EP1249926B1 - Procédé et appareil pour la limitation dissipative de tension d'un circuit éléctrique - Google Patents

Procédé et appareil pour la limitation dissipative de tension d'un circuit éléctrique Download PDF

Info

Publication number
EP1249926B1
EP1249926B1 EP02252179A EP02252179A EP1249926B1 EP 1249926 B1 EP1249926 B1 EP 1249926B1 EP 02252179 A EP02252179 A EP 02252179A EP 02252179 A EP02252179 A EP 02252179A EP 1249926 B1 EP1249926 B1 EP 1249926B1
Authority
EP
European Patent Office
Prior art keywords
voltage
coupled
input
power supply
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02252179A
Other languages
German (de)
English (en)
Other versions
EP1249926A2 (fr
EP1249926A3 (fr
Inventor
Arthur B. Odell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Power Integrations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Inc filed Critical Power Integrations Inc
Priority to EP08163505A priority Critical patent/EP1995859A3/fr
Publication of EP1249926A2 publication Critical patent/EP1249926A2/fr
Publication of EP1249926A3 publication Critical patent/EP1249926A3/fr
Application granted granted Critical
Publication of EP1249926B1 publication Critical patent/EP1249926B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers

Definitions

  • the present invention relates generally to electrical circuit and, more specifically the present invention relates to electrical circuit clumping.
  • Switched mode power supplies are commonly used due to their high efficiency and good output regulation to power many of today's electronic devices.
  • a low frequency e.g. 50 or 60 Hz mains frequency
  • high voltage alternating current (AC) is converted to high frequency (e.g. 30 to 300 kHz) AC, using a switched mode power supply control circuit.
  • This high frequency, high voltage AC is applied to a transformer to transform the voltage, usually to a lower voltage, and to provide safety isolation.
  • the output of the transformer is rectified to provide a regulated direct current (DC) output, which may be used to power an electronic device.
  • the switched mode power supply control circuit usually provides output regulation by sensing the output and controlling it in a closed loop.
  • US 5847941 is an Example of a prior art RCD clamp network, which includes a resistor 17, a capacitor 5 and a diode 4 coupled across the primary winding.
  • Figure 1 is a schematic of a known forward power converter 101.
  • a switch Q1 103 turns on and off in response to a control 105 to provide a regulated DC output voltage V OUT 129 from an unregulated DC input voltage V IN 127.
  • control 105 and switch Q1 103 are included in a switching regulator, which may be used to regulate the output voltage V OUT 129 .
  • This topology is well known and its operation is well documented.
  • Every forward converter must have a way to set the voltage on the primary winding 107 of the transformer 109 during the time when the switch Q1 103 is off.
  • a popular way to set the voltage is with a clamp network 111 connected across the primary winding 107.
  • the known clamp network 111 illustrated in Figure 1 includes a resistor 113, a capacitor 115 and a diode 117 and absorbs and dissipates parasitic energy from the transformer 109 that is not delivered to the load 119 nor returned to the input 121.
  • the balance of energy into the clamp network 111 through diode 117 and energy dissipated in 113 determines a clamp voltage V CLAMP 123 that is necessary prevent saturation of the transformer 109.
  • Figure 2 shows with idealized waveforms how the voltage V SWITCH 125 on switch Q1 103 is related to the input voltage V IN 127 and the clamp voltage V CLAMP 123.
  • the clamp voltage V CLAMP 123 must be high enough to prevent saturation of the transformer 109, but low enough to keep the voltage V SWITCH 125 below the breakdown voltage of switch Q1 103.
  • Figure 3 shows the relationship between V CLAMP 123 and V IN 127 in a known power supply. As the input voltage V IN 127 changes, the clamp voltage V CLAMP 123 must be confined between the two boundaries shown in Figure 3 .
  • the maximum voltage boundary is a straight line determined by the breakdown voltage of switch Q1 103.
  • the minimum voltage boundary is a curved line determined by the voltage necessary to keep the transformer 109 from saturation.
  • FIG 3 shows how the clamp voltage V CLAMP 123 behaves with an RCD network, such as that illustrated in clamp network 111 or Figure 1 .
  • the clamp voltage V CLAMP 123 stays substantially constant in response to changes in V IN 127 at given load.
  • the presence of leakage inductance in the transformer 109 causes the clamp voltage V CLAMP 123 to change with load 119, It is higher for greater current and lower for less current.
  • the result is a restricted range of permissible input voltage V IN 127 that is shown in the shaded region of Figure 3 .
  • US-A-5847941 discloses an electrical circuit, comprising a dissipative clamp circuit coupled to an input of the electrical circuit; an inductive element coupled between the dissipative clamp circuit and an output of the electrical circuit; and a switch coupled in series with the inductive element; the dissipative clamp circuit coupled to provide a clamp voltage across the inductive element.
  • the invention also provides a power supply in accordance with claim 1 and a method in accordance with claim 4.
  • Figure 1 is a schematic diagram illustrating a known forward converter power supply.
  • Figure 2 is a timing diagram illustrating how the voltage on the switch is related to the input voltage and the clamp voltage in a known power supply.
  • Figure 3 is a diagram illustrating the relationship between the clamp voltage and the input voltage in a known power supply
  • Figure 4 is a block diagram illustrating one embodiment of the general elements of a dissipative clamp network in accordance with the teachings of the present invention.
  • Figure 5 is a diagram illustrating one embodiment of the relationship between the clamp voltage and the input voltage in accordance with the teachings of the present invention.
  • Figure 6 is a schematic diagram illustrating one embodiment of a power supply using a dissipative clamp network in accordance with the teachings of the present invention.
  • Figure 7 is a schematic diagram an electrical circuit using a dissipative clamp network.
  • Embodiments of methods and apparatuses for dissipatively clamping an electrical circuit such as a power supply regulator are disclosed.
  • numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
  • Figure 4 shows the general elements of one embodiment of a dissipative clamp network 411 in an electrical circuit, such as for example a power supply 401, in accordance with the teachings of the present invention.
  • an input voltage V IN 427 is received at an input 421.
  • a clamp network 411 is used to clamp the voltage V CLAMP 423 across the primary winding 407 of a transformer 409.
  • a switch 403 is coupled to primary winding 407 to drive primary winding 407 in response to a control circuit (not shown).
  • transformer 409 is an inductive element and may be referred to as an energy transfer element or the like.
  • a clamp diode D CLAMP 437 provides a unidirectional path for the energy from the primary winding 407 of the transformer 409 to enter the clamp network 411.
  • the energy is held by an energy storage element 435 and is lost through a dissipative element 433.
  • the dissipative element 433 is programmed by a signal S 1 439 from a sensing network 431.
  • the sensing network 431 produces the programming signal S 1 439 from measurements of the input voltage V IN 427, the voltage on the energy storage element 435 and a reference voltage V REF 441 received by the sensing network 431.
  • energy stored in the leakage inductance of transformer 409 is dissipated in response to the input voltage V IN 427.
  • the dissipative element 433 is adapted in accordance with the teachings of the present invention, which can be viewed as having the effect of changing the value of the resistor 113 in the RCD clamp network 111 of Figure 1 .
  • the control from programming signal S 1 439 from sensing network 431 adjusts the energy balance to maintain a desired locus of clamp voltage over an extended range of input voltage as illustrated in Figure 5 .
  • the clamp voltage V CLAMP 423 is varied substantially inversely linearly with respect to the input voltage V IN 427 in accordance with the teachings of the present invention.
  • the clamp voltage V CLAMP 423 is varied substantially independent of the power supply output and/or leakage inductance of transformer 409.
  • clamp voltage V CLAMP 423 With the variation in clamp voltage V CLAMP 423 as shown, the range of input voltages for V IN 427 is increased in accordance with the teachings of the present invention. Indeed, various embodiments of the present invention allow operation over an extended range of input voltage for V IN 427 while maintaining the clamp voltage V CLAMP 423 at a high value within the minimum and maximum boundaries as shown in Figure 5 .
  • the higher voltages made possible by a variable clamp voltage V CLAMP 423, such as illustrated in Figure 5 allows the use of parasitic capacitance in the primary winding 407 and secondary windings 443 to process some of the energy that otherwise would be dissipated in the clamp circuit 411.
  • FIG. 6 is a schematic illustrating one embodiment of an electrical circuit such as for example a power supply 601 utilizing a dissipative clamp network 611 in accordance with the teachings of the present invention.
  • diode D3 637 provides the unidirectional path for energy from the primary winding 607 of the transformer 609 to enter the network 611 and capacitor C2 635 is the energy storage element of the clamp network 611.
  • Zener diode VR1 645 and capacitor C3 647 make a stable reference voltage V REF 641.
  • an N-channel metal oxide semiconductor (MOS) transistor Q2 is the principal dissipative element 633.
  • MOS metal oxide semiconductor
  • the sensing network in power supply 601 includes the connection of resistors R1 649, R2 651, R3 653 and R4 655 with transistor Q3 657.
  • the voltage on the gate of transistor Q2 633 is the programming signal S 1 639 that adapts the dissipation to achieve the desired characteristic of operation.
  • resistors R2 651 and R4 655 form a voltage divider that applies a scaled value of the sum of the input voltage V IN 627 received at input 621 and the reference voltage V REF 641 from Zener diode VR1 645 to the base of transistor Q3 657.
  • the current flowing through R3 653 is proportional to the difference in voltage between the base of transistor 657 Q3 and the input voltage V IN 627. The result is a current in the collector of transistor Q3 657 that decreases substantially linearly with increasing input voltage V IN 627.
  • the collector current in transistor Q3 657 produces a voltage drop through resistor R1 649 such that the voltage, or programming signal S 1 639, on the gate of transistor Q2 633 is proportional to the weighted sum of the clamp voltage V CLAMP 623 and the input voltage V IN 627.
  • the gate voltage on the gate of transistor Q2 633 controls the current in the dissipative element transistor Q2 633 to adjust the clamp voltage V CLAMP 623 at a desired value for a given V IN 627.
  • V CLAMP V REF ⁇ 1 + R ⁇ 1 ⁇ R ⁇ 2 R ⁇ 3 ⁇ R ⁇ 2 + R ⁇ 4 - V IN ⁇ 2 - R ⁇ 1 ⁇ R ⁇ 2 R ⁇ 3 ⁇ R ⁇ 2 + R ⁇ 4 that describes a substantially straight line on the graph of V CLAMP versus V IN , as shown in Figure 5 .
  • An engineer can select values for resistances R1 649, R2 651, R3 653 and R4 655 along with V REF 641 to achieve the locus of desired operation as illustrated in Figure 5 .
  • FIG. 7 is a schematic illustrating an electrical circuit such as for example a power supply 701 utilizing a dissipative clamp network 711.
  • diode D3 737 provides the unidirectional path for energy from the primary winding 707 of the transformer 709 to enter the network 711.
  • Zener diode VR1 745 makes a stable reference voltage V REF 741 relative to the circuit input negative rail of input 721.
  • a bipolar PNP transistor Q2 733 is the principal dissipative element.
  • other types of dissipative elements could be used in place of a bipolar PNP transistor 733 such as for example a P channel MOSFET transistor.
  • Resistor R1 753 is an optional additional dissipative element allowing the dissipated energy to be split between the bipolar transistor 733 and resistor R1 753. The energy is held by an energy storage element capacitor 735 and is lost through a dissipative elements transistor 733 and resistor 753.
  • V CLAMP 723 is responsive to V IN 727 received at input 721. Since the reference voltage V REF 741 provided by zener diode VR1 745 is relative to the circuit input 721 negative rail, the operation of the clamp network 711 shown in Figure 7 provides a clamp that limits V CLAMP 723 across capacitor 735 to the locus of desired operation shown in Figure 5 . In another circuit is it appreciated that zener diode VR1 745 reference voltage V REF 741 could be achieved with several lower voltage zener diodes in series.
  • transistor 733 in combination with resistor 753 and diode 745 embody a sensing network to sense V IN 727 and thereby regulate the voltage across capacitor 735 such that the sum of V IN 727 and V CLAMP 723 remain substantially constant during circuit operation. Accordingly, the voltage V SWITCH 725 across power switch Q1 703 is maintained below a voltage limit of power switch Q1 703.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Claims (7)

  1. Alimentation, comprenant:
    un élément de transfert d'énergie (609) qui comporte une entrée d'élément de transfert d'énergie (607) et une sortie d'élément de transfert d'énergie couplée sur une sortie de l'alimentation;
    un circuit de régulateur de commutation incluant un commutateur de puissance (603) couplé à l'entrée d'élément de transfert d'énergie (607), et un circuit de commande couplé au commutateur de puissance (603) et à la sortie de l'alimentation (601), le circuit de commande étant couplé pour commuter le commutateur de puissance (603) afm de réguler la sortie de l'alimentation (601); et
    un circuit de verrouillage dissipatif (611) couplé à l'entrée d'élément de transfert d'énergie (607), le circuit de verrouillage dissipatif (611) étant couplé à une entrée d'alimentation (621) pour recevoir une tension d'entrée (627), le circuit de verrouillage dissipatif (611) étant modifié en réponse à une tension d'entrée (627) reçue au niveau de l'entrée (621) de l'alimentation (601) de telle sorte que la tension de verrouillage (623) décroisse linéairement lorsque la tension d'entrée (627) croît, et dans lequel le circuit de verrouillage dissipatif est couplé pour maintenir une tension aux bornes du commutateur (603) au-dessous d'une limite de tension de commutation, le circuit de verrouillage dissipatif (611) incluant:
    un réseau de détection (631) couplé à l'entrée d'alimentation (621) pour détecter la tension d'entrée;
    un élément dissipatif (633) couplé au réseau de détection (631) et couplé à l'élément de transfert d'énergie (609);
    un élément de stockage d'énergie (635) couplé à l'élément de transfert d'énergie (609) et à l'élément dissipatif (633); et
    une première diode (637) couplée entre le commutateur de puissance (603) et l'élément dissipatif (633) et l'élément de stockage d'énergie (635),
    dans laquelle l'élément dissipatif (633) comprend un premier transistor couplé à l'élément de stockage d'énergie (635), le premier transistor (633) étant couplé pour dissiper l'énergie dans l'élément de stockage d'énergie (635) en réponse à un signal reçu depuis le réseau de détection (631),
    dans laquelle le réseau de détection (631) comprend:
    un circuit de division de tension couplé à un circuit de tension de référence pour appliquer une tension mise à l'échelle en réponse à une tension de référence (641) ajoutée à la tension d'entrée (627); et
    un second transistor (657) couplé à l'élément dissipatif (633) et couplé au diviseur de tension, le second transistor (657) étant couplé pour appliquer un courant qui est couplé de manière à diminuer linéairement lorsque la tension d'entrée (627) croît de telle sorte que la tension sur la grille du premier transistor soit proportionnelle à la somme pondérée de la tension de verrouillage et de la tension d'entrée.
  2. Alimentation selon la revendication 1, dans laquelle l'élément de stockage d'énergie (635) comprend un condensateur couplé à l'entrée d'élément de transfert d'énergie (607) et à la première diode (637).
  3. Alimentation selon la revendication 1 ou 2, dans laquelle la tension de référence (641) est fournie par un circuit de tension de référence couplé à l'entrée d'alimentation (621), le circuit de tension de référence incluant une diode Zener (645) couplée entre le circuit de diviseur de tension et l'entrée d'alimentation (621), le circuit de tension de référence incluant en outre un second condensateur (647) couplé entre le circuit de diviseur de tension et l'entrée d'alimentation (621).
  4. Procédé de fonctionnement d'une alimentation comportant un élément dissipatif (633) incluant un premier transistor couplé à un réseau de détection, le procédé comprenant:
    la commutation d'une entrée d'alimentation (621) sur un élément de transfert d'énergie (609);
    la régulation d'une sortie d'alimentation en commutant l'entrée d'alimentation (621) sur l'élément de transfert d'énergie (609);
    le verrouillage d'une tension sur l'élément de transfert d'énergie (609) à une tension de verrouillage (623); et
    la modification de la tension de verrouillage (623) en réponse à une tension d'entrée (627) reçue au niveau de l'entrée d'alimentation (621) de telle sorte que la tension de verrouillage (623) décroisse linéairement en fonction de la croissance de la tension d'entrée (627), et dans lequel le circuit de verrouillage dissipatif (611) est couplé pour maintenir une tension aux bornes du commutateur (603) au-dessous d'une limite de tension de commutation, dans lequel le fait de modifier la tension de verrouillage comprend:
    la détection d'une tension d'entrée en fournissant une tension mise à l'échelle en réponse à une tension de référence (641) additionnée à la tension d'entrée; et
    la fourniture d'un courant sur la base de ladite tension mise à l'échelle en couplage de manière à diminuer linéairement en fonction de la croissance de l'entrée, de telle sorte que la tension sur la grille du premier transistor soit proportionnelle à la somme pondérée de la tension de verrouillage et de la tension d'entrée; et
    la dissipation de l'énergie dans l'élément dissipatif en réponse à un signal reçu depuis le réseau de détection.
  5. Procédé selon la revendication 4, dans lequel le fait de faire varier la tension de verrouillage (623) est significativement indépendant de la sortie d'alimentation.
  6. Procédé selon la revendication 5, dans lequel le fait de faire varier la tension de verrouillage (623) est en outre significativement indépendant d'une inductance de fuite de l'élément de transfert d'énergie (609).
  7. Procédé selon la revendication 4, dans lequel le verrouillage de la tension sur l'élément de transfert d'énergie (609) comprend la dissipation de l'énergie stockée dans une inductance de fuite de l'élément de transfert d'énergie (609) en réponse à l'entrée d'alimentation (621).
EP02252179A 2001-04-13 2002-03-26 Procédé et appareil pour la limitation dissipative de tension d'un circuit éléctrique Expired - Lifetime EP1249926B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08163505A EP1995859A3 (fr) 2001-04-13 2002-03-26 Procédé et appareil pour le verrouillage dissipatif d'un circuit électrique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/835,008 US6496392B2 (en) 2001-04-13 2001-04-13 Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage
US835008 2001-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP08163505A Division EP1995859A3 (fr) 2001-04-13 2002-03-26 Procédé et appareil pour le verrouillage dissipatif d'un circuit électrique

Publications (3)

Publication Number Publication Date
EP1249926A2 EP1249926A2 (fr) 2002-10-16
EP1249926A3 EP1249926A3 (fr) 2004-03-03
EP1249926B1 true EP1249926B1 (fr) 2008-09-03

Family

ID=25268340

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08163505A Withdrawn EP1995859A3 (fr) 2001-04-13 2002-03-26 Procédé et appareil pour le verrouillage dissipatif d'un circuit électrique
EP02252179A Expired - Lifetime EP1249926B1 (fr) 2001-04-13 2002-03-26 Procédé et appareil pour la limitation dissipative de tension d'un circuit éléctrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08163505A Withdrawn EP1995859A3 (fr) 2001-04-13 2002-03-26 Procédé et appareil pour le verrouillage dissipatif d'un circuit électrique

Country Status (4)

Country Link
US (5) US6496392B2 (fr)
EP (2) EP1995859A3 (fr)
JP (2) JP4391721B2 (fr)
DE (1) DE60228646D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230247A (zh) * 2016-09-28 2016-12-14 东莞铭普光磁股份有限公司 一种用于开关电源的自适应吸收系统及开关电源

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496392B2 (en) * 2001-04-13 2002-12-17 Power Integrations, Inc. Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage
US6989649B2 (en) * 2003-07-09 2006-01-24 A. O. Smith Corporation Switch assembly, electric machine having the switch assembly, and method of controlling the same
DE102004033994B4 (de) * 2003-07-16 2017-07-27 Denso Corporation Gleichstrom-Gleichstrom-Wandler
US6856522B1 (en) * 2003-09-13 2005-02-15 Technical Witts, Inc. Synchronous rectifier gate drive circuits for zero voltage switching power converters
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US7629769B2 (en) * 2006-03-10 2009-12-08 Atmel Corporation Power surge filtering in over-current and short circuit protection
WO2007133190A2 (fr) 2006-05-01 2007-11-22 Conexant Systems, Inc. Systèmes et procédés de balayage de canal de transmission par satellite basé sur la fréquence
EP1852959A1 (fr) * 2006-05-05 2007-11-07 HÜTTINGER Elektronik GmbH + Co. KG Alimentation pour un générateur de plasma à fréquence moyenne
US7692936B2 (en) * 2006-05-05 2010-04-06 Huettinger Elektronik Gmbh + Co. Kg Medium frequency power generator
KR101129391B1 (ko) * 2007-08-13 2012-03-28 삼성전자주식회사 수동 클램프 회로를 갖는 스위칭 모드 전원공급장치
DE102007058612A1 (de) * 2007-12-04 2009-08-13 R. Stahl Schaltgeräte GmbH Stromversorgungsanordnung mit Überwachung der Sekundärspannung
US7869235B2 (en) * 2008-04-28 2011-01-11 Fsp Technology Inc. Flyback converter having an active snubber
US8174852B2 (en) 2008-08-15 2012-05-08 Power Integrations, Inc. Asymmetric switch forward converter
TWI358188B (en) * 2008-09-17 2012-02-11 Delta Electronics Inc Forward-flyback converter with active-clamp circui
MX2011003708A (es) 2008-10-06 2011-06-16 Pentair Water Pool & Spa Inc Metodo para operar un sistema de seguridad para alivio de vacio.
EP2377233B1 (fr) * 2009-01-07 2015-08-26 Claudio Lastrucci Dispositif de rétablissement de niveau actif et convertisseur comprenant ledit dispositif
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
JP5468871B2 (ja) * 2009-10-16 2014-04-09 オリジン電気株式会社 コンバータ回路
DE102010012584A1 (de) * 2010-03-23 2011-09-29 Astrium Gmbh Schaltungsanordnung zur aktiven Klemmung eines Eintakt-Durchflusswandlers
US8400789B2 (en) * 2010-04-27 2013-03-19 Power Integrations, Inc. Power supply with input filter-controlled switch clamp circuit
JP5138002B2 (ja) * 2010-06-17 2013-02-06 Tdkラムダ株式会社 Dcdcコンバータ
US8451630B2 (en) 2010-07-13 2013-05-28 Power Integrations, Inc. Reset voltage circuit for a forward power converter
KR101739053B1 (ko) * 2010-08-09 2017-05-24 에스프린팅솔루션 주식회사 스위칭 모드 전원공급장치 및 이를 제어하는 방법
CN103477075B (zh) 2010-12-08 2016-12-21 滨特尔水池水疗公司 用于安全真空释放系统的排放真空释放阀
US20160277017A1 (en) * 2011-09-13 2016-09-22 Fsp Technology Inc. Snubber circuit
CA2854162C (fr) 2011-11-01 2019-12-24 Pentair Water Pool And Spa, Inc. Systeme et procede de blocage de debit
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
EP2816547A1 (fr) * 2013-06-17 2014-12-24 ABB Research Ltd. Circuit amortisseur de RCD adaptatif et procédé pour convertisseur de commutation
KR102219639B1 (ko) * 2013-12-02 2021-02-23 온세미컨덕터코리아 주식회사 클램핑 회로, 이를 포함하는 전력 공급 장치 및 전력 공급 장치의 구동 방법
TWI513164B (zh) 2014-04-18 2015-12-11 Lite On Technology Corp 返馳式主動箝位電源轉換器
US9236789B1 (en) * 2014-08-04 2016-01-12 Qualcomm Incorporated Programmable snubber circuit
EP3278436B1 (fr) * 2015-03-31 2021-10-13 Linak A/S Convertisseur indirect à circuit d'amortissement
US9973098B2 (en) * 2015-08-19 2018-05-15 Astec International Limited Fixed frequency discontinuous conduction mode flyback power converters employing zero voltage switching
DE102016110427A1 (de) * 2016-06-06 2017-12-07 Rk Rose + Krieger Gmbh Verbindungs- Und Positioniersysteme Schaltnetzteil
US10148188B2 (en) * 2016-09-06 2018-12-04 Fairchild Semiconductor Corporation Clamp voltage detection and over-voltage protection for power supply topologies
US10141853B2 (en) * 2017-02-09 2018-11-27 Delta Electronics, Inc. Power converter and method of control thereof
US11632054B2 (en) 2019-04-24 2023-04-18 Power Integrations, Inc. Mode operation detection for control of a power converter with an active clamp switch
JP7378495B2 (ja) 2019-04-24 2023-11-13 パワー・インテグレーションズ・インコーポレーテッド 能動非放散クランプ回路を備える電力コンバーターおよびそれぞれの制御装置
TWI709291B (zh) * 2019-04-26 2020-11-01 全漢企業股份有限公司 電源轉換器及其控制電路
US10965218B1 (en) * 2019-11-15 2021-03-30 Power Integrations, Inc. Active clamp circuit with steering network

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016482A (en) * 1975-10-31 1977-04-05 International Business Machines Corporation Pulse energy suppression network
US4870554A (en) * 1987-11-12 1989-09-26 Power Systems, Inc. Active snubber forward converter
JP2803164B2 (ja) * 1989-05-26 1998-09-24 日本電気株式会社 アブゾーバ回路
US5008796A (en) * 1990-06-06 1991-04-16 International Business Machines Corporation Apparatus and method for improving load regulation in switching power supplies
US5278748A (en) * 1991-07-12 1994-01-11 Nec Corporation Voltage-resonant DC-DC converter
US5621623A (en) * 1994-01-28 1997-04-15 Fujitsu Limited DC-DC converter using flyback voltage
EP1278295A3 (fr) * 1995-01-17 2004-12-29 VLT, Inc. Contrôle de l'énérgie magnétique stockée dans les transformateurs des convertisseurs de puissance
JPH10508459A (ja) * 1995-09-01 1998-08-18 フィリップス エレクトロニクス エヌ ベー 改善された効率を有する電源装置
JP3512540B2 (ja) * 1995-11-22 2004-03-29 オリジン電気株式会社 スイッチング電源及びその制御方法
JP3514600B2 (ja) * 1997-01-24 2004-03-31 オリジン電気株式会社 スイッチング電源及びその制御方法
JPH10295077A (ja) * 1997-04-15 1998-11-04 Toukei Denko Kk スイッチング電源装置
US6088247A (en) * 1997-10-29 2000-07-11 Pi Electronics (H. K.) Limited Voltage clamp
JP2001224170A (ja) * 2000-02-09 2001-08-17 Sony Corp スイッチング電源回路
US6317341B1 (en) * 2000-11-09 2001-11-13 Simon Fraidlin Switching circuit, method of operation thereof and single stage power factor corrector employing the same
US6314002B1 (en) * 2000-11-20 2001-11-06 Philips Electronics North America Corporation Voltage clamping system and method for a DC/DC power converter
SE520159C2 (sv) * 2001-01-26 2003-06-03 Ericsson Telefon Ab L M Anordning för avmagnetisering av en transformator
US6496392B2 (en) * 2001-04-13 2002-12-17 Power Integrations, Inc. Dissipative clamping of an electrical circuit with a clamp voltage varied in response to an input voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230247A (zh) * 2016-09-28 2016-12-14 东莞铭普光磁股份有限公司 一种用于开关电源的自适应吸收系统及开关电源
CN106230247B (zh) * 2016-09-28 2019-05-28 东莞铭普光磁股份有限公司 一种用于开关电源的自适应吸收系统及开关电源

Also Published As

Publication number Publication date
US6496392B2 (en) 2002-12-17
US7193870B2 (en) 2007-03-20
US20030048646A1 (en) 2003-03-13
US6947299B2 (en) 2005-09-20
US20050036343A1 (en) 2005-02-17
JP2002330584A (ja) 2002-11-15
EP1995859A3 (fr) 2009-04-08
EP1249926A2 (fr) 2002-10-16
US20040100806A1 (en) 2004-05-27
US20060002158A1 (en) 2006-01-05
JP4391721B2 (ja) 2009-12-24
DE60228646D1 (de) 2008-10-16
EP1249926A3 (fr) 2004-03-03
US6687141B2 (en) 2004-02-03
US20020163821A1 (en) 2002-11-07
US6813171B2 (en) 2004-11-02
EP1995859A2 (fr) 2008-11-26
JP2009118736A (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
EP1249926B1 (fr) Procédé et appareil pour la limitation dissipative de tension d'un circuit éléctrique
US6995986B2 (en) Switched mode power supply responsive to current derived from voltage across energy transfer element input
US8081496B2 (en) Method and apparatus for limiting maximum output power of a power converter
US6233161B1 (en) Switched mode power supply responsive to voltage across energy transfer element
US9998022B2 (en) Current limit peak regulation circuit for power converter with low standby power dissipation
US20120113687A1 (en) Loosely regulated feedback control for high efficiency isolated dc-dc converters
US6778412B2 (en) Synchronous converter with reverse current protection through variable inductance
US20030021128A1 (en) Method and apparatus for controlling synchronous rectifiers of a power converter
US7420827B2 (en) Self oscillating inrush current limiting converter
US8767423B2 (en) Method and apparatus for varying current limit to limit an output power of a power supply
US20050057951A1 (en) Controlled synchronous rectifier for controlling an output voltage of a switched mode power supply
JP7341196B2 (ja) 逆流防止回路、電源回路、および電源装置
US6515877B1 (en) DC-to-DC converter providing high current and low voltage
US6628533B2 (en) DC-to-DC converter providing high current and low voltage
JP2984466B2 (ja) リンギングチョ−クコンバ−タ
Tietze et al. Power supplies
KR920007135Y1 (ko) 전원 공급장치의 안정화회로
JP2004320856A (ja) スイッチング電源装置
JP2009022124A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040511

17Q First examination report despatched

Effective date: 20040923

AKX Designation fees paid

Designated state(s): DE FR GB IT NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POWER INTEGRATIONS, INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60228646

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130327

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140326

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140317

Year of fee payment: 13

Ref country code: IT

Payment date: 20140321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140327

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60228646

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150326

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401