EP1253919A4 - METHOD AND COMPOSITIONS FOR TREATING AN INFLAMMATORY DISEASE - Google Patents

METHOD AND COMPOSITIONS FOR TREATING AN INFLAMMATORY DISEASE

Info

Publication number
EP1253919A4
EP1253919A4 EP01951123A EP01951123A EP1253919A4 EP 1253919 A4 EP1253919 A4 EP 1253919A4 EP 01951123 A EP01951123 A EP 01951123A EP 01951123 A EP01951123 A EP 01951123A EP 1253919 A4 EP1253919 A4 EP 1253919A4
Authority
EP
European Patent Office
Prior art keywords
pde
rolipram
sodium
inhibitor
pde4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01951123A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1253919A1 (en
Inventor
Elizabeth T Keating
James M Kanagy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Corp
Original Assignee
SmithKline Beecham Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Corp filed Critical SmithKline Beecham Corp
Publication of EP1253919A1 publication Critical patent/EP1253919A1/en
Publication of EP1253919A4 publication Critical patent/EP1253919A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973].
  • adenylate cyclase is activated, which converts Mg + 2-ATP to cAMP at an accelerated rate.
  • Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma.
  • an elevation of cAMP would produce beneficial effects including: 1) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil degranulation, 4) inhibition of basophil degranulation, and 5) inhibition of monocyte and macrophage activation.
  • compounds that activate adenylate cyclase or inhibit phosphodiesterase should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells.
  • the principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3'-phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleotide phosphodiesterases (PDEs).
  • PDE IV cyclic nucleotide phosphodiesterase
  • PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo.
  • PDE IV inhibitors would be effective in the lung, where levels of prostaglandin E2 and prostacyclin (activators of adenylate cyclase) are elevated.
  • Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currently on the market.
  • this invention relates to a method for treating an inflammatory disease in a mammal by administering to a patient in need thereof an effective amount of a PDE 4-specific inhibitor and an effective amount of a non-steriodal anti-inflammatory agent wherein the drugs are administered concomitantly, or separately and sequentially where the sequential administration is close in time or remote in time.
  • the combination therapy contemplated by this invention comprises administering a PDE4 inhibitor with a non-steroidal anti-inflammatory agent to treat an inflammatory disease.
  • the compounds may be administered together in a single dosage form. Or they may be administered as two different formulations.
  • both drugs may be provided separately as oral formulations, or one may be an oral preparation or as a suppository or by injection or as an intravenous drip. They may be administered at the same time. Or they may be administered close in time or remotely, such as where one drug is administered in the morning and the second drug is administered in the evening.
  • the PDE4-specific inhibitor useful in this invention may be any compound that is known to inhibit the PDE4 enzyme or which is discovered to act in as PDE4 inhibitor, and which are only PDE4 inhibitors, not compounds which inhibit other members of the PDE family as well as PDE4.
  • a PDE4 antagonists which has an IC50 ratio of about 0.1 or greater as regards the IC50 for the PDE IV catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
  • PDE inhibitors like theophylline and pentoxyfyllin inhibit all or most all PDE isozymes indiscriminately in all tissues. These compounds exhibit side effects, apparently because they non-selectively inhibit all PDE isozyme classes in all tissues.
  • the target disease may be effectively treated by such compounds, but unwanted secondary effects may be exhibited which, if they could be avoided or minimized, would increase the overall therapeutic effect of this approach to treating certain diseases.
  • clinical studies with the selective PDE 4 inhibitor rolipram which was being developed as an antidepressant, indicate it has psychotropic activity and produces gastrointestinal effects, e.g., pyrosis, nausea and emesis.
  • the cAMP catalytic site which binds R and S rolipram with a low affinity is denominated the "low affinity” binding site (LPDE 4) and the other form of this catalytic site which binds rolipram with a high affinity is denominated the "high affinity” binding site (HPDE 4).
  • LPDE 4 low affinity binding site
  • HPDE 4 high affinity binding site
  • yeast were transformed by known methods and the expression of recombinant PDE 4 was followed over a 6 hour fermentation period.
  • Western blot analysis using an antibody directed against PDE 4 indicated that the amount of PDE 4 expressed increased with time, reaching a maximum after 3 hour of growth.
  • greater than 90% of the immunoreactive product was in the high speed (100,000 x g) supernatant of yeast lysates.
  • H]R-Rolipram binding and PDE activity were monitored along with protein expression.
  • PDE 4 activity was co-expressed with rolipram- binding activity, indicating that both functions exist on the same gene product. Similar to results with the Western plot analysis, greater than 85% of the rolipram-inhibitable PDE activity and H]-rolipram binding activity was found to be present in the yeast supernatant fraction.
  • the preferred PDE4 inhibitors of use in this invention will be those compounds which have a salutary therapeutic ratio, i.e., compounds which preferentially inhibit cAMP catalytic activity where the enzyme is in the form that binds rolipram with a low affinity, thereby reducing the side effects which apparently are linked to inhibiting the form which binds rolipram with a high affinity.
  • the preferred compounds will have an IC50 ratio of about 0.1 or greater as regards the IC50 for the PDE 4 catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
  • a further refinement of this standard is that of one wherein the PDE4 inhibitor has an IC50 ratio of about 0.1 or greater; said ratio is the ratio of the IC50 value for competing with the binding of InM of H]R-rolipram to a form of PDE 4 which binds rolipram with a high affinity over the IC50 value for inhibiting the PDE IV catalytic activity of a form which binds rolipram with a low affinity using 1 microM[ ⁇ H]-cAMP as the substrate.
  • PDE4 inhibitors which have an IC50 ratio of greater than 0.5, and particularly those compounds having a ratio of greater than 1.0.
  • a preferred compound is cis 4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid (Ariflo®).
  • the following PDE4 inhibitors may be useful in the practice of this invention: AWD-12-281 from Astra (Hofgen, N. et al.
  • NSAIDs non-steroidal anti-inflammatory drugs
  • COX-1 cyclo-oxygenase-1
  • COX-2 cyclo- oxygenase-2
  • NSAIDs can be use herein: aspirin, carprofen, choline salicylate, ketoprofen, Mg salicylate, salicylaminde, salsalate, , sodium salicylate, sodium thiosalicylate, meclofenamate sodium, oxyphenbutazone, phenylbutazone, indomethacin, piroxicam, sulindac, tolmetin and tolmetin sodium, mefenamic acid, zomerpirac, ibuprofen, fenoprofen, naproxen and naproxen sodium, diclofenac, flurbiprofen, ketoprofen, ketorolac, trometamol, celecoxib, diflunisal, and nabumatone. All are available from commercial sources or are well described in the medical and other scientific literature.
  • the combined analgesic and anti-inflammatory effects of NSAIDs and PDE4-specific inhibitors make this combination particularly useful for the symptomatic relief of painful and/or inflammatory conditions including rheumatic disorders such as rheumatoid arthritis, osteoarthritis, and the spondyloarthropathies, and also in peri-articular disorders, and soft-tissue rheumatism.
  • the combination may also be useful in treating pulmonary diseases involving an inflammatory condition.
  • both active agents would be administered at the same time, or very close in time.
  • one drug could be taken in the morning and one later in the day.
  • one drug could be taken twice daily and the other once daily, either at the same time as one of the twice-a-day dosing occurred, or separately.
  • both drugs would be taken together at the same time.
  • the present compounds and pharmaceutically acceptable salts which are active when given orally can be formulated as syrups, tablets, capsules, controlled- release preparation or lozenges.
  • a syrup formulation will generally consist of a suspension or solution of the compound or salt in a liquid carrier for example, ethanol, peanut oil. olive oil, glycerin or water with a flavoring or coloring agent.
  • a liquid carrier for example, ethanol, peanut oil. olive oil, glycerin or water with a flavoring or coloring agent.
  • any pharmaceutical carrier routinely used for preparing solid formulations may be used. Examples of such carriers include magnesium stearate, terra alba, talc, gelatin, acacia, stearic acid, starch, lactose and sucrose.
  • compositions are in the form of a capsule, any routine encapsulation is suitable, for example using the aforementioned carriers in a hard gelatin capsule shell.
  • composition is in the form of a soft gelatin shell capsule
  • any pharmaceutical carrier routinely used for preparing dispersions or suspensions may be considered, for example aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.
  • Typical parenteral compositions consist of a solution or suspension of a compound or salt in a sterile aqueous or non-aqueous carrier optionally containing a parenterally acceptable oil, for example polyethylene glycol, polyvinylpyrrolidone, lecithin, arachis oil or sesame oil.
  • compositions for inhalation are in the form of a solution, suspension or emulsion that may be administered as a dry powder or in the form of an aerosol using a conventional propellant such as fluroinated hydrocarbons such as trichlorofluoromethane.
  • the composition for the PDE4 inhibitors is a unit dosage form such as a tablet or capsule, or a controlled release preparation.
  • NSAIDs are normally taken by mouth, some of them such as diclofenac, ketoprofen, ketorolac, piroxicam, and tenoxicam can be given by intramuscular injection. Ketorolac and tenoxicam can also be given by intravenous injection.
  • the active ingredient may be administered from 1 to 6 times a day, sufficient to exhibit the desired activity. Preferably, the active ingredient is administered about once or twice a day, more preferably twice a day. As for the amount of drug administered, it is believed that for the PDE4 inhibitors will be administered in an amount of between 1 and 200 micrograms per day per adult human. NSIADs be administered in conformity with approved labeling.
  • Example 1A Isolated human monocyte PDE 4 and hrPDE (human recombinant PDE4) was determined to exist primarily in the low affinity form. Hence, the activity of test compounds against the low affinity form of PDE 4 can be assessed using standard assays for
  • Rat brain high speed supematants were used as a source of protein and both enantionmers of H]-rolipram were prepared to a specific activity of 25.6 Ci/mmol.
  • PDE activity was assayed using a [ 3 H]cAMP SPA or [ 3 H]cGMP scintillation proximity analysis (SPA) enzyme assay as described by the supplier (Amersham Life Sciences).
  • the reactions were conducted in 96-well plates at room temperature, in 0.1 ml of reaction buffer containing (final concentrations): 50 M Tris-HCl, pH 7.5, 8.3 itiM MgC12, 1.7 mM EGTA, [ 3 H]cAMP or [ 3 H] cGMP (approximately 2000 dpm/pmol), enzyme and various concentrations of the inhibitors.
  • the assay was allowed to proceed for 1 hr and was terminated by adding 50 ⁇ l of SPA yttrium silicate beads in the presence of zinc sulfate. The plates were shaken and allowed to stand at room temperature for 20 min. Radiolabeled product formation was assessed by scintillation spectrometry. Activities of PDE3 and PDE7 were assessed using 0.05 ⁇ M [ 3 H]cAMP, whereas PDE4 was assessed using 1 uM [ 3 H]cAMP as a substrate. Activity of PDE1B, PDE1C, PDE2 and PDE5 activities were assessed using l ⁇ M [ 3 H]cGMP as a substrate. PHlR-rolipram binding assay
  • the assay was performed at 30°C for 1 hr in 0.5 ⁇ l buffer containing (final concentrations): 50 mM Tris- HCl, pH 7.5, 5 mM MgC12, 0.05% bovine serum albumin, 2 nM [ 3 H]R-rolipram (5.7 x 104 dpm/pmol) and various concentrations of non-radiolabeled inhibitors.
  • the reaction was stopped by the addition of 2.5 ml of ice-cold reaction buffer (without [ 3 H]-R-rolipram) and rapid vacuum filtration (Brandel Cell Harvester) through Whatman GF/B filters that had been soaked in 0.3% polyethylenimine. The filters were washed with an additional 7.5-ml of cold buffer, dried, and counted via liquid scintillation spectrometry.
  • Example 2 Preparation of a Controlled Release Tablet A controlled-release formulation was prepared using the ingredients set out in Table
  • Blending and compression techniques Blending
  • Excipients and drug were placed in a blender and mixed. The magnesium stearate was then added and mixed for an additional 3 minutes. During the blending process, excipients and drug were mixed, passed through a screen and then mixed again. Compression
  • Opadry White was suspended in the purified water and that suspension was used to coat the tablets; water was removed during the coating process an ddid not form part of the final product.
  • Immediate release tablets were prepared by standard means and contained the ingredients set out in Table 2.
  • Example 4 Treatment of Arthritis A patient diagnosed with arthritis and experiencing pain due to an inflammation of a joint is given a controlled-release tablet containing 30mg of Ariflo® prepared as per Example 2 and a 500mg tablet of Relafen (nabumetone) twice daily. Treatment is continued until such time as the inflammation goes into remission.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
EP01951123A 2000-02-08 2001-02-08 METHOD AND COMPOSITIONS FOR TREATING AN INFLAMMATORY DISEASE Withdrawn EP1253919A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18087900P 2000-02-08 2000-02-08
US180879P 2000-02-08
PCT/US2001/003972 WO2001058441A1 (en) 2000-02-08 2001-02-08 Method and compositions for treating an inflammatory disease

Publications (2)

Publication Number Publication Date
EP1253919A1 EP1253919A1 (en) 2002-11-06
EP1253919A4 true EP1253919A4 (en) 2007-03-14

Family

ID=22662062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01951123A Withdrawn EP1253919A4 (en) 2000-02-08 2001-02-08 METHOD AND COMPOSITIONS FOR TREATING AN INFLAMMATORY DISEASE

Country Status (16)

Country Link
EP (1) EP1253919A4 (xx)
JP (1) JP2003522142A (xx)
KR (1) KR20020073577A (xx)
CN (1) CN1398181A (xx)
AU (1) AU7205701A (xx)
BR (1) BR0108087A (xx)
CA (1) CA2398184A1 (xx)
CZ (1) CZ20022682A3 (xx)
HK (1) HK1051319A1 (xx)
HU (1) HUP0300689A3 (xx)
IL (1) IL150963A0 (xx)
MX (1) MXPA02007688A (xx)
NO (1) NO20023737L (xx)
PL (1) PL356447A1 (xx)
WO (1) WO2001058441A1 (xx)
ZA (1) ZA200206252B (xx)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338971B2 (en) 2001-08-30 2008-03-04 El-Naggar Mawaheb M Treatment of inflammatory, cancer, and thrombosis disorders
HU229442B1 (hu) * 2001-09-19 2013-12-30 Takeda Gmbh Nem-szteroid gyulladásgátlók és PDE4 inhibitorok kombinációi és alkalmazásuk
EP1463509A1 (en) * 2001-10-31 2004-10-06 MERCK PATENT GmbH Type 4 phosphodiesterase inhibitors and uses thereof
WO2004098605A1 (en) * 2003-05-12 2004-11-18 Altana Pharma Ag Pharmaceutical composition comprising a pde4 inhibitor and il-1 trap
WO2005020926A2 (en) * 2003-08-28 2005-03-10 Pharmacia Corporation Treatment or prevention of vascular disorders with cox-2 inhibitors in combination with cyclic amp-specific phosphodiesterase inhibitors
US8592400B2 (en) * 2009-02-27 2013-11-26 Boehringer Ingelheim International Gmbh Drug combinations containing PDE4 inhibitors and NSAIDs
JP2012519160A (ja) * 2009-02-27 2012-08-23 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Pde4阻害剤及びnsaidを含有する組み合わせ薬
KR101491938B1 (ko) 2010-07-14 2015-02-10 노파르티스 아게 Ip 수용체 효능제 헤테로시클릭 화합물
WO2013105057A1 (en) 2012-01-13 2013-07-18 Novartis Ag Fused pyrroles as ip receptor agonists for the treatment of pulmonary arterial hypertension (pah) and related disorders
WO2014125413A1 (en) 2013-02-13 2014-08-21 Novartis Ag Ip receptor agonist heterocyclic compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061779A (en) * 1973-09-11 1977-12-06 Beecham Group Limited Naphthalene derivatives having anti-inflammatory activity
WO1992018114A1 (en) * 1991-04-15 1992-10-29 Smithkline Beecham Farmaceutici S.P.A. Nabumetone powders
WO1993019749A1 (en) * 1992-04-02 1993-10-14 Smithkline Beecham Corporation Compounds useful for treating allergic and inflammatory diseases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005118A (en) * 1996-05-03 1999-12-21 Caron; Stephane Methods of preparing 4-cyano-4 (substituted indazole) cyclohexane-carboxylic acids useful as PDE4 inhibitors
FR2753706B1 (fr) * 1996-09-20 1998-10-30 Nouvelles amines cycliques n-substituees, leur procede de preparation et les compositions pharmaceutiques les renfermant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061779A (en) * 1973-09-11 1977-12-06 Beecham Group Limited Naphthalene derivatives having anti-inflammatory activity
WO1992018114A1 (en) * 1991-04-15 1992-10-29 Smithkline Beecham Farmaceutici S.P.A. Nabumetone powders
WO1993019749A1 (en) * 1992-04-02 1993-10-14 Smithkline Beecham Corporation Compounds useful for treating allergic and inflammatory diseases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO0158441A1 *
SILVA J.C.R. ET AL: "Effects of pentoxifylline and nabumetone on the serum levels of IL-1beta and TNFalpha in rats with adjuvant arthritis", INFLAMMATION RESEARCH, vol. 49, no. 1, January 2000 (2000-01-01), pages 14 - 19, XP008079916 *

Also Published As

Publication number Publication date
HUP0300689A3 (en) 2003-09-29
JP2003522142A (ja) 2003-07-22
PL356447A1 (en) 2004-06-28
CZ20022682A3 (cs) 2003-09-17
KR20020073577A (ko) 2002-09-27
HUP0300689A2 (hu) 2003-07-28
ZA200206252B (en) 2003-08-26
NO20023737D0 (no) 2002-08-07
IL150963A0 (en) 2003-02-12
EP1253919A1 (en) 2002-11-06
CA2398184A1 (en) 2001-08-16
CN1398181A (zh) 2003-02-19
BR0108087A (pt) 2002-10-29
AU7205701A (en) 2001-08-20
MXPA02007688A (es) 2002-12-13
NO20023737L (no) 2002-09-27
WO2001058441A1 (en) 2001-08-16
HK1051319A1 (zh) 2003-08-01

Similar Documents

Publication Publication Date Title
AU754379B2 (en) Therapies for treating pulmonary diseases
CA2328730C (en) Treatment of iatrogenic and age-related hypertension and pharmaceutical compositions useful therein
JP2004538302A (ja) 新規治療方法
KR20070032619A (ko) 폐동맥 고혈압의 치료를 위한 일로프로스트의 복합 치료제
EP1253919A1 (en) Method and compositions for treating an inflammatory disease
ES2232418T3 (es) Combinaciones de farmacos, que comprenden (e)-acido 7-(4-(4-fluorofenil)-6-isopropil-2-(metil(metil-sulfonil)-amino)-pirimidin-5-il)(3r,5s)-3,5-dihidroxihept-6-enoico y un inhibidor, inductor o substrato para la isoenzima 3a4 de p450.
US20040176419A1 (en) Composition comprising a pde-4 inhibitor and h1-receptor antagonist and the use thereof for the manufacture of a medicament for the treatment of respiratory diseases
NZ506020A (en) Use of pharmaceutical combinations containing tramadol and an antiemetic
US20030207845A1 (en) Method and compositions for treating an inflammatory disease
TWI242431B (en) Pharmaceutical compositions for treating pulmonary diseases
KR20030019620A (ko) Copd와 관련된 증상 악화의 감소 방법
EP1261331A1 (en) Method and compositions for treating fibrotic diseases
AU2004240185A1 (en) Method and compositions for treating an inflammatory disease
US20030018071A1 (en) Method and compositions for treating fibrotic diseases
US20060035877A1 (en) Method and compositions for treating pulmonary diseases
Haggerty Jr et al. Use of psychotropic drugs in patients with peptic ulcer
MXPA01001994A (en) Therapies for treating pulmonary diseases
AU2004205324A1 (en) Method and compositions for treating pulmonary diseases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI PAYMENT 20020806

A4 Supplementary search report drawn up and despatched

Effective date: 20070209

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/19 20060101AFI20010821BHEP

Ipc: A61K 31/60 20060101ALI20070206BHEP

Ipc: A61K 31/40 20060101ALI20070206BHEP

Ipc: A61K 45/06 20060101ALI20070206BHEP

17Q First examination report despatched

Effective date: 20070702

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071113

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1051319

Country of ref document: HK