous solution. Yes. In these cases as well, waste liquid containing radioactive substances is generated, but the solidification process is not covered.

一方で、イオン状の放射性物質を含む廃液から放射性物質を除去する方法として、特許文献5には、放射性陽イオンが溶解した汚染除去溶液を、電着セルを通過させながら通電し、放射性陽イオンを放射性金属粒子として陰極に堆積させて、汚染除去溶液を再生・再利用する技術が開示されている。その際に、放射性金属粒子を堆積させた陰極は、陰極液を陰極全体に注いで放射性金属粒子を脱離させるとの記載がある。   On the other hand, as a method for removing radioactive substances from waste liquid containing ionic radioactive substances, Patent Document 5 discloses that a decontamination solution in which radioactive cations are dissolved is energized while passing through an electrodeposition cell, and the radioactive cations are used. Has been disclosed in which a decontamination solution is regenerated and reused by depositing as a radioactive metal particle on a cathode. At that time, the cathode on which radioactive metal particles are deposited is described as pouring catholyte over the entire cathode to desorb the radioactive metal particles.

しかし、この方法では、陰極液性状は汚染除去廃液の性状に依存して変化するため、陰極液を電着に適した液性状に調整することができない。汚染除去溶液が酸性の廃液の場合には、陰極表面で析出した放射性金属成分が酸性の廃液に再び溶解するため、析出が起こらないか、もしくは析出速度が著しく低下する。また、廃液が中性又はアルカリ性の場合には、陰極表面近傍で水酸化物の沈殿物が形成され、陰極表面に放射性金属を電着させて回収することが困難となる。このため、廃液から放射性物質を電着法により効率的に回収するためには、陰極室に直接廃液を導入するのは好ましくなく、陰極液を電着に適した液性とすることが重要となる。   However, in this method, the catholyte property changes depending on the property of the decontamination waste liquid, and therefore the catholyte cannot be adjusted to a liquid property suitable for electrodeposition. When the decontamination solution is an acidic waste solution, the radioactive metal component deposited on the cathode surface is dissolved again in the acidic waste solution, so that no precipitation occurs or the deposition rate is significantly reduced. In addition, when the waste liquid is neutral or alkaline, a hydroxide precipitate is formed in the vicinity of the cathode surface, and it becomes difficult to recover by depositing radioactive metal on the cathode surface. For this reason, in order to efficiently recover radioactive substances from the waste liquid by the electrodeposition method, it is not preferable to introduce the waste liquid directly into the cathode chamber, and it is important to make the catholyte liquid suitable for electrodeposition. Become.

そこで、本発明者らは、特願2013−221322にて、鉄族金属イオン含有液の電着処理において、鉄族金属イオン含有廃液の液性状に影響を受けることなく、鉄族金属イオンを効率的に液中から析出させて除去する鉄族金属イオン含有廃液の処理方法及び処理装置を提案した。具体的には、陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離した電着槽の陽極室に鉄族金属イオン含有廃液を導入し、陰極室に陰極液を導入して、陽極と陰極間に通電することにより、陽極室内の液中の鉄族金属イオンを陰極室内の陰極液中に移動させて陰極上に鉄族金属を析出させるようにすることにより、鉄族金属イオン含有廃液の液性状に左右されることなく、適切な電着条件にて鉄族金属を電着除去することができるものである。   In view of this, the inventors of the Japanese Patent Application No. 2013-221322 efficiently used iron group metal ions without being affected by the liquid properties of the iron group metal ion-containing waste liquid in the electrodeposition treatment of the iron group metal ion-containing liquid. A processing method and a processing device for iron group metal ion-containing waste liquid, which are deposited and removed from the liquid, were proposed. Specifically, iron group metal ion-containing waste liquid is introduced into the anode chamber of the electrodeposition tank in which the anode chamber with the anode and the cathode chamber with the cathode are separated by a cation exchange membrane, and the catholyte is introduced into the cathode chamber. Then, by applying current between the anode and the cathode, the iron group metal ions in the liquid in the anode chamber are moved into the catholyte in the cathode chamber so that the iron group metal is deposited on the cathode. The iron group metal can be electrodeposited and removed under appropriate electrodeposition conditions without being influenced by the liquid properties of the group metal ion-containing waste liquid.

特公昭61−9599号公報Japanese Patent Publication No. 61-9599 特許第3657747号公報Japanese Patent No. 3657747 特開2004−28697号公報JP 2004-28697 A 特開2013−44588号公報JP 2013-44588 A 特許第4438988号公報Japanese Patent No. 4438898 特願2013−221322Japanese Patent Application No. 2013-221322

特願2013−221322の技術により、鉄族金属イオン含有廃液の液性状に左右されることなく、適切な電着条件にて鉄族金属を電着除去することができるが、本発明者らの検討により、特願2013−221322に従って酸廃液中の金属イオンを電着除去しようとすると、酸廃液中の金属イオンをカチオン交換膜を透過させて電着液に移行させる際に、酸廃液中の酸基アニオンがカチオン交換膜を透過して電着液側に移行してしまうことが確認された。
ここで、酸基とは、酸根とも呼ばれ、無機・有機の各種の酸の分子から、水素イオンとして電離し得る水素原子を一個以上除いた残りの原子又は原子団を指す。例えば、塩酸におけるCl、硫酸におけるSO、HSOを指す。また、酸基アニオンとは、無機・有機の各種の酸の分子から、水素イオンとして電離し得る水素原子を一個以上除いた残りの原子又は原子団からなる陰イオンを指し、例えば塩酸におけるCl、硫酸におけるSO 2−やHSO を指す。
By the technique of Japanese Patent Application No. 2013-221322, the iron group metal can be electrodeposited and removed under appropriate electrodeposition conditions without being influenced by the liquid property of the iron group metal ion-containing waste liquid. As a result of the examination, if the metal ions in the acid waste liquid are to be electrodeposited and removed according to Japanese Patent Application No. 2013-221322, the metal ions in the acid waste liquid are transferred through the cation exchange membrane to the electrodeposition liquid. It was confirmed that the acid group anion migrates to the electrodeposition liquid side through the cation exchange membrane.
Here, the acid group is also called an acid radical, and refers to a remaining atom or atomic group obtained by removing one or more hydrogen atoms that can be ionized as hydrogen ions from various inorganic and organic acid molecules. For example, it refers to Cl in hydrochloric acid, SO 4 in sulfuric acid, and HSO 4 . Further, the acid anion refers the molecules of the organic and inorganic various acids, anions consisting of the remainder of the atoms or atomic groups a hydrogen atom capable of ionizing excluding one or more as a hydrogen ion, such as Cl in hydrochloric acid - And SO 4 2− and HSO 4 in sulfuric acid.

酸廃液中の酸基アニオンが電着液側に移行してしまうと、酸廃液の酸濃度が低下してしまうために、金属イオンを除去した後の酸廃液を酸液として有効に再利用できなくなるだけでなく、電着液のpHが低下し、電着液から金属イオンを電着除去する際に電着不良を引き起こす恐れがある。   If the acid group anion in the acid waste liquid moves to the electrodeposition liquid side, the acid concentration of the acid waste liquid decreases, so the acid waste liquid after removing metal ions can be effectively reused as the acid liquid. Not only does this disappear, but the pH of the electrodeposition solution decreases, which may cause poor electrodeposition when the metal ions are electrodeposited and removed from the electrodeposition solution.

本発明は、酸廃液中の金属イオンをカチオン交換膜を用いた電気透析によりカチオン交換膜を透過させて除去するに当たり、酸廃液中の酸基アニオンがカチオン交換膜を透過することを抑制し、酸廃液の酸濃度を低下させることなく、また、電着不良等を引き起こすことなく、効率的に処理する酸廃液の処理装置及び処理方法を提供することを課題とする。   The present invention suppresses permeation of the acid group anion in the acid waste liquid through the cation exchange membrane in removing the metal ion in the acid waste liquid through the cation exchange membrane by electrodialysis using a cation exchange membrane, It is an object of the present invention to provide a treatment apparatus and a treatment method for an acid waste liquid that can be efficiently treated without reducing the acid concentration of the acid waste liquid and without causing poor electrodeposition.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定値以上の膜厚を有するカチオン交換膜を使用することにより、カチオン交換膜を酸基アニオンが透過するのを阻止することができることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventors use a cation exchange membrane having a film thickness of a predetermined value or more to prevent acid group anions from permeating through the cation exchange membrane. The present invention has been completed.
That is, the gist of the present invention is as follows.

[1] 酸廃液中の金属イオンを、電気透析によりカチオン交換膜を透過させて除去する酸廃液処理装置において、該カチオン交換膜の膜厚が0.25〜1mmであることを特徴とする酸廃液の処理装置。 [1] An acid waste liquid treatment apparatus for removing metal ions in an acid waste liquid by permeation through a cation exchange membrane by electrodialysis, wherein the film thickness of the cation exchange membrane is 0.25 to 1 mm. Waste liquid treatment equipment.

[2] [1]において、前記酸廃液は、放射性金属汚染物質を酸性除染液により酸洗浄又は酸溶離した際に発生する放射性金属イオンを含む放射性酸廃液であり、前記酸廃液の処理装置により放射性金属イオンが除去された該放射性酸廃液は、前記酸性除染液として再利用されることを特徴とする酸廃液の処理装置。 [2] In [1], the acid waste liquid is a radioactive acid waste liquid containing a radioactive metal ion generated when acid cleaning or acid elution of a radioactive metal pollutant is performed with an acidic decontamination liquid. The apparatus for treating an acid waste liquid, wherein the radioactive acid waste liquid from which the radioactive metal ions have been removed is reused as the acidic decontamination liquid.

[3] [1]又は[2]において、前記酸廃液中の金属イオンは、前記カチオン交換膜を透過して、該金属イオンと錯体を形成する配位子を含有する配位子含有液に移行されることを特徴とする酸廃液の処理装置。 [3] In [1] or [2], the metal ion in the acid waste liquid passes through the cation exchange membrane and forms a ligand-containing liquid containing a ligand that forms a complex with the metal ion. An acid waste liquid treatment apparatus characterized by being transferred.

[4] 酸廃液中の金属イオンを、電気透析により膜厚0.25〜1mmのカチオン交換膜を透過させて除去することを特徴とする酸廃液の処理方法。 [4] A method for treating an acid waste liquid, comprising removing metal ions in the acid waste liquid by electrodialysis through a cation exchange membrane having a thickness of 0.25 to 1 mm.

[5] [4]において、前記酸廃液は、放射性金属汚染物質を酸性除染液により酸洗浄又は酸溶離した際に発生する放射性酸廃液であり、前記酸廃液の処理方法により該放射性酸廃液中の放射性金属イオンを除去した後、前記酸性除染液として再利用することを特徴とする酸廃液の処理方法。 [5] In [4], the acid waste liquid is a radioactive acid waste liquid generated when acid cleaning or acid elution of a radioactive metal contaminant is performed with an acid decontamination liquid, and the radioactive acid waste liquid is obtained by a treatment method of the acid waste liquid. A method for treating an acid waste liquid, wherein the radioactive metal ions are removed and then reused as the acidic decontamination liquid.

[6] [4]又は[5]において、前記酸廃液中の金属イオンを、前記カチオン交換膜を透過させて、該金属イオンと錯体を形成する配位子を含有する配位子含有液に移行させることを特徴とする酸廃液の処理方法。 [6] In [4] or [5], the metal ion in the acid waste liquid is passed through the cation exchange membrane to form a ligand-containing liquid containing a ligand that forms a complex with the metal ion. A method for treating an acid waste liquid, comprising transferring the acid waste liquid.

本発明の酸廃液の処理装置および処理方法によれば、酸廃液中の酸基アニオンがカチオン交換膜を透過して失われることにより、酸廃液の酸濃度が低下してしまうことを防止することができる。このため、金属イオン除去処理後の酸廃液を酸液として有効に再利用することができる。また、金属イオンをカチオン交換膜を透過させて電着液に移行させる場合、カチオン交換膜を透過した酸基アニオンによる電着液のpH低下に伴う電着阻害も防止される。   According to the acid waste liquid treatment apparatus and method of the present invention, the acid group anion in the acid waste liquid is lost through the cation exchange membrane, thereby preventing the acid concentration of the acid waste liquid from being lowered. Can do. For this reason, the acid waste liquid after a metal ion removal process can be effectively reused as an acid liquid. Further, when metal ions are allowed to pass through the cation exchange membrane and transferred to the electrodeposition solution, inhibition of electrodeposition due to a decrease in pH of the electrodeposition solution due to the acid group anion permeating the cation exchange membrane is also prevented.

酸廃液からカチオン交換膜を透過した金属イオンは、その金属イオンと溶解性の錯体を形成する配位子を含む配位子含有液に移行させるようにすることにより、カチオン交換膜を透過した金属イオンが水酸化物として析出したり、カチオン交換膜を閉塞させたりすることを防止することができるが、本発明によれば、配位子含有液として有機酸又は有機酸塩を用いる場合、その有機酸の酸基がカチオン交換膜を透過して酸廃液側に移行することも防止できるため、安定した電着処理を継続的に行うことができる。   Metal ions that permeate the cation exchange membrane from the acid waste liquid are transferred to a ligand-containing liquid containing a ligand that forms a soluble complex with the metal ion, thereby allowing the metal to permeate the cation exchange membrane. Ions can be prevented from precipitating as hydroxide or clogging the cation exchange membrane. According to the present invention, when an organic acid or organic acid salt is used as the ligand-containing liquid, Since it can also prevent that the acid group of an organic acid permeate | transmits a cation exchange membrane and transfers to the acid waste liquid side, the stable electrodeposition process can be performed continuously.

本発明の実施の形態の一例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows an example of embodiment of this invention. 本発明の実施の形態の他の例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows the other example of embodiment of this invention. 本発明の実施の形態の別の例を示す処理装置の系統図である。It is a systematic diagram of the processing apparatus which shows another example of embodiment of this invention. 実施例で用いた試験装置の系統図である。It is a systematic diagram of the test apparatus used in the Example. 実施例1及び比較例1における模擬酸廃液中のTOC濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the TOC density | concentration in the simulated acid waste liquid in Example 1 and Comparative Example 1. 実施例1及び比較例1における模擬酸廃液中のFe濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of Fe density | concentration in the simulated acid waste liquid in Example 1 and Comparative Example 1.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明により処理する酸廃液としては、鉄やコバルト、ニッケルといった鉄族金属イオン等の金属イオンを含む酸廃液であればよく、特に制限はないが、本発明は、下記(1),(2)の酸廃液の処理に好適である。
(1) 原子力発電所における放射性物質に汚染された一次冷却系の機器や配管、これらを含む系統の金属部材表面から放射性物質を酸溶解した酸廃液
(2) 原子力発電所での使用済イオン交換樹脂(原子炉水浄化系(CUW)、燃料貯蔵プール水浄化系(FPC)といった直接燃料棒に触れ、放射性物質を含む冷却水系の浄化に使用されたイオン交換樹脂や、上記(1)の酸廃液から放射性金属イオンを除去するために使用されたイオン交換樹脂)から放射性金属イオンを除去するために酸溶離した溶離酸廃液
通常、これらの酸廃液はpH5以下、好ましくはpH2以下の強酸廃液である。
The acid waste liquid to be treated according to the present invention is not particularly limited as long as it is an acid waste liquid containing metal ions such as iron group metal ions such as iron, cobalt, and nickel, but the present invention includes the following (1), (2 It is suitable for the treatment of acid waste liquid.
(1) Primary cooling system equipment and piping contaminated with radioactive materials at nuclear power plants, acid waste solution in which radioactive materials are acid-dissolved from the surface of metal parts of systems containing them (2) Used ion exchange at nuclear power plants Resin (Ion exchange resin used for purification of cooling water system containing radioactive material by directly touching fuel rods such as reactor water purification system (CUW) and fuel storage pool water purification system (FPC)) Eluted acid waste solutions that have been acid-eluted to remove radioactive metal ions from the waste solution (ion exchange resin used to remove radioactive metal ions from the waste solution). Usually these acid waste solutions are strong acid waste solutions having a pH of 5 or less, preferably pH 2 or less. is there.

上記除染酸廃液や溶離酸廃液は鉄族イオンの一つである放射性コバルトを含むため、本発明によれば、これらの酸廃液中の放射性コバルトを、電着槽の陰極上に、嵩が小さい金属態として安定に固定化することができ、また、放射性コバルト除去後の酸廃液を上記の除染や酸溶離のための酸液として有効に再利用することができるというメリットがある。   Since the decontamination acid waste liquid and the elution acid waste liquid contain radioactive cobalt which is one of iron group ions, according to the present invention, the radioactive cobalt in these acid waste liquids is bulky on the cathode of the electrodeposition tank. There is an advantage that it can be stably fixed as a small metal state, and the acid waste solution after the removal of radioactive cobalt can be effectively reused as the acid solution for the above decontamination and acid elution.

本発明においては、このような金属イオンを含む酸廃液から、金属イオンを、カチオン交換膜を用いた電気透析によりカチオン交換膜を透過させて除去するに当たり、カチオン交換膜として、膜厚が0.25〜1mmのものを用いる。カチオン交換膜として、膜厚0.25mm以上の比較的厚いカチオン交換膜を用いることにより、酸廃液中の酸基アニオンがカチオン交換膜を透過して酸廃液の酸濃度が低下したり、電着液のpHが低下したり、更には、電着液中に後述の有機酸や有機酸塩を含む場合、これらの酸基アニオンが電着液側からカチオン交換膜を透過して酸廃液側に移行したりすることを防止することができる。酸基アニオンの透過を防止する観点からは、カチオン交換膜の膜厚は厚い方が好ましいが、カチオン交換膜の膜厚を過度に厚くすると、膜抵抗が大きくなり、消費電力が大きくなるため、好ましくない。
カチオン交換膜の膜厚は好ましくは0.30〜0.80mmであり、より好ましくは0.35〜0.50mmである。
なお、通常、電気透析においては、できるだけイオン交換膜の膜厚を薄くして膜抵抗を下げ、消費電力を低減するために、膜厚0.20mm以下の薄膜のものが用いられているが、本発明においては、酸基アニオンの透過を防止するために、上記のような膜厚のカチオン交換膜を用いる。
In the present invention, when removing metal ions from the acid waste solution containing metal ions by electrodialysis using the cation exchange membrane through the cation exchange membrane, the film thickness of the cation exchange membrane is 0. The thing of 25-1 mm is used. By using a relatively thick cation exchange membrane having a film thickness of 0.25 mm or more as the cation exchange membrane, the acid group anion in the acid waste liquid permeates through the cation exchange membrane and the acid concentration of the acid waste liquid decreases, or electrodeposition When the pH of the solution is lowered or further contains an organic acid or organic acid salt described later in the electrodeposition solution, these acid group anions permeate the cation exchange membrane from the electrodeposition solution side to the acid waste solution side. It is possible to prevent migration. From the viewpoint of preventing the permeation of acid group anions, the cation exchange membrane is preferably thicker, but if the cation exchange membrane is excessively thick, the membrane resistance increases and the power consumption increases. It is not preferable.
The thickness of the cation exchange membrane is preferably 0.30 to 0.80 mm, more preferably 0.35 to 0.50 mm.
Normally, in electrodialysis, a thin film having a thickness of 0.20 mm or less is used in order to reduce the membrane resistance by reducing the film thickness of the ion exchange membrane as much as possible. In the present invention, in order to prevent permeation of acid group anions, a cation exchange membrane having the above thickness is used.

本発明で用いるカチオン交換膜の交換基密度は小さいほど、酸廃液中の酸基アニオンがカチオン交換膜を透過することを抑制する効果が高い。また、電着液中に後述の有機酸や有機酸塩を含む場合、カチオン交換膜の交換基密度が小さいほど、これらの酸基アニオンが電着液側からカチオン交換膜を透過して酸廃液側に移行することを抑制する効果が高い。ただし、カチオン交換膜の交換基密度を過度に小さくすると、金属イオンのカチオン交換膜透過速度が小さくなるとともに、膜抵抗が上昇し、消費電力が大きくなるため、好ましくない。これらの理由から、本発明で用いるカチオン交換膜は、交換基密度が、1.0〜2meq/g−dry膜であることが好ましく、1.5〜1.8meq/g−dry膜であることがより好ましい。   The smaller the exchange group density of the cation exchange membrane used in the present invention, the higher the effect of inhibiting the acid group anion in the acid waste liquid from permeating the cation exchange membrane. Further, when the electrodeposition liquid contains an organic acid or organic acid salt described later, the acid group anion permeates the cation exchange membrane from the electrodeposition liquid side as the exchange group density of the cation exchange membrane is smaller. The effect which suppresses shifting to the side is high. However, when the exchange group density of the cation exchange membrane is excessively reduced, the permeation rate of metal ions in the cation exchange membrane is reduced, the membrane resistance is increased, and the power consumption is increased. For these reasons, the cation exchange membrane used in the present invention preferably has an exchange group density of 1.0 to 2 meq / g-dry membrane, and 1.5 to 1.8 meq / g-dry membrane. Is more preferable.

以下、図面を参照して本発明をより詳細に説明するが、本発明の一態様にあっては、
陽極を備えた陽極室と陰極を備えた陰極室とをカチオン交換膜で隔離し、該陽極室に金属イオンを含む酸廃液を導入し、該陰極室に陰極液(電着液)を導入し、該陽極と該陰極間に通電することにより、該陽極室内の酸廃液中の金属イオンを該カチオン交換膜を透過させて該陰極室内の液中に移動させ、該陰極上に該金属を析出させる酸廃液の処理方法、
及び
陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを隔離するカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該陽極室に金属イオンを含む酸廃液を通液する通液手段と、該陰極室に陰極液(電着液)を通液する通液手段とを有し、該陽極と該陰極間に通電することにより、該陽極室内の酸廃液中の金属イオンを該カチオン交換膜を透過させて該陰極室内の液中に移動させ、該陰極上に該金属を析出させる酸廃液の処理装置、
により酸廃液中の金属イオンの除去処理が行われる。
Hereinafter, the present invention will be described in more detail with reference to the drawings. In one embodiment of the present invention,
An anode chamber having an anode and a cathode chamber having a cathode are separated by a cation exchange membrane, an acid waste solution containing metal ions is introduced into the anode chamber, and a catholyte (electrodeposition solution) is introduced into the cathode chamber. The metal ions in the acid waste liquid in the anode chamber are transferred to the liquid in the cathode chamber by passing electricity between the anode and the cathode, and the metal is deposited on the cathode. Acid waste liquid treatment method,
And an electrode chamber having an anode chamber having an anode, a cathode chamber having a cathode, a cation exchange membrane separating the anode chamber and the cathode chamber, and an energizing means for energizing between the anode and the cathode, The anode chamber has a liquid passing means for passing an acid waste solution containing metal ions, and a liquid passing means for passing a catholyte (electrodeposition liquid) to the cathode chamber, and is energized between the anode and the cathode. An acid waste liquid treatment apparatus for causing metal ions in the acid waste liquid in the anode chamber to pass through the cation exchange membrane and moving into the liquid in the cathode chamber, and depositing the metal on the cathode,
Thus, the metal ions in the acid waste liquid are removed.

また、本発明の別の態様にあっては、
金属イオンを含む酸廃液と、該金属イオンと錯体を形成する配位子を含む電着液とを、カチオン交換膜を複数枚配した電気透析槽に導入し、該酸廃液中の該金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該酸廃液中の金属イオンを除去する電気透析工程と、該電気透析槽から流出した金属イオンを含む電着液を、陽極と陰極を配した電着槽に導入し、該電着液中の該金属を陰極上に電着させて、該電着液から該金属イオンを除去する電着工程と、該電着工程で金属イオンが除去された電着液を前記電気透析工程に送給する電着液循環工程とを有する酸廃液の処理方法、
及び
陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極と陰極室との間に設けられた複数枚のカチオン交換膜とを有する電気透析槽と、該電気透析槽の陽極及び陰極間に通電する通電手段と、該電気透析槽に金属イオンを含む酸廃液と、該金属イオンと錯体を形成する配位子を含む電着液とを通液する手段とを有し、該酸廃液中の該金属イオンを、該カチオン交換膜を透過させて該電着液に移行させることにより、該酸廃液中の金属イオンを除去する電気透析装置と、陽極を備えた陽極室と、陰極を備えた陰極室と、該陽極室と陰極室とを仕切るカチオン交換膜とを有する電着槽と、該陽極及び陰極間に通電する通電手段と、該電着槽の陰極室に前記電気透析槽から流出した前記金属イオンを含む電着液を通液する手段とを有し、該金属イオンを含む電着液中の該金属を該陰極上に電着させて該電着液から該金属イオンを除去する電着装置と、該電着槽から流出した該金属イオンが除去された電着液を前記電気透析槽に送給する手段とを備える酸廃液の処理装置、
により酸廃液中の金属イオンの除去処理が行われる。
In another aspect of the present invention,
An acid waste solution containing metal ions and an electrodeposition solution containing a ligand that forms a complex with the metal ions are introduced into an electrodialysis tank provided with a plurality of cation exchange membranes, and the metal ions in the acid waste solution Is transferred to the electrodeposition liquid through the cation exchange membrane to remove metal ions in the acid waste liquid, and an electrodeposition liquid containing metal ions flowing out of the electrodialysis tank. An electrodeposition step in which the metal ion in the electrodeposition solution is electrodeposited on the cathode to remove the metal ions from the electrodeposition solution; A method for treating an acid waste liquid, comprising: an electrodeposition liquid circulation step for feeding the electrodeposition liquid from which metal ions have been removed in the step to the electrodialysis step;
And an electrodialysis tank having an anode chamber provided with an anode, a cathode chamber provided with a cathode, and a plurality of cation exchange membranes provided between the anode and the cathode chamber, an anode of the electrodialysis tank, and An energizing means for energizing between the cathodes, an acid waste solution containing metal ions in the electrodialysis tank, and a means for passing an electrodeposition solution containing a ligand that forms a complex with the metal ions, An electrodialyzer that removes the metal ions in the acid waste liquid by allowing the metal ions in the acid waste liquid to pass through the cation exchange membrane and transfer to the electrodeposition liquid; an anode chamber equipped with an anode; An electrodeposition tank having a cathode chamber provided with a cathode; a cation exchange membrane separating the anode chamber and the cathode chamber; energization means for energizing between the anode and the cathode; Means for passing the electrodeposition liquid containing the metal ions flowing out from the dialysis tank, An electrodeposition apparatus for removing the metal ions from the electrodeposition liquid by electrodepositing the metal in the electrodeposition liquid containing ions onto the cathode; and an electrode from which the metal ions flowing out of the electrodeposition tank have been removed. An acid waste liquid treatment apparatus comprising: a means for feeding the liquid to the electrodialysis tank;
Thus, the metal ions in the acid waste liquid are removed.

上記別態様において、前記電気透析槽として、より具体的には、以下の(I)又は(II)を用いることができる。
(I) 陽極及び陰極と、該陽極に対峙して配置された第1のバイポーラ膜と、該陰極に対峙して配置された第2のバイポーラ膜と、該第1のバイポーラ膜と第2のバイポーラ膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3のバイポーラ膜とを備え、該陽極と該第1のバイポーラ膜との間が陽極室、該陰極と該第2のバイポーラ膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該バイポーラ膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該バイポーラ膜との間が濃縮室となっており、該脱イオン室に前記酸廃液を通液すると共に、該濃縮室に前記電着液を通液するように構成されたもの。
(II) 陽極及び陰極と、該陽極に対峙して配置された第1の水素選択透過型カチオン交換膜と、該陰極に対峙して配置された第2の水素選択透過型カチオン交換膜と、該第1の水素選択透過型カチオン交換膜と第2の水素選択透過型カチオン交換膜との間に配置された複数枚のカチオン交換膜と、該カチオン交換膜同士の間に配置された第3の水素選択透過型カチオン交換膜とを備え、該陽極と該第1の水素選択透過型カチオン交換膜との間が陽極室、該陰極と該第2の水素選択透過型カチオン交換膜との間が陰極室となっており、該カチオン交換膜と該カチオン交換膜の該陽極側に設けられた該水素選択透過型カチオン交換膜との間が脱イオン室、該カチオン交換膜と該カチオン交換膜の該陰極側に設けられた該水素選択透過型カチオン交換膜との間が濃縮室となっており、該脱イオン室に前記酸廃液を通液すると共に、該濃縮室に前記電着液を通液するように構成されたもの。
In the another aspect, more specifically, the following (I) or (II) can be used as the electrodialysis tank.
(I) an anode and a cathode, a first bipolar film disposed opposite to the anode, a second bipolar film disposed opposite to the cathode, the first bipolar film and the second A plurality of cation exchange membranes arranged between the bipolar membranes and a third bipolar membrane arranged between the cation exchange membranes, wherein the gap between the anode and the first bipolar membrane is An anode chamber, a cathode chamber is provided between the cathode and the second bipolar membrane, and a deionization chamber is provided between the cation exchange membrane and the bipolar membrane provided on the anode side of the cation exchange membrane. A concentration chamber is formed between the cation exchange membrane and the bipolar membrane provided on the cathode side of the cation exchange membrane, and the acid waste liquid is passed through the deionization chamber and What was comprised so that the said electrodeposition liquid might flow.
(II) an anode and a cathode, a first hydrogen permselective cation exchange membrane disposed against the anode, a second hydrogen permselective cation exchange membrane disposed against the cathode, A plurality of cation exchange membranes arranged between the first hydrogen selective permeable cation exchange membrane and the second hydrogen selective permeable cation exchange membrane, and a third arranged between the cation exchange membranes. A hydrogen selective permeation type cation exchange membrane, and a space between the anode and the first hydrogen selective permeation type cation exchange membrane between an anode chamber and the cathode and the second hydrogen selective permeation type cation exchange membrane. Is a cathode chamber, and a space between the cation exchange membrane and the hydrogen selective permeable cation exchange membrane provided on the anode side of the cation exchange membrane is a deionization chamber, the cation exchange membrane and the cation exchange membrane. The hydrogen permselective cation exchange provided on the cathode side of Film has become a concentrating compartment between, as well as liquid permeability of the acid waste liquid deionizing chamber, which is configured to liquid passage the electrodeposition solution in the concentrating compartment.

図1は、本発明の酸廃液の処理装置の実施の形態の一例を示す系統図であり、本発明を、原子力発電所で使用された廃イオン交換樹脂の除染工程に適用した例を示す。   FIG. 1 is a system diagram showing an example of an embodiment of an acid waste liquid treatment apparatus of the present invention, and shows an example in which the present invention is applied to a decontamination process of a waste ion exchange resin used in a nuclear power plant. .

図1の装置は、廃イオン交換樹脂から金属イオンを溶離させた溶離液を貯留する溶離液貯槽30と、廃イオン交換樹脂40が充填された充填塔である溶離槽8と、溶離槽8から排出される金属イオンを含む酸廃液を貯留する酸廃液貯槽10と、酸廃液貯槽10からの酸廃液が導入される電着槽1と、電着槽1に供給される陰極液を貯留する陰極液貯槽20とを備える。電着槽1は、陽極2を有する陽極室2Aと陰極3を有する陰極室3Aとがカチオン交換膜5で隔離された構成とされており、酸廃液貯槽10からの酸廃液は陽極室2Aに通液され、陰極液は陰極室3Aに通液される。9A,9Bは熱交換器である。   The apparatus of FIG. 1 includes an eluent storage tank 30 for storing an eluent obtained by eluting metal ions from a waste ion exchange resin, an elution tank 8 that is a packed tower filled with a waste ion exchange resin 40, and an elution tank 8. Acid waste liquid storage tank 10 for storing acid waste liquid containing metal ions to be discharged, electrodeposition tank 1 into which acid waste liquid from acid waste liquid storage tank 10 is introduced, and cathode for storing catholyte supplied to electrodeposition tank 1 A liquid storage tank 20. The electrodeposition tank 1 has a structure in which an anode chamber 2A having an anode 2 and a cathode chamber 3A having a cathode 3 are separated by a cation exchange membrane 5, and the acid waste liquid from the acid waste liquid storage tank 10 is supplied to the anode chamber 2A. The catholyte is passed through the cathode chamber 3A. 9A and 9B are heat exchangers.

溶離液貯槽30内の溶離液は、ポンプPにより配管31を経て溶離槽8に送給される過程で熱交換器9Aで60℃以上、好ましくは70〜120℃、より好ましくは80〜100℃に加温された後、溶離槽8に上向流で通液され、流出液(酸廃液)は配管32を経て、熱交換器9Bで電着槽4内のカチオン交換膜8の劣化が小さい60℃未満の温度、例えば10℃以上60℃未満に冷却された後酸廃液貯槽10に送給される。酸廃液貯槽10内の酸廃液は、ポンプPにより配管11を経て電着槽1の陽極室2Aに導入され、電着処理液は配管34より溶離液貯槽30に循環され、溶離液として再利用される。 Eluent of the eluent storage tank 30 is a heat exchanger 9A 60 ° C. or higher in the process of being delivered to the elution tank 8 through the pipe 31 by the pump P 3, preferably 70 to 120 ° C., more preferably 80 to 100 After being heated to ° C., the elution tank 8 is passed upwardly, and the effluent (acid waste liquid) passes through the pipe 32, and the cation exchange membrane 8 in the electrodeposition tank 4 is deteriorated by the heat exchanger 9B. After being cooled to a small temperature of less than 60 ° C., for example, 10 ° C. or more and less than 60 ° C., the acid waste solution storage tank 10 is fed. Acid waste acid waste liquid storage tank 10 by the pump P 1 is introduced into the anode chamber 2A of the through pipe 11 electrodeposition tank 1, electrodeposition processing liquid is circulated in the eluent reservoir 30 from the pipe 34, re as eluent Used.

一方、電着槽1の陰極室3Aには、陰極液貯槽20内の陰極液がポンプPにより配管21を経て導入され、配管22を経て陰極液貯槽20に戻される。
溶離液貯槽30には適宜酸が配管33より補給され、陰極液貯槽20には配管23より陰極液が補給される。
On the other hand, the catholyte in the catholyte storage tank 20 is introduced into the cathode chamber 3A of the electrodeposition tank 1 through the pipe 21 by the pump P2, and returned to the catholyte storage tank 20 through the pipe 22.
The eluent storage tank 30 is appropriately replenished with acid through a pipe 33, and the catholyte storage tank 20 is replenished with a catholyte through a pipe 23.

この装置では、加熱された溶離液を廃イオン交換樹脂40が充填された溶離槽8に通液することにより、廃イオン交換樹脂40に吸着しているイオン状の放射性核種が溶離除去されるとともに、廃イオン交換樹脂40に混入又は樹脂粒子内に入り込んでいるクラッドが溶解除去される。廃イオン交換樹脂40と接触して、イオン状の放射性核種やクラッド溶解物を含む溶離液(酸廃液)は、酸廃液貯槽10を経て電着槽1の陽極室2Aに導入される。この電着槽1の陽極2と陰極3に通電することにより、酸廃液中の放射性金属イオンやクラッド由来の鉄イオン等の金属イオンがカチオン交換膜5を透過して陰極室3Aに移動して、陰極3上に電着される。電着槽1で金属イオンが除去された酸廃液の処理液は、溶離液貯槽30に戻され、循環再利用される。
陰極室3A内の陰極液は、ポンプPにより陰極液貯槽20との間を循環させ、陰極液の減少分を陰極液貯槽20に添加しつつ循環再利用する。
In this apparatus, by passing the heated eluent through the elution tank 8 filled with the waste ion exchange resin 40, the ionic radionuclide adsorbed on the waste ion exchange resin 40 is eluted and removed. Then, the clad mixed in the waste ion exchange resin 40 or entering the resin particles is dissolved and removed. In contact with the waste ion exchange resin 40, an eluent (acid waste liquid) containing ionic radionuclides and clad melt is introduced into the anode chamber 2 </ b> A of the electrodeposition tank 1 through the acid waste liquid storage tank 10. By energizing the anode 2 and the cathode 3 of the electrodeposition tank 1, metal ions such as radioactive metal ions in the acid waste liquid and iron ions derived from the cladding permeate the cation exchange membrane 5 and move to the cathode chamber 3A. Electrodeposited on the cathode 3. The acid waste liquid treatment liquid from which metal ions have been removed in the electrodeposition tank 1 is returned to the eluent storage tank 30 and recycled.
The catholyte in the cathode chamber 3 </ b > A is circulated between the catholyte storage tank 20 by the pump P < b > 2, and the reduced amount of the catholyte is circulated and reused while being added to the catholyte storage tank 20.

本発明で用いる陰極液のpHは、1〜9とすることが好ましく、2〜8とすることがより好ましい。陰極液のpHが低すぎると、陰極上に電着した金属の再溶解が起こり、電着速度が低下する恐れがある。また、陰極液のpHが高すぎると、金属の水酸化物が液中に懸濁物質として発生しやすくなる。このため陰極液のpHが上記範囲外となる場合には、アルカリや酸により、適宜pH調整を行うのが好ましいが、本発明では、前述の膜厚のカチオン交換膜を用いることにより、酸廃液からの酸基アニオンのカチオン交換膜透過に起因する陰極液のpH低下は防止される。   The pH of the catholyte used in the present invention is preferably from 1 to 9, and more preferably from 2 to 8. When the pH of the catholyte is too low, re-dissolution of the electrodeposited metal occurs on the cathode, which may reduce the electrodeposition rate. On the other hand, when the pH of the catholyte is too high, metal hydroxide is likely to be generated as a suspended substance in the liquid. Therefore, when the pH of the catholyte is out of the above range, it is preferable to adjust the pH appropriately with an alkali or an acid. However, in the present invention, the acid waste liquid is obtained by using the cation exchange membrane having the above-mentioned thickness. The pH drop of the catholyte due to permeation of acid group anions from the cation exchange membrane is prevented.

陰極液には、カチオン交換膜を透過した金属イオンと錯体を形成し得る配位子を存在させることが好ましく、このような配位子を存在させるために、金属イオンと錯体を形成する錯化剤(以下、「本発明の錯化剤」と称す場合がある。)を添加することが好ましい。   The catholyte preferably contains a ligand capable of forming a complex with a metal ion that has permeated the cation exchange membrane, and in order to make such a ligand exist, a complex that forms a complex with the metal ion. It is preferable to add an agent (hereinafter sometimes referred to as “the complexing agent of the present invention”).

本発明の錯化剤としては、分子内に2つのカルボキシル基を有するジカルボン酸及びその塩(以下、「ジカルボン酸(塩)」と称す場合がある。)、並びに分子内に3つのカルボキシル基を有するトリカルボン酸及びその塩(以下、「トリカルボン酸(塩)」と称す場合がある。)から選択されるものが好ましい。これらは1種のみを用いてもよく、2種以上を混合して使用してもよい。ジカルボン酸(塩)、トリカルボン酸(塩)は、そのキレート効果で電着中の懸濁物質の発生を抑制し、電着効果の向上に優れた効果を奏する。
これに対して、分子内に1つのカルボキシル基を持つモノカルボン酸では、金属イオンとの結合力が弱く、液中で金属の水酸化物からなる懸濁物質が発生する、陰極に均一に電着しないといった問題が生じる。また、分子内に4つ以上のカルボキシル基を有するカルボン酸を用いると、金属イオンとの結合力が強すぎて、液中に金属が保持され、電着の速度が著しく低下するという問題が生じる。
The complexing agent of the present invention includes dicarboxylic acid having two carboxyl groups in the molecule and a salt thereof (hereinafter sometimes referred to as “dicarboxylic acid (salt)”), and three carboxyl groups in the molecule. Those selected from the tricarboxylic acid and salts thereof (hereinafter sometimes referred to as “tricarboxylic acid (salt)”) are preferable. These may use only 1 type and may mix and use 2 or more types. Dicarboxylic acids (salts) and tricarboxylic acids (salts) suppress the generation of suspended substances during electrodeposition due to their chelating effects, and have an excellent effect in improving the electrodeposition effect.
In contrast, a monocarboxylic acid having one carboxyl group in the molecule has a weak binding force with metal ions, and a suspended substance composed of a metal hydroxide is generated in the liquid. Problems such as not wearing. Further, when a carboxylic acid having four or more carboxyl groups in the molecule is used, there is a problem that the binding force with metal ions is too strong, the metal is retained in the liquid, and the electrodeposition rate is significantly reduced. .

ジカルボン酸(塩)、トリカルボン酸(塩)としては、下記式(1)で表されるものが、特に、懸濁物質が生じにくく、かつ電着が速やかに進むようになる点で好ましい。下記式(1)で表されるジカルボン酸(塩)やトリカルボン酸(塩)は、分子内のカルボキシル基同士の間に1〜3個の炭素原子が存在するものであり、その形状に由来して、金属イオンとの間に適度な結合力が得られると推測される。   As the dicarboxylic acid (salt) and tricarboxylic acid (salt), those represented by the following formula (1) are particularly preferable in that suspended substances are hardly generated and electrodeposition proceeds rapidly. The dicarboxylic acid (salt) or tricarboxylic acid (salt) represented by the following formula (1) has 1 to 3 carbon atoms between the carboxyl groups in the molecule, and is derived from its shape. Thus, it is estimated that an appropriate binding force can be obtained with the metal ion.

OOC−(CHX−(NH)−(CX−CX−COOM
…(1)
(式(1)中、X,X,Xは各々独立にH又はOHを表し、X,Xは各々独立にH、OH又はCOOMを表し、M,M,Mは各々独立にH、1価のアルカリ金属又はアンモニウムイオンを表し、a,b,cは各々独立に0又は1の整数を表す。ただし、式(1)において、XとXは同時にCOOMとなることはない。)
M 1 OOC- (CHX 1) a - (NH) b - (CX 2 X 4) c -CX 3 X 5 -COOM 2
... (1)
(In the formula (1), X 1 , X 2 and X 3 each independently represent H or OH, X 4 and X 5 each independently represent H, OH or COOM 3 , M 1 , M 2 , M 3 each independently represent H, monovalent alkali metal or ammonium ion, and a, b, and c each independently represent an integer of 0 or 1. However, in Formula (1), X 4 and X 5 are simultaneously COOM 3 will never be reached.)

本発明に好適なジカルボン酸としては、例えば、シュウ酸(エタン二酸、HOOC−COOH)、マロン酸(プロパン二酸、HOOC−CH−COOH)、コハク酸(ブタン二酸、HOOC−CH−CH−COOH)、グルタル酸(ペンタン二酸、HOOC−CH−CH−CH−COOH)、リンゴ酸(2−ヒドロキシブタン二酸、HOOC−CH−CH(OH)−COOH)、酒石酸(2,3−ジヒドロキシブタン二酸、HOOC−CH(OH)−CH(OH)−COOH)、イミノ二酢酸(HOOC−CH−NH−CH−COOH)などが挙げられるが、マロン酸、コハク酸、リンゴ酸、酒石酸、イミノ二酢酸が特に好ましい。トリカルボン酸としては、クエン酸(HOOC−CH−COH(COOH)−CH−COOH)、1,2,3−プロパントリカルボン酸などが挙げられるが、クエン酸が特に好ましい。また、これらのジカルボン酸、トリカルボン酸の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩が挙げられる。 Suitable dicarboxylic acids in the present invention, for example, oxalic acid (ethanedioic acid, HOOC-COOH), malonic acid (propanedioic acid, HOOC-CH 2 -COOH), succinic acid (butanedioic acid, HOOC-CH 2 -CH 2 -COOH), glutaric acid (pentanedioic acid, HOOC-CH 2 -CH 2 -CH 2 -COOH), malic acid (2-hydroxybutanedioic acid, HOOC-CH 2 -CH (OH ) -COOH) , Tartaric acid (2,3-dihydroxybutanedioic acid, HOOC—CH (OH) —CH (OH) —COOH), iminodiacetic acid (HOOC—CH 2 —NH—CH 2 —COOH), etc. Acid, succinic acid, malic acid, tartaric acid and iminodiacetic acid are particularly preferred. Examples of the tricarboxylic acid include citric acid (HOOC—CH 2 —COH (COOH) —CH 2 —COOH), 1,2,3-propanetricarboxylic acid, and citric acid is particularly preferable. In addition, examples of salts of these dicarboxylic acids and tricarboxylic acids include alkali metal salts such as sodium salts and potassium salts, and ammonium salts.

本発明においては、酸廃液が金属イオンを複数種含む場合、ジカルボン酸(塩)及び/又はトリカルボン酸(塩)と共にアンモニウム塩を共存させることが好ましい。例えば、CoとFeを含む酸廃液を本発明により処理する場合、アンモニウム塩を添加しない場合には、通常FeよりもCoの方が電着速度が速く、Coの電着層の上にFeの電着層が生成する形となるが、アンモニウム塩を添加することにより、CoとFeの電着速度がほぼ同等となり、CoとFeが合金状に電着するようになる。CoとFeの電着速度が異なり、Co層とFe層に分かれて電着すると、CoとFeの物性の違いにより、電着物の浮きや剥がれが起きやすくなって、継続的な電着処理ができなくなる恐れがある。   In the present invention, when the acid waste liquid contains a plurality of types of metal ions, it is preferable that an ammonium salt coexists with a dicarboxylic acid (salt) and / or a tricarboxylic acid (salt). For example, when an acid waste solution containing Co and Fe is treated according to the present invention, when no ammonium salt is added, Co is usually faster in electrodeposition than Fe, and Fe is deposited on the Co electrodeposition layer. An electrodeposition layer is formed, but by adding an ammonium salt, the electrodeposition rates of Co and Fe become substantially equal, and Co and Fe are electrodeposited in an alloy form. When the electrodeposition rates of Co and Fe are different and electrodeposition is performed by separating the Co layer and the Fe layer, the electrodeposition tends to float or peel off due to the difference in the physical properties of Co and Fe, and continuous electrodeposition processing is performed. There is a risk that it will not be possible.

アンモニウム塩としては、液中でアンモニウムイオンを生じるものであればよく、例えば、塩化アンモニウム、硫酸アンモニウム、シュウ酸アンモニウム及びクエン酸アンモニウムが好適である。これらのアンモニウム塩は、1種のみを用いてもよく、2種以上を混合して使用してもよい。特に、シュウ酸アンモニウム等のジカルボン酸アンモニウムやクエン酸アンモニウム等のトリカルボン酸アンモニウムを用いると、アンモニウム塩と本発明の錯化剤とを兼ねることができ、ジカルボン酸やトリカルボン酸のキレート効果による懸濁物質の発生抑制効果とCoとFeの電着速度を調整できる効果を1剤で得ることが可能である。   Any ammonium salt may be used as long as it produces ammonium ions in the liquid. For example, ammonium chloride, ammonium sulfate, ammonium oxalate, and ammonium citrate are preferable. These ammonium salts may be used alone or in combination of two or more. In particular, when ammonium dicarboxylate such as ammonium oxalate or ammonium tricarboxylate such as ammonium citrate is used, the ammonium salt and the complexing agent of the present invention can be used, and suspension due to the chelating effect of dicarboxylic acid or tricarboxylic acid It is possible to obtain the effect of suppressing the generation of substances and the effect of adjusting the electrodeposition rate of Co and Fe with one agent.

本発明で用いる陰極液中の上記の本発明の錯化剤の濃度については特に制限はないが、陽極室に導入される酸廃液中の金属イオンの合計モル濃度に対して、陰極室に導入される陰極液中の本発明の錯化剤のモル濃度が0.1〜50倍、特に0.5〜10倍であることが好ましく、陰極液としては、例えば、本発明の錯化剤を0.01〜20重量%、好ましくは0.1〜5重量%含むpH1〜9、好ましくはpH2〜8の水溶液が用いられる。本発明の錯化剤の量が少な過ぎると、本発明の錯化剤を用いたことによる懸濁物質抑制の効果を十分に得ることができず、多過ぎるとキレート効果が大きくなり過ぎて電着速度が低下する。
本発明の錯化剤は、電着槽の陽極に接触してしまうと酸化分解してしまうが、本発明のでは、カチオン交換膜により陽極室と陰極室が隔てるため、錯化剤が含まれる電着液は陽極と直接接触することはないため、錯化剤が酸化されて無駄に消費されることはなく、しかも、前述の膜厚のカチオン交換膜を用いることにより、陰極液中に含まれる錯化剤がカチオン交換膜を透過して酸廃液側に移行して失われることも防止される。そのため、本発明では、陰極液に補充する錯化剤は非常に少ない量でよく、薬品使用量を少なくできる。
The concentration of the complexing agent of the present invention in the catholyte used in the present invention is not particularly limited, but it is introduced into the cathode chamber with respect to the total molar concentration of metal ions in the acid waste solution introduced into the anode chamber. It is preferable that the molar concentration of the complexing agent of the present invention in the catholyte is 0.1 to 50 times, particularly 0.5 to 10 times. As the catholyte, for example, the complexing agent of the present invention is used. An aqueous solution having a pH of 1 to 9, preferably 2 to 8 containing 0.01 to 20% by weight, preferably 0.1 to 5% by weight is used. If the amount of the complexing agent of the present invention is too small, the effect of inhibiting suspended substances due to the use of the complexing agent of the present invention cannot be sufficiently obtained. The landing speed is reduced.
The complexing agent of the present invention is oxidatively decomposed when it comes into contact with the anode of the electrodeposition tank. However, in the present invention, the cation exchange membrane separates the anode chamber and the cathode chamber, and therefore the complexing agent is included. Since the electrodeposition liquid does not come into direct contact with the anode, the complexing agent is not oxidized and wasted, and it is contained in the catholyte by using a cation exchange membrane having the above-mentioned film thickness. It is also possible to prevent the complexing agent passing through the cation exchange membrane from being transferred to the acid waste liquid and lost. Therefore, in the present invention, the amount of complexing agent to be replenished in the catholyte may be very small, and the amount of chemicals used can be reduced.

また、アンモニウム塩を用いる場合、アンモニウム塩は、陰極液中の濃度が0.01〜20重量%、好ましくは0.1〜5重量%となる量で用いることが好ましい。アンモニウム塩の濃度が低過ぎるとアンモニウム塩を用いたことによる上記効果を十分に得ることができず、高過ぎると効果の向上がなく、薬品使用量が多くなる。   When an ammonium salt is used, the ammonium salt is preferably used in an amount such that the concentration in the catholyte is 0.01 to 20% by weight, preferably 0.1 to 5% by weight. If the concentration of the ammonium salt is too low, the above effect due to the use of the ammonium salt cannot be sufficiently obtained, and if it is too high, the effect is not improved and the amount of chemicals used increases.

電着条件(電流値、電流密度、温度等)には特に制限はないが、電流密度については陰極面積に対して5〜600mA/cm2とするのが電着効率の面で好ましい。   The electrodeposition conditions (current value, current density, temperature, etc.) are not particularly limited, but the current density is preferably 5 to 600 mA / cm 2 with respect to the cathode area in view of electrodeposition efficiency.

図1の装置で、廃イオン交換樹脂の除染に用いる溶離液としては60℃以上に加温した酸溶離液を用いることが好ましく、このように加温した酸溶離液を用いることにより、廃イオン交換樹脂のカチオン交換樹脂に吸着している放射性金属イオンをHイオンとイオン交換して溶離除去できるとともに、廃イオン交換樹脂中に混入しているクラッドをも効率良く溶解除去することが可能となる。 In the apparatus of FIG. 1, it is preferable to use an acid eluent heated to 60 ° C. or higher as the eluent used for decontamination of the waste ion exchange resin. radioactive metal ions adsorbed on the cation exchange resin of the ion exchange resin is possible to eliminate eluted replace H + ions and ions, can also be effectively dissolve and remove the cladding mixed in the waste ion-exchange resin It becomes.

酸溶離液としては、硫酸、塩酸、硝酸といった無機酸や、ギ酸、酢酸、シュウ酸といった有機酸の水溶液を用いることができる。これらの酸は1種のみを用いてもよく、2種以上を混合して用いてもよいが、加温して用いる際に揮発しにくく、危険物に該当しない硫酸及び/又はシュウ酸を用いることが好ましい。   As the acid eluent, an aqueous solution of an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, or an organic acid such as formic acid, acetic acid or oxalic acid can be used. These acids may be used alone or as a mixture of two or more, but sulfuric acid and / or oxalic acid that does not easily volatilize when heated and used and does not fall under hazardous materials is used. It is preferable.

溶離液中の酸濃度は、用いる酸に応じて好適な濃度が存在し、例えば、硫酸濃度は、5〜40重量%が好ましく、10〜30重量%がより好ましい。また、シュウ酸濃度は、0.1〜40重量%が好ましく、1〜20重量%がより好ましい。上記範囲よりも酸濃度が低いと、クラッドの主成分であるヘマタイト(α−Fe)の溶解効率が低下する。即ち、クラッドは、廃イオン交換樹脂に混入又は樹脂内に入り込んだ形で存在しており、その主成分が難溶性のヘマタイトであり、低濃度の酸では溶解することは困難である。溶離液中の酸濃度が高いと後段の電着槽における、水素発生量が過多となり、電着効率が低下する。 The acid concentration in the eluent has a suitable concentration depending on the acid used. For example, the sulfuric acid concentration is preferably 5 to 40% by weight, more preferably 10 to 30% by weight. The oxalic acid concentration is preferably 0.1 to 40% by weight, more preferably 1 to 20% by weight. When the acid concentration is lower than the above range, the dissolution efficiency of hematite (α-Fe 2 O 3 ), which is the main component of the cladding, is lowered. That is, the clad is present in a form mixed in or entering the waste ion exchange resin, the main component of which is hardly soluble hematite, and it is difficult to dissolve with a low concentration of acid. If the acid concentration in the eluent is high, the amount of hydrogen generated in the subsequent electrodeposition tank becomes excessive, and the electrodeposition efficiency decreases.

図1の装置では、放射性廃イオン交換樹脂に含まれているコバルト−60やニッケル−63のように、溶解することにより金属カチオンとなるものを陰極に電着させることにより、放射性物質を高濃縮することができる。一方で、放射線量が極低レベルに低減された廃イオン交換樹脂を得ることができ、処理後の廃イオン交換樹脂は焼却処理が可能となる。そして、廃イオン交換樹脂を焼却して焼却灰とすることにより1/100〜1/200の容量に廃棄物量を低減することができる。   In the apparatus of FIG. 1, radioactive substances are highly concentrated by electrodepositing on the cathode what becomes a metal cation, such as cobalt-60 and nickel-63 contained in the radioactive waste ion exchange resin. can do. On the other hand, it is possible to obtain a waste ion exchange resin whose radiation dose is reduced to an extremely low level, and the treated waste ion exchange resin can be incinerated. Then, the amount of waste can be reduced to a capacity of 1/100 to 1/200 by incinerating the waste ion exchange resin into incineration ash.

図1の装置では、電着槽1は閉鎖系となっているが、陰極から水素ガスが発生するため、上部を開放した開放系とするのが好ましい。また、金属が電着した陰極を交換する際にも、電着槽の上部が開放されていた方が交換が容易となる。また、溶離液は、溶離槽8に上向流で通液されているが、下向流であってもよい。ただし、廃イオン交換樹脂が粉末状である場合には、通液の際に差圧上昇しやすいため、上向流とすることが好ましい。また、電着槽1において、酸廃液と陰極液とはカチオン交換膜5を介して逆方向に通液されてもよい。更に、溶離槽8に導入される溶離液と排出される酸廃液とを熱交換することも可能である。   In the apparatus of FIG. 1, the electrodeposition tank 1 is a closed system. However, since hydrogen gas is generated from the cathode, it is preferable to use an open system with the upper part opened. In addition, when replacing the cathode electrodeposited with metal, the replacement is easier if the upper part of the electrodeposition tank is open. Further, the eluent is passed through the elution tank 8 in an upward flow, but may be a downward flow. However, when the waste ion exchange resin is in the form of a powder, it is preferable to make the flow upward because the differential pressure is likely to increase during liquid flow. In the electrodeposition tank 1, the acid waste liquid and the catholyte may be passed through the cation exchange membrane 5 in the opposite directions. Furthermore, it is possible to exchange heat between the eluent introduced into the elution tank 8 and the discharged acid waste liquid.

図2,3は、本発明の酸廃液の処理装置の別の実施の形態の一例を示す系統図である。
図1の処理装置は、金属イオンのカチオン交換膜の透過と、金属イオンの電着を電着槽1の1槽で行うものであるが、図2,3は、電気透析槽と電着槽とを別々に設け、金属イオンのカチオン交換膜の透過を電気透析槽で行い、金属イオンの電着を電着槽で行い、更に、複数枚のカチオン交換膜を電気透析槽に設けて、処理効率を向上させたものである。
2 and 3 are system diagrams showing an example of another embodiment of the acid waste liquid treatment apparatus of the present invention.
The treatment apparatus of FIG. 1 performs permeation of metal ions through a cation exchange membrane and electrodeposition of metal ions in one tank of an electrodeposition tank 1, while FIGS. 2 and 3 show an electrodialysis tank and an electrodeposition tank. Are separately provided, the cation exchange membrane of metal ions is permeated in the electrodialysis tank, the electrodeposition of metal ions is performed in the electrodeposition tank, and further, a plurality of cation exchange membranes are provided in the electrodialysis tank. It is an improvement in efficiency.

図2の酸廃液の処理装置は、電気透析槽50と、電着槽60を有する。
まず、電気透析槽50について説明する。電気透析槽50は、陽極51Aと陰極52Aとの間にバイポーラ膜BPとカチオン交換膜CMとが交互に配置されている。
陽極51Aに対峙してバイポーラ膜(第1のバイポーラ膜)BPが配置され、陽極51Aと第1のバイポーラ膜BPとの間が陽極室51とされている。
陰極52Aに対峙してバイポーラ膜BP(第2のバイポーラ膜)BPが配置され、陰極52Aと第2のバイポーラ膜BPとの間が陰極室52とされている。
The acid waste liquid treatment apparatus of FIG. 2 includes an electrodialysis tank 50 and an electrodeposition tank 60.
First, the electrodialysis tank 50 will be described. In the electrodialysis tank 50, the bipolar membrane BP and the cation exchange membrane CM are alternately arranged between the anode 51A and the cathode 52A.
A bipolar film (first bipolar film) BP is disposed to face the anode 51A, and an anode chamber 51 is formed between the anode 51A and the first bipolar film BP.
A bipolar film BP (second bipolar film) BP is disposed opposite the cathode 52A, and a cathode chamber 52 is formed between the cathode 52A and the second bipolar film BP.

陽極室51を区画形成する第1のバイポーラ膜BPと陰極室52を区画形成する第2のバイポーラ膜BPとの間には、所定の間隔をおいて複数枚(図2では3枚)のカチオン交換膜CMが配置され、カチオン交換膜CM同士の間に更に間隔をおいてバイポーラ膜(第3のバイポーラ膜)BPが配置されることにより、各々通液室が形成されている。   A plurality of (three in FIG. 2) cations are provided at a predetermined interval between the first bipolar film BP that partitions the anode chamber 51 and the second bipolar film BP that partitions the cathode chamber 52. The exchange membrane CM is arranged, and the bipolar membrane (third bipolar membrane) BP is arranged at a further interval between the cation exchange membranes CM, whereby a liquid passage chamber is formed.

カチオン交換膜CMの陽極51A側の室は、酸廃液が通液される脱イオン室53であり、カチオン交換膜CMの陰極52A側の室は、電着液が通液される濃縮室54である。   The chamber on the anode 51A side of the cation exchange membrane CM is a deionization chamber 53 through which the acid waste liquid is passed, and the chamber on the cathode 52A side of the cation exchange membrane CM is a concentration chamber 54 through which the electrodeposition solution is passed. is there.

バイポーラ膜BPとは、カチオン交換膜層とアニオン交換膜層が張り合わされた構造を持つイオン交換膜であり、陽極51A側にアニオン交換膜層を、陰極52A側にカチオン交換膜層を向けて配置される。バイポーラ膜BPは、電圧を印加しても、カチオンやアニオンを透過せず、バイポーラ膜BP内で水が水素イオンと水酸化物イオンに解離することにより通電される。   The bipolar membrane BP is an ion exchange membrane having a structure in which a cation exchange membrane layer and an anion exchange membrane layer are laminated, and the anion exchange membrane layer is disposed on the anode 51A side and the cation exchange membrane layer is disposed on the cathode 52A side. Is done. Even if a voltage is applied, the bipolar membrane BP does not transmit cations or anions, and is energized by dissociating water into hydrogen ions and hydroxide ions in the bipolar membrane BP.

このため、図2の電気透析槽50では、陽極51Aと陰極52Aの間に電圧を印加することにより、脱イオン室53を流通する酸廃液中の金属イオンが、カチオン交換膜CMを透過して、濃縮室54を流通する電着液中に移動する。これにより、酸廃液中の金属イオンが除去される。酸廃液中の酸基アニオン(ここでは硫酸イオンおよび硫酸水素イオン)は陽極51A側に電気的に引かれるが、バイポーラ膜BPは酸基アニオンを透過させないことから、酸廃液中に留まるため、電気透析処理後の液は酸液として再利用可能となる。   For this reason, in the electrodialysis tank 50 of FIG. 2, when a voltage is applied between the anode 51A and the cathode 52A, the metal ions in the acid waste liquid flowing through the deionization chamber 53 permeate the cation exchange membrane CM. Then, it moves into the electrodeposition liquid flowing through the concentration chamber 54. Thereby, the metal ion in an acid waste liquid is removed. Although the acid group anions (here, sulfate ions and hydrogen sulfate ions) in the acid waste liquid are electrically attracted to the anode 51A side, the bipolar membrane BP does not permeate the acid group anions, and therefore remains in the acid waste liquid. The solution after dialysis can be reused as an acid solution.

図2では、ラインL,L1A,L1BとラインL1Cを経て電気透析槽50の脱イオン室53に導入された酸廃液が、電気透析槽50における電気透析で金属イオンが除去された後、ラインL2A,L2B,L2CとラインLを経て除染工程へ返送され、再利用される。 In FIG. 2, the acid waste liquid introduced into the deionization chamber 53 of the electrodialysis tank 50 through the lines L 1 , L 1A , L 1B and the line L 1C has metal ions removed by electrodialysis in the electrodialysis tank 50. Then, it is returned to the decontamination process through the lines L 2A , L 2B , L 2C and the line L 2 and reused.

一方、電着液は、電着液貯槽80から、ポンプPにより、ラインLとラインL3A,L3B,L3Cを経て電気透析槽50の濃縮室54に導入される。電気透析槽50における電気透析で、脱イオン室53からカチオン交換膜CMを透過して濃縮室54に移動した金属イオンを含む電着液はラインL4A,L4B,L4CとラインLを経て電着液貯槽80に戻される。この電着液貯槽80内の電着液は、後述の通り、電着槽60で金属イオンが除去されるため、電気透析槽50には、この金属イオンが除去された電着液が送給される。 電着液としては、前述の図1における陰極液と同様のものが用いられる。 On the other hand, the electrodeposition liquid from the electrodeposition solution storage tank 80 by a pump P 1, line L 3 and the line L 3A, L 3B, is introduced through the L 3C to concentrating compartment 54 of the electrodialysis cell 50. Electrodeposition liquid containing metal ions that have permeated through the cation exchange membrane CM from the deionization chamber 53 and moved to the concentration chamber 54 by electrodialysis in the electrodialysis tank 50 passes through the lines L 4A , L 4B , L 4C and the line L 4 . After that, it is returned to the electrodeposition liquid storage tank 80. As described later, since the metal ions in the electrodeposition liquid storage tank 80 are removed in the electrodeposition tank 60, the electrodeposition liquid from which the metal ions have been removed is supplied to the electrodialysis tank 50. Is done. As the electrodeposition liquid, the same one as the catholyte in FIG. 1 is used.

電気透析槽50の陽極室51及び陰極室52には、電解質を含む電極液が循環流通される。電解質としては、陽極51Aでの酸化や陰極52Aでの還元、陰極52Aでの析出が起こらないものを選定する必要があり、硫酸もしくは硫酸のアルカリ金属塩が好適である。   An electrode solution containing an electrolyte is circulated in the anode chamber 51 and the cathode chamber 52 of the electrodialysis tank 50. It is necessary to select an electrolyte that does not cause oxidation at the anode 51A, reduction at the cathode 52A, or precipitation at the cathode 52A, and sulfuric acid or an alkali metal salt of sulfuric acid is preferable.

図2では、電着槽60の陽極液と共通の電着液貯槽70を設け、電着液貯槽70内の電極液をポンプPによりラインLを経て電気透析槽50の陽極室51に導入した後、ラインLを経て陰極室52に導入し、ラインLを経て電着液貯槽70に戻す循環系路と、電着液貯槽70内の電極液をポンプPによりラインLを経て電着槽60の陽極室61に導入し、ラインLを経て電着液貯槽70に戻す循環系路とを形成しているが、何らこの態様に限定されるものではなく、各電極室毎に電極液貯槽を設けてもよい。 In Figure 2, electrodeposition tank 60 and anolyte provided a common electrodeposition solution storage tank 70, the electrode solution of the electrodeposition liquid storage tank 70 to the anode chamber 51 of the electrodialysis cell 50 via line L 5 by the pump P 2 After the introduction, it is introduced into the cathode chamber 52 via the line L 6 , the circulation system returning to the electrodeposition liquid storage tank 70 via the line L 7, and the electrode liquid in the electrodeposition liquid storage tank 70 are supplied to the line L 8 by the pump P 3. introduced into the anode chamber 61 of the electrodeposition tank 60 through, but to form a circulation passage for returning the electrodeposition solution storage tank 70 via line L 9, is not limited in any way to this embodiment, the electrodes An electrode solution storage tank may be provided for each chamber.

図2の電気透析槽50では、カチオン交換膜CMを3枚設け、脱イオン室53を3室形成しているが、カチオン交換膜CMの枚数は、何ら3枚に限定されず、2枚でも4枚以上でもよい。電気透析槽のカチオン交換膜の枚数を増やすほど、電極面積に対してカチオン交換膜面積を大きくとることができ、電流値を大きくすることなく金属イオンの透過速度を速めることができるが、過度に枚数を増やすと、電気透析槽全体の抵抗が大きくなり、消費電力が上昇するとともに、電気透析槽内の温度上昇が起こる。電気透析槽の温度が40℃以上となるとカチオン交換膜やバイポーラ膜が劣化する恐れがあるため、電気透析槽の温度が上昇傾向にある場合は、電気透析槽内の温度が40℃以上にならないように、必要に応じて酸廃液、電着液又は電極液を冷却することが好ましい。   In the electrodialysis tank 50 of FIG. 2, three cation exchange membranes CM are provided and three deionization chambers 53 are formed. However, the number of cation exchange membranes CM is not limited to three, and two cation exchange membranes CM can be used. Four or more may be used. As the number of cation exchange membranes in the electrodialysis tank increases, the cation exchange membrane area can be increased relative to the electrode area, and the permeation rate of metal ions can be increased without increasing the current value. When the number is increased, the resistance of the entire electrodialysis tank is increased, the power consumption is increased, and the temperature in the electrodialysis tank is increased. If the temperature of the electrodialysis tank becomes 40 ° C. or higher, the cation exchange membrane or the bipolar membrane may deteriorate. Therefore, when the temperature of the electrodialysis tank tends to increase, the temperature in the electrodialysis tank does not exceed 40 ° C. Thus, it is preferable to cool the acid waste solution, the electrodeposition solution, or the electrode solution as necessary.

また、図2では、脱イオン室53の酸廃液と濃縮室54の電着液を同方向に通液させているが、これらは互いに反対方向に通液させてもよい。また、陽極室51及び陰極室52の電極液の通液方向についても特に制限はない。   In FIG. 2, the acid waste liquid in the deionization chamber 53 and the electrodeposition liquid in the concentration chamber 54 are passed in the same direction, but they may be passed in opposite directions. Moreover, there is no restriction | limiting in particular also about the flowing direction of the electrode liquid of the anode chamber 51 and the cathode chamber 52. FIG.

なお、電気透析槽50のカチオン交換膜CMとバイポーラ膜BPとの間には、膜のたわみ等で膜同士が密着して流路が塞がらないように、適当なスペーサを設けるのが好ましい。スペーサの形状は、流路が確保されるものであれば特に限定されず、網状、ハニカム状、ボール状等どのようなものでも採用可能である。スペーサの材質は、通液する液の性状に応じて選定することが好ましく、前述の酸廃液を処理する場合は、耐酸性のあるものを選定する。   In addition, it is preferable to provide an appropriate spacer between the cation exchange membrane CM and the bipolar membrane BP of the electrodialysis tank 50 so that the membranes are in close contact with each other due to membrane deflection or the like and the flow path is not blocked. The shape of the spacer is not particularly limited as long as the flow path is secured, and any shape such as a net shape, a honeycomb shape, or a ball shape can be adopted. The material of the spacer is preferably selected according to the properties of the liquid to be passed, and when the acid waste liquid is treated, a material having acid resistance is selected.

次に、電着槽60について説明する。
電着槽としては、図2に示すように、陽極61Aが配置された陽極室61と陰極62Aが配置された陰極室62とがカチオン交換膜CMで区画された2室型の電着槽60を使用するのが好適である。電気透析槽50から電着液貯槽80に送られた金属イオンを含んだ電着液は、ポンプPによりラインL10を経て電着槽60の陰極室62に導入される。電着槽60の陽極61Aと陰極62A間に電圧を印加することにより、電着液内の金属イオンは陰極62A上に金属として析出し、電着固定化される。
Next, the electrodeposition tank 60 will be described.
As the electrodeposition tank, as shown in FIG. 2, a two-chamber electrodeposition tank 60 in which an anode chamber 61 in which an anode 61A is disposed and a cathode chamber 62 in which a cathode 62A is disposed is partitioned by a cation exchange membrane CM. Is preferably used. It electrodeposition solution which contains metal ions sent to the electrodialysis cell 50 color electrodeposition solution storage tank 80 is introduced to the cathode chamber 62 of the via line L 10 by the pump P 4 electrodeposition tank 60. By applying a voltage between the anode 61A and the cathode 62A of the electrodeposition tank 60, the metal ions in the electrodeposition liquid are deposited as metal on the cathode 62A and are electrodeposited and immobilized.

電着槽60の陽極液は電気透析槽50と同様に、陽極61Aでの酸化が起こらない電解質溶液を用いる。図2では、電着槽60の陽極液と、電気透析槽50の電極液を共通化しているが、これらは別々としてもよい。   As in the electrodialysis tank 50, an electrolyte solution that does not oxidize at the anode 61A is used as the anolyte in the electrodeposition tank 60. In FIG. 2, the anolyte in the electrodeposition tank 60 and the electrode liquid in the electrodialysis tank 50 are shared, but these may be separated.

電気透析槽50と同様、陽極室61の陽極液の通液方向と、陰極室62の電着液の通液方向とは、図2のように同方向であってもよく、反対方向であってもよい。   As in the electrodialysis tank 50, the direction in which the anolyte flows in the anode chamber 61 and the direction in which the electrodeposition liquid flows in the cathode chamber 62 may be the same as shown in FIG. May be.

電気透析槽50において、カチオン交換膜同士の間に配置するイオン交換膜については、金属イオンを透過させず(金属イオンが透過する膜を使用すると、カチオン交換膜を透過して電着液に移行した金属イオンが、その膜を透過して酸廃液中に戻ってしまう)、かつ酸基アニオンも透過させない(酸基アニオンが透過する膜を使用すると、酸基アニオンがその膜を透過して、電着液又は陽極室の電極液に移行してしまい、酸廃液を酸液として再利用できなくなってしまう)ことが条件である。このような点から、バイポーラ膜に限らず、水素選択型カチオン交換膜を用いることもできる。水素選択透過型カチオン交換膜は、水素イオンの輸率(水素イオンの移動が電流に寄与する割合)が高いカチオン交換膜であり、上記の要求特性を満たすものである。水素選択透過型カチオン交換膜としては、市販品としてAGCエンジニアリング社のセレミオンCMFなどを採用することができる。   In the electrodialysis tank 50, the ion exchange membrane disposed between the cation exchange membranes does not transmit metal ions (if a membrane that allows metal ions to pass through is used, the ion exchange membrane passes through the cation exchange membrane and moves to the electrodeposition solution. Metal ions permeate through the membrane and return to the acid waste liquid) and do not permeate the acid group anion (when a membrane through which the acid group anion permeates is used, the acid group anion penetrates the membrane, It is a condition that the electrode solution is transferred to the electrodeposition solution or the electrode solution in the anode chamber, and the acid waste solution cannot be reused as the acid solution). From such a point, not only a bipolar membrane but also a hydrogen selective cation exchange membrane can be used. The hydrogen selective permeation type cation exchange membrane is a cation exchange membrane having a high hydrogen ion transport number (ratio in which the movement of hydrogen ions contributes to the current) and satisfies the above-mentioned required characteristics. As a hydrogen selective permeation type cation exchange membrane, AGC Engineering's Selemion CMF or the like can be adopted as a commercial product.

図3は、電気透析槽50において、バイポーラ膜BPの代りに水素選択透過型カチオン交換膜HCMを用いた点が異なり、その他の構成は図2と同一の構成とされている。図2において、図2におけると同一の機能を奏する部材には同一符号を付してある。   FIG. 3 differs from the electrodialysis tank 50 in that a hydrogen selective permeation type cation exchange membrane HCM is used instead of the bipolar membrane BP, and other configurations are the same as those in FIG. In FIG. 2, members having the same functions as those in FIG.

図2,3に示すように、電気透析槽と電着槽とを分けて設けることにより、電気透析槽における金属イオンの透析速度と、電着槽における金属イオンの電着速度のそれぞれが最適となるように電流密度等の条件を設定することができる。
金属イオンの透析を行う電気透析槽の電流密度は、バイポーラ膜を用いた場合であっても水素選択透過型カチオン交換膜を用いた場合であっても、陰極面積に対して、10〜400mA/cmであることが好ましく、20〜200mA/cmであることがより好ましい。
また、電着槽の電流密度は、陰極面積に対して、5〜200mA/cmであることが好ましく、10〜150mA/cmであることがより好ましい。
As shown in FIGS. 2 and 3, by separately providing the electrodialysis tank and the electrodeposition tank, the metal ion dialysis speed in the electrodialysis tank and the metal ion electrodeposition speed in the electrodeposition tank are optimal. Conditions such as current density can be set so that
The current density of the electrodialysis tank that performs dialysis of metal ions is 10 to 400 mA / mm with respect to the cathode area, regardless of whether a bipolar membrane or a hydrogen selective permeation cation exchange membrane is used. it is preferably cm 2, and more preferably 20~200mA / cm 2.
Moreover, it is preferable that it is 5-200 mA / cm < 2 > with respect to a cathode area, and, as for the current density of an electrodeposition tank, it is more preferable that it is 10-150 mA / cm < 2 >.

また、図2,3のように、電気透析槽と電着槽とを分けて設けることにより、電着槽の構成が簡易なものとなり、電着により金属が析出して付着した陰極を交換する際に、複雑な構成部材に作業が阻害されることなく、容易に交換作業を行うことができる。   Also, as shown in FIGS. 2 and 3, the electrodialysis tank and the electrodeposition tank are provided separately, thereby simplifying the structure of the electrodeposition tank, and replacing the cathode on which metal is deposited and deposited by electrodeposition. In this case, the replacement work can be easily performed without the work being hindered by complicated constituent members.

このように電気透析槽と電着槽とを有する処理装置についても、原子力発電所で使用された廃イオン交換樹脂の除染工程に適用する場合には、図1におけると同様に、廃イオン交換樹脂から放射性金属イオンを溶離させた溶離液を貯留する溶離液貯槽と、廃イオン交換樹脂が充填された充填塔である溶離槽と、溶離槽から排出される酸廃液を貯留する酸廃液貯槽を設け、酸廃液貯槽からの酸廃液を、電気透析槽50の脱イオン室53に通液して金属イオンを除去した後、溶離液貯槽に循環させて溶離液として再利用することができる。   In this way, when the treatment apparatus having the electrodialysis tank and the electrodeposition tank is applied to the decontamination process of the waste ion exchange resin used in the nuclear power plant, the waste ion exchange is performed as in FIG. An eluent storage tank for storing an eluent obtained by eluting radioactive metal ions from a resin, an elution tank that is a packed tower filled with a waste ion exchange resin, and an acid waste liquid storage tank for storing an acid waste liquid discharged from the elution tank The acid waste liquid from the acid waste liquid storage tank is passed through the deionization chamber 53 of the electrodialysis tank 50 to remove the metal ions, and then circulated to the eluent storage tank to be reused as the eluent.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1、比較例1,2]
図4に示す試験装置を用いて、カチオン交換膜の金属イオン透過及び電着実験を行った。図4において、図1に示す装置と同一機能を奏する部分には同一符号を付してある。
この試験装置は、電着槽1内の陽極2を備えた陽極室2Aと、陰極3を備えた陰極室3Aとをカチオン交換膜5で隔離し、陽極室2Aに酸廃液を通液し、陰極室3Aに陰極液を通液し、陽極2と陰極3間を通電することにより、陽極室2A内の液中の金属イオンをカチオン交換膜5を透過させて陰極室3A内の液中に移動させ、陰極3上に金属を析出させるものである。
[Example 1, Comparative Examples 1 and 2]
Using the test apparatus shown in FIG. 4, metal ion permeation and electrodeposition experiments of a cation exchange membrane were performed. In FIG. 4, parts having the same functions as those in the apparatus shown in FIG.
In this test apparatus, an anode chamber 2A provided with an anode 2 in an electrodeposition tank 1 and a cathode chamber 3A provided with a cathode 3 are separated by a cation exchange membrane 5, and an acid waste solution is passed through the anode chamber 2A. By passing a catholyte through the cathode chamber 3A and energizing between the anode 2 and the cathode 3, the metal ions in the solution in the anode chamber 2A are transmitted through the cation exchange membrane 5 to enter the solution in the cathode chamber 3A. The metal is deposited on the cathode 3 by being moved.

CoSO・7HO及びFe(SO・nHOと10重量%硫酸を水に溶解させて表1に示す性状の模擬酸廃液を調製(SO濃度が合計で、HSO換算で5重量%となるように調製)し、また、クエン酸三アンモニウムを水に溶解させて表1に示す性状の模擬電着液(陰極液)を調製して、図1の装置を用いて、Co、Feの電着試験を行った。電着条件は表1の通りである。陽極はPtメッキTi板、陰極はCu板を使用した。
また、カチオン交換膜としては、表2に示すものを用いた。カチオン交換膜A〜Cは全て原料モノマー液を補強体に含浸させた後に重合させた均質膜であり、炭化水素系のNa型カチオン交換膜である。
16時間通電後の電着液中の硫酸イオン濃度とpHを調べ、結果を表2に示した。
また、実施例1及び比較例1における模擬酸廃液のTOC濃度の経時変化を図5に、Fe濃度の経時変化を図6に示す。
CoSO 4 · 7H 2 O and Fe 2 (SO 4 ) 3 · nH 2 O and 10% by weight sulfuric acid were dissolved in water to prepare simulated acid waste liquids having the properties shown in Table 1 (SO 4 concentration in total, H 2 sO 4 was prepared) so as to be 5 wt% in terms of also simulating the electrodeposition liquid (catholyte having properties of ammonium citrate tribasic were dissolved in water are shown in Table 1) were prepared, the apparatus of FIG. 1 Was used for the electrodeposition test of Co and Fe. The electrodeposition conditions are as shown in Table 1. The anode used was a Pt-plated Ti plate, and the cathode used a Cu plate.
As the cation exchange membrane, those shown in Table 2 were used. The cation exchange membranes A to C are all homogeneous membranes that are polymerized after impregnating the raw material monomer solution into the reinforcing body, and are hydrocarbon-based Na-type cation exchange membranes.
The sulfate ion concentration and pH in the electrodeposition solution after energization for 16 hours were examined, and the results are shown in Table 2.
Moreover, the time-dependent change of the TOC density | concentration of the simulation acid waste liquid in Example 1 and the comparative example 1 is shown in FIG. 5, and the time-dependent change of Fe density | concentration is shown in FIG.

Figure 0006428441
Figure 0006428441

Figure 0006428441
Figure 0006428441

表2より、膜厚の厚いカチオン交換膜Aを用いた実施例1では、模擬酸廃液中の硫酸がカチオン交換膜を透過して電着液に移行するのを抑制することができていることがわかる。
また、図5より、比較例1では、電着液に鉄およびコバルトの錯形成配位子として添加したクエン酸がカチオン交換膜を透過し、模擬酸廃液に移行したために、模擬酸廃液中のTOC濃度が経時的に上昇したが、実施例1では、クエン酸のカチオン交換膜透過も抑制できていることがわかる。
また、図6より、実施例1においては、カチオン交換膜の膜厚が厚いにもかかわらず、模擬酸廃液中のFe濃度を速やかに除去できていることがわかる。
実施例1が比較例1よりもFeのカチオン交換膜の透過速度が大きい理由は不明であるが、この結果から、膜厚が大きいカチオン交換膜であっても十分な透過速度が得られることがわかった。
なお、16時間通電後に、陰極表面を確認したところ、実施例1では、銀白色の金属態のFeとCoが密着性よく電着していたが、比較例1、2では、陰極表面全体が剥離性の黒色の析出物で覆われていた。これは、比較例1、2では、電着液中の硫酸濃度が上昇し、pHが低下したために、電着阻害が起こったことによるものと考えられる。黒色の析出物は磁石につくため、Feがマグネタイトとして析出したものと考えられる。
以上の結果からも明らかなように、本発明では、放射性コバルト等の放射性金属イオンを密着性良く、安定な金属の状態で陰極に電着することが可能であるため、放射性酸廃液に適用する場合に特に効果が高い。
From Table 2, in Example 1 using the thick cation exchange membrane A, it was possible to suppress the sulfuric acid in the simulated acid waste liquid from passing through the cation exchange membrane and transferring to the electrodeposition solution. I understand.
From FIG. 5, in Comparative Example 1, citric acid added as a complexing ligand of iron and cobalt to the electrodeposition solution permeated the cation exchange membrane and transferred to the simulated acid waste solution. Although the TOC concentration increased with time, it can be seen that in Example 1, the cation exchange membrane permeation of citric acid was also suppressed.
Further, FIG. 6 shows that, in Example 1, the Fe concentration in the simulated acid waste liquid can be removed quickly even though the cation exchange membrane is thick.
The reason why Example 1 has a higher permeation rate of the Fe cation exchange membrane than Comparative Example 1 is unclear, but from this result, a sufficient permeation rate can be obtained even with a large cation exchange membrane. all right.
When the cathode surface was confirmed after energization for 16 hours, silver white metallic Fe and Co were electrodeposited with good adhesion in Example 1, but in Comparative Examples 1 and 2, the entire cathode surface was It was covered with a peelable black deposit. This is considered to be due to the fact that in Comparative Examples 1 and 2, the sulfuric acid concentration in the electrodeposition liquid increased and the pH decreased, and thus electrodeposition inhibition occurred. Since the black deposit is attached to the magnet, it is considered that Fe was deposited as magnetite.
As is clear from the above results, in the present invention, radioactive metal ions such as radioactive cobalt can be electrodeposited on the cathode with good adhesion and in a stable metal state. Therefore, the present invention is applied to radioactive acid waste liquid. Especially effective in cases.

1 電着槽
2 陽極
2A 陽極室
3 陰極
3A 陰極室
4 電源
5 カチオン交換膜
8 溶離槽
9A,9B 熱交換器
10 酸廃液貯槽
20 陰極液貯槽
30 溶離液貯槽
40 廃イオン交換樹脂
50 電気透析槽
51 陽極室
51A 陽極
52 陰極室
52A 陰極
53 脱イオン室
54 濃縮室
60 電着槽
61 陽極室
61A 陽極
62 陰極室
62A 陰極
70 電極液貯槽
80 電着液貯槽
CM カチオン交換膜
BP バイポーラ膜
CHM 水素選択透過型カチオン交換膜
DESCRIPTION OF SYMBOLS 1 Electrodeposition tank 2 Anode 2A Anode chamber 3 Cathode 3A Cathode chamber 4 Power supply 5 Cation exchange membrane 8 Elution tank 9A, 9B Heat exchanger 10 Acid waste liquid storage tank 20 Catholyte storage tank 30 Eluent storage tank 40 Waste ion exchange resin 50 Electrodialysis tank 51 Anode Chamber 51A Anode 52 Cathode Chamber 52A Cathode 53 Deionization Chamber 54 Concentration Chamber 60 Electrodeposition Tank 61 Anode Chamber 61A Anode 62 Cathode Chamber 62A Cathode 70 Electrode Liquid Storage Tank 80 Electrodeposition Liquid Storage CM Cation Exchange Membrane BP Bipolar Membrane CHM Hydrogen Selection Permeable cation exchange membrane

Claims (6)

酸廃液中の金属イオンを、電気透析によりカチオン交換膜を透過させて除去し、該金属イオンを除去した該酸廃液を酸液として再利用する酸廃液処理装置において、該カチオン交換膜の膜厚が0.25〜1mmであることを特徴とする酸廃液の処理装置。 Metal acid in acid waste liquid is removed by permeation through a cation exchange membrane by electrodialysis , and in the acid waste liquid treatment apparatus that reuses the acid waste liquid from which the metal ions have been removed as an acid liquid, the film thickness of the cation exchange membrane Is a treatment apparatus for acid waste liquid, wherein 請求項1において、前記酸廃液は、放射性金属汚染物質を酸性除染液により酸洗浄又は酸溶離した際に発生する放射性金属イオンを含む放射性酸廃液であり、前記酸廃液の処理装置により放射性金属イオンが除去された該放射性酸廃液は、前記酸性除染液として再利用されることを特徴とする酸廃液の処理装置。   2. The acid waste liquid according to claim 1, wherein the acid waste liquid is a radioactive acid waste liquid containing radioactive metal ions generated when acid cleaning or acid elution of a radioactive metal pollutant is performed with an acidic decontamination liquid. The radioactive acid waste liquid from which ions have been removed is reused as the acidic decontamination liquid. 請求項1又は2において、前記酸廃液中の金属イオンは、前記カチオン交換膜を透過して、該金属イオンと錯体を形成する配位子を含有する配位子含有液に移行されることを特徴とする酸廃液の処理装置。   3. The metal ion in the acid waste liquid according to claim 1, wherein the metal ion permeates the cation exchange membrane and is transferred to a ligand-containing liquid containing a ligand that forms a complex with the metal ion. Characteristic acid waste liquid treatment equipment. 酸廃液中の金属イオンを、電気透析により膜厚0.25〜1mmのカチオン交換膜を透過させて除去し、該金属イオンを除去した該酸廃液を酸液として再利用することを特徴とする酸廃液の処理方法。 Metal ions in the acid waste liquid are removed by permeation through a cation exchange membrane having a film thickness of 0.25 to 1 mm by electrodialysis , and the acid waste liquid from which the metal ions have been removed is reused as an acid solution. Treatment method of acid waste liquid. 請求項4において、前記酸廃液は、放射性金属汚染物質を酸性除染液により酸洗浄又は酸溶離した際に発生する放射性酸廃液であり、前記酸廃液の処理方法により該放射性酸廃液中の放射性金属イオンを除去した後、前記酸性除染液として再利用することを特徴とする酸廃液の処理方法。   5. The acid waste liquid according to claim 4, wherein the acid waste liquid is a radioactive acid waste liquid generated when acid cleaning or acid elution of a radioactive metal pollutant is performed with an acid decontamination liquid. A method for treating an acid waste liquid, wherein the acid ion decontamination liquid is reused after removing metal ions. 請求項4又は5において、前記酸廃液中の金属イオンを、前記カチオン交換膜を透過させて、該金属イオンと錯体を形成する配位子を含有する配位子含有液に移行させることを特徴とする酸廃液の処理方法。   6. The metal ion in the acid waste liquid according to claim 4, wherein the metal ion is transferred to a ligand-containing liquid containing a ligand that forms a complex with the metal ion through the cation exchange membrane. A method for treating acid waste liquid.
JP2015073043A 2015-03-31 2015-03-31 Acid waste liquid treatment apparatus and treatment method Active JP6428441B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015073043A JP6428441B2 (en) 2015-03-31 2015-03-31 Acid waste liquid treatment apparatus and treatment method
PCT/JP2016/060328 WO2016159051A1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids
EP16772932.6A EP3279900B1 (en) 2015-03-31 2016-03-30 Method and device for treating metal ion-containing liquids
US15/562,750 US20180079663A1 (en) 2015-03-31 2016-03-30 Method and apparatus for treating acidic liquid containing metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073043A JP6428441B2 (en) 2015-03-31 2015-03-31 Acid waste liquid treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2016190225A JP2016190225A (en) 2016-11-10
JP6428441B2 true JP6428441B2 (en) 2018-11-28

Family

ID=57246080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073043A Active JP6428441B2 (en) 2015-03-31 2015-03-31 Acid waste liquid treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP6428441B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824169A (en) * 2019-03-04 2019-05-31 广东益诺欧环保股份有限公司 The method and system of acid solution in a kind of recycling acid waste water
CN112908508B (en) * 2021-01-12 2022-11-04 中国工程物理研究院材料研究所 Method for treating radioactive analysis waste liquid by one-step method
CN113707354B (en) * 2021-08-18 2024-02-09 中国人民解放军63653部队 Containing 239 Pu、 90 Sr and 137 electrochemical separation and fixation method for large-volume radioactive waste liquid of Cs
CN116477805A (en) * 2023-05-10 2023-07-25 苏州登峰环境工程有限公司 Cobalt sulfamate electroless plating cleaning wastewater zero-emission treatment process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815016B2 (en) * 1979-05-10 1983-03-23 株式会社荏原製作所 How to clean ion exchange resin
JPS5784399A (en) * 1980-11-14 1982-05-26 Hitachi Ltd Method of mixing radioactive waste
JPS603593A (en) * 1983-06-20 1985-01-09 日立プラント建設株式会社 Method of electrolytically decontaminating radioactive metallic waste
JPS63184100A (en) * 1987-01-27 1988-07-29 三菱重工業株式会社 Processing method of radioactive ion exchange resin
DE4326854A1 (en) * 1993-08-11 1995-02-16 Heraeus Elektrochemie Process for the regeneration of an aqueous solution containing metal ions and sulfuric acid, and device
JP2002361245A (en) * 2001-06-08 2002-12-17 Japan Organo Co Ltd Method and device for regenerating ion exchange resin in condensate demineralizer
JP2003004894A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Processing method for radioactive ion exchanger resin and its processing device
JP2004028902A (en) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd Device for reducing amount of sodium sulfate and disposal system for radioactive ion exchange resin provided with the same
CA2717887C (en) * 2008-04-11 2016-06-14 Francois Cardarelli Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
JP2015200585A (en) * 2014-04-09 2015-11-12 株式会社クラレ Treating method of radioactive waste liquid

Also Published As

Publication number Publication date
JP2016190225A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2016159051A1 (en) Method and device for treating metal ion-containing liquids
Babilas et al. Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation
JP6221847B2 (en) Co and Fe electrodeposition method and apparatus
JP6428441B2 (en) Acid waste liquid treatment apparatus and treatment method
Alvarado et al. Electrodeionization: principles, strategies and applications
KR101462554B1 (en) Method and system for treating radioactive waste water
Khan et al. Electro-deionization (EDI) technology for enhanced water treatment and desalination: A review
TWI638910B (en) The measurement method and processing device for liquid containing iron and metal, electrodeposition method and device for Co and Fe, and method for removing pollution of radioactive waste ion exchange resin and device for
JP6439242B2 (en) Decontamination method and decontamination apparatus for radioactive waste ion exchange resin
JP2015081381A (en) Method and apparatus for treating liquid containing iron-group metal ion
Lu et al. Recovery of nickel ions from simulated electroplating rinse water by electrodeionization process
JPS5851977A (en) Regeneration of chemical decontaminating liquid
JP5235276B2 (en) Purification equipment for contaminated materials including heavy metals
JP6477160B2 (en) Method and apparatus for eluting spent ion exchange resin
JP5120533B2 (en) Cation removal device for plating solution additive and method for treating plating solution additive
WO2015060250A1 (en) Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
JP6428440B2 (en) Method and apparatus for processing iron group metal ion-containing liquid
WO2013038933A1 (en) Water treatment method
Chiapello et al. Recovery by electrodialysis of cyanide electroplating rinse waters
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JP2012149001A (en) Recovery device of oxalate ion from indium oxalate aqueous solution and recovery method of oxalate ion from indium oxalate aqueous solution
JP6692385B2 (en) Radioactive waste liquid treatment system
JP2019030836A (en) Method for dissolving used ion exchange resin, and elution apparatus
JP4915843B2 (en) Electric softening device, softening device and soft water production method
GB2383275A (en) Ion exchange column regeneration by electrodialysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6428441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250