EP1249263B1 - Verfahren zum Betrieb einer Reinigungsanlage - Google Patents

Verfahren zum Betrieb einer Reinigungsanlage Download PDF

Info

Publication number
EP1249263B1
EP1249263B1 EP02007976A EP02007976A EP1249263B1 EP 1249263 B1 EP1249263 B1 EP 1249263B1 EP 02007976 A EP02007976 A EP 02007976A EP 02007976 A EP02007976 A EP 02007976A EP 1249263 B1 EP1249263 B1 EP 1249263B1
Authority
EP
European Patent Office
Prior art keywords
working chamber
solvent
condenser
pressure
vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02007976A
Other languages
English (en)
French (fr)
Other versions
EP1249263A2 (de
EP1249263A3 (de
Inventor
Horst Erbel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pero AG P Erbel Maschinen- und Apparatebau
Original Assignee
Pero AG P Erbel Maschinen- und Apparatebau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pero AG P Erbel Maschinen- und Apparatebau filed Critical Pero AG P Erbel Maschinen- und Apparatebau
Publication of EP1249263A2 publication Critical patent/EP1249263A2/de
Publication of EP1249263A3 publication Critical patent/EP1249263A3/de
Application granted granted Critical
Publication of EP1249263B1 publication Critical patent/EP1249263B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2230/00Other cleaning aspects applicable to all B08B range
    • B08B2230/01Cleaning with steam

Definitions

  • the invention relates to a method for treating a material to be cleaned in a cleaning system.
  • a cleaning system Pero cleaning system 2500
  • runs a predetermined cleaning program in which a steam degreasing is provided.
  • a connection between the working chamber and a steam tank is made, whereby solvent vapor flows into the working chamber.
  • a drying process is initiated in which a fan delivers the solvent vapor from the treatment chamber to a condenser.
  • the condenser consists of a refrigeration unit operating at very low temperatures, which has a temperature of -40 ° C to -60 ° C, depending on the solvent used. This condenses the solvent vapor.
  • the solvent-containing air in the working chamber is sucked by applying a high negative pressure and fed to the condenser. From the condenser, the air passes to a gas collection tank. The air in the gas collection container still has residues of the solvent vapor. Now, a vent valve is opened, whereby fresh air can flow into the working chamber. If this normal pressure prevails, the working chamber is opened and the cleaned workpieces are removed.
  • the equipment required for this cleaning system is considerable, especially because of the designed as a refrigeration unit capacitor. Although this works at very low temperatures, it is not possible to completely free the solvent-containing air that is introduced in the drying process in the treatment chamber, after their suction from the solvent, so that a gas collection tank is required as an additional expense.
  • EP 0 581 113 A1 discloses a process for degreasing mechanical parts and a system used therefor, which contains a working chamber, a steam generator, a vacuum pump and a condenser.
  • a vacuum is first generated by the vacuum pump in the working chamber, after there were introduced the parts to be cleaned.
  • solvent vapor is introduced into the working chamber to condense on the parts and penetrate into the pores of the parts due to the vacuum.
  • liquid detergent is introduced into the working chamber.
  • the parts are rinsed and the dirt attached to them is removed.
  • the entire cleaning agent is then returned to a storage tank, from where it passes to a distillation device.
  • the working chamber is supplied again solvent vapor to release the last dirt.
  • a vacuum is again generated in the interior of the working chamber by the vacuum pump to completely evaporate the solvent, which is then passed to a first capacitor.
  • the air extracted by the vacuum pump is passed through a second condenser to an activated carbon filter, which retains odors and traces of solvent.
  • DE 199 39 032 A1 relates to a method for cleaning metal parts, in which, for rinsing the parts with high-pressure steam, the solvent vapor generated in an evaporator is fed via a compressor under high pressure to a working chamber. During subsequent vacuum drying, the solvent vapor is evacuated through the compressor. Only after reaching a predetermined minimum pressure, a valve is opened, so that outside air can flow into the working chamber until it reaches atmospheric pressure. In order to achieve a legally prescribed solvent concentration in this known method, here, the working chamber has to be flushed with ambient air and sucked when flushing the compressor air under high pressure in an additional adsorption filter.
  • a significant advantage of the method according to the invention is that it can dispense with the relatively expensive and maintenance-intensive refrigeration units. To carry out the process fewer and simpler components are required, whereby the maintenance costs can be reduced and the operating costs can be reduced. With the method according to the invention it is possible, in the low temperature range, e.g. Also to clean plastics, so that the CFCs can be replaced. Due to the low solvent output, the process can also be operated without expensive filter and recovery systems.
  • the cleaning system shown schematically contains a steam generator 1, in which liquid solvent is heated to produce a saturated solvent vapor.
  • a first steam line 2 with a shut-off valve 3 arranged therein leads to a pressure-tight closable working chamber 4, in which the parts to be cleaned are accommodated during the cleaning process.
  • a ventilation valve 5 is arranged at the working chamber 4.
  • a second steam line 6 with a steam pressure valve 7 leads to a first part 8a of an air- or water-cooled condenser 8.
  • the working chamber 4 is connected to a first vacuum pump 10 via a first suction line 9. In this line 9, a valve 11 is arranged.
  • the first vacuum pump 10 is also connected to the condenser 8 via a second suction line 12 in connection, in which a further valve 13 is interposed. From the working chamber 4 further performs a first branch line 14 with a valve 15 to the first part of the condenser 8. To the working chamber 4, a second branch line 16 is also connected, which leads via a valve 17 to a second vacuum pump 18. The output of the second vacuum pump 18 is connected via a further valve 19 to the input of a compressor 20, the output of which is in communication with a second part 8b of the condenser 8.
  • the solvent liquefied in part 8a of the two-part condenser 8 runs off via a first discharge line 21 into a water separator 22.
  • the liquefied in part 8b of the capacitor 8 solvent is a condensate separator 39 in the Water separator 22 leading drain line 21 initiated.
  • a connecting line 23 with a valve 24 leads to a pump 25 through which the solvent distillate can be pumped into a storage container 28 via a delivery line 27 which can be shut off by a further valve 26.
  • a supply line 30 for liquid solvent which is provided with a further valve 29, leads to the working chamber 4. Via this line 30, the liquid solvent heated in the reservoir can be introduced into the working chamber 4 to carry out a bath cleaning.
  • a second discharge line 31 For discharging the liquid solvent after bath cleaning is from the working chamber 4 from a second discharge line 31, which opens into the arranged between the water separator 22 and the pump 25 connecting line 23 upstream of the pump 25.
  • a filter 32 is interposed for filtering cleaning residues. Upstream and downstream of the filter 32 in each case a shut-off valve 33 and 34 is arranged in the drain line 31.
  • a drain valve 35 Also on the steam generator 1 is provided with a drain valve 35 third drain line 36 is provided, which also opens into the conduit 23.
  • Between the reservoir 28 and the steam generator 1 also has an overflow line 37 with a shut-off valve 38th
  • the vapor pressure in the steam generator 1 is controlled.
  • the vapor pressure valve is opened when an adjustable vapor pressure limit is exceeded and closed when falling below the desired vapor pressure.
  • a pressure corresponding to the equilibrium between evaporator and condensation temperature is established in the system.
  • this pressure is about 150 mbar.
  • the vapor temperature of trichlorethylene at 150 mbar is only about 40 ° C, which is e.g. is not sufficient to remove only at 55 ° C melting polishing pastes.
  • the adjustment of the vapor pressure valve may then be e.g. be chosen so that this opens only at 950 mbar, which corresponds to a steam temperature of about 83 ° C.
  • the steam pressure valve can thus be used to determine the optimum steam temperature for the solvent used and the particular application.
  • the operation of the cleaning system is as follows:
  • the air in the system is first sucked off via the vacuum pump 10.
  • continuous distillation may be accomplished without the vacuum pump 10 continuing to run.
  • the solvent vapor generated in the steam generator 1 flows with the valve 3 closed via the line 6 to the part 8a of the condenser 8 and is liquefied there.
  • the condensate emerging from the condenser 8 passes into the water separator 22.
  • the distillate separated there from the water is introduced by the pump 25 via the line 27 back into the reservoir 28. Excess solvent can be discharged via the overflow line 37 into the vapor pressure vessel 1.
  • the continuous distillation ensures a constant cleaning quality and prevents the solvent from accumulating with oils and fats.
  • the valve 11 is closed and it can be done the actual cleaning of the parts after a selectable cleaning program ,
  • valve 29 For washing the parts in a cleaning bath, the valve 29 is opened, whereby the working chamber 4 can be flooded with the solvent heated in the reservoir 28. After completion of the bath cleaning, the solvent is discharged through the then opened valves 33 and 34 and the filter 32 and can be returned via the pump 25 back into the reservoir 28.
  • valve 3 To carry out a vapor degreasing the valve 3 is opened, whereby the solvent saturated steam located in the steam generator 1 flows via the line 2 into the working chamber 4. In the working chamber 4, the material to be cleaned is freed by the solvent vapor from adhering grease or oil.
  • the valve 15 is opened, whereby saturated steam flows from the working chamber 4 to part 8a of the air- or water-cooled condenser 8 up to approximately the condensation pressure of the condenser and is liquefied there.
  • the condensate leaving the condenser 8 is returned to the reservoir 28 via the water separator 22 and the pump 25.
  • the valve 15 is closed and the valve 17 is opened.
  • the second vacuum pump 18 Via the second vacuum pump 18, the remaining solvent vapor still remaining in the working chamber 4 is sucked off and compressed by the compressor 20.
  • the pressure is increased so that the residual solvent vapor can be condensed by an air or water cooling.
  • the pressure increase depends on the solvent used. When using e.g. Trichlorethylene or perchlorethylene as solvent, the pressure is increased to over 1 bar. When using methyl chloride, the pressure is increased to more than 2 bar. As a result, the solvent vapor is so warm that it is easily condensed with an air or water cooling.
  • the compressed over the compressor 20 steam is liquefied in part 8b of the condenser 8 and the condensate can be fed via the condensate separator 39 and the water separator 22 back to the reservoir 28.
  • a pressure-controlled shut-off valve or overflow valve can be provided, which opens only when the pressure on the pressure side by the vacuum pump 18 is reached. Also by this, the residual steam supplied to the condenser can be brought to a pressure which allows condensation with an air or water cooling.
  • valve 17 is closed.
  • the vent valve 5 can now be opened, whereby fresh air flows into the working chamber 4. If a pressure equalization between the environment and the working chamber 4, it can be opened and the cleaned workpieces can be removed.
  • the capacitor 8 is divided into two.
  • the capacitor can also be made in one piece, if appropriate measures to ensure the different pressure conditions are taken during the different condensation phases.

Description

  • Die Erfindung betrifft ein Verfahren zur Behandlung eines zu reinigenden Guts in einer Reinigungsanlage.
  • Bei einer bekannten Reinigungsanlage (Pero-Reinigungsanlage 2500) wird nach dem Einbringen der zu reinigenden Werkstücke in die Arbeitskammer diese verschlossen und ein Unterdruck an die Arbeitskammer angelegt, um die in der Arbeitskammer befindliche Luft weitgehend zu beseitigen. Anschließend läuft ein vorgegebenes Reinigungsprogramm ab, bei dem auch eine Dampfentfettung vorgesehen ist. Hierzu wird eine Verbindung zwischen der Arbeitskammer und einem Dampfbehälter hergestellt, wodurch Lösemitteldampf in die Arbeitskammer strömt. Nach Beendigung des Reinigungsprogramms wird ein Trockenprozeß eingeleitet, in dem ein Gebläse den Lösemitteldampf aus der Behandlungskammer zu einem Kondensator fördert. Der Kondensator besteht aus einem bei sehr tiefen Temperaturen arbeitenden Kälteaggregat, das je nach dem verwendeten Lösemittel eine Temperatur von -40°C bis -60°C aufweist. Hierdurch kondensiert der Lösemitteldampf. Um die letzten Lösemittelreste aus der Arbeitskammer zu beseitigen, wird die in der Arbeitskammer befindliche lösemittelhaltige Luft durch Anlegen eines hohen Unterdrucks abgesaugt und dem Kondensator zugeführt. Vom Kondensator gelangt die Luft zu einem Gassammelbehälter. Die Luft im Gassammelbehälter weist noch Reste des Lösemitteldampfes auf. Nunmehr wird ein Belüftungsventil geöffnet, wodurch Frischluft in die Arbeitskammer einströmen kann. Herrscht in dieser Normaldruck, wird die Arbeitskammer geöffnet und die gereinigten Werkstücke entnommen. Der apparative Aufwand bei dieser Reinigungsanlage ist erheblich, insbesondere wegen des als Kälteaggregat ausgebildeten Kondensators. Obwohl dieser bei sehr tiefen Temperaturen arbeitet, ist es nicht möglich, die lösemittelhaltige Luft, die beim Trockenprozeß in die Behandlungskammer eingeleitet wird, nach ihrem Absaugen völlig vom Lösemittel zu befreien, so daß als zusätzlicher Aufwand ein Gassammelbehälter erforderlich ist.
  • Aus der EP 0 581 113 A1 ist ein Verfahren zur Entfettung mechanischer Teile und eine dafür verwendete Anlage bekannt, die eine Arbeitskammer, einen Dampferzeuger, eine Vakuumpumpe und einen Kondensator enthält. Bei dieser bekannten Anlage wird durch die Vakuumpumpe in der Arbeitskammer zunächst ein Vakuum erzeugt, nachdem dort die zu reinigenden Teile eingebracht wurden. Dann wird in die Arbeitskammer Lösemitteldampf eingeleitet, um auf den Teilen zu kondensieren und infolge des Vakuums in die Poren der Teile einzudringen. Anschließend wird in die Arbeitskammer flüssiges Reinigungsmittel eingeleitet. In dieser Stufe werden die Teile gespült und der ihnen anhaftende Schmutz entfernt. Das gesamte Reinigungsmittel wird dann in einen Speichertank zurückgeführt, von wo es zu einer Destillationseinrichtung gelangt. Dann wird der Arbeitskammer wieder Lösemitteldampf zugeführt, um auch den letzen Schmutz zu lösen. Danach wird im Inneren der Arbeitskammer durch die Vakuumpumpe wieder ein Vakuum erzeugt, um das Lösemittel vollständig zu verdampfen, das dann zu einem ersten Kondensator geleitet wird. Die durch die Vakuumpumpe abgesaugte Luft wird über einen zweiten kondensator zu einem Aktivkohlefilter geleitet, der Geruchsstoffe und Lösemittelspuren zurückhält.
  • Die DE 199 39 032 A1 betrifft ein Verfahren zum Reinigen von Metallteilen, bei dem zum Spülen der Teile mit Hochdruckdampf der in einem Verdampfer erzeugte Lösemitteldampf über einem Verdichter unter hohem Druck einer Arbeitskammer zugeführt wird. Beim anschließenden Vakuumtrocknen wird der Lösemitteldampf durch den Verdichter evakuiert. Erst nach Erreichen eines vorgegebenen Mindestdrucks wird ein Ventil geöffnet, so Außenluft bis zum Erreichen des Atmosphärendrucks in die Arbeitskammer strömen kann. Um bei diesem bekannten Verfahren eine gesetzlich vorgeschriebene Lösemittelkonzentration zu erreichen, muss hier die Arbeitskammer mit Umgebungsluft gespült und die beim Spülen vom Verdichter abgesaugte Luft unter hohem Druck in einen zusätzlichen Adsorptionsfilter geleitet werden.
  • Es besteht die Aufgabe, das Verfahren so auszubilden, daß die Reinigung auch ohne aufwändige Filter- und Rückgewinnungssysteme durchgeführt werden kann.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruches 1. Vorteilhafte Ausgestaltungen sind den Unteransprüchen entnehmbar.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß auf die relativ teuren und wartungsintensiven Kälteaggregate verzichtet werden kann. Zur Durchführung des Verfahrens sind weniger und einfacher aufgebaute Bauteile erforderlich, wodurch der Wartungsaufwand verringert und die Betriebskosten gesenkt werden können. Mit dem erfindungsgemäßen Verfahren ist es möglich, im niederen Temperaturbereich z.B. auch Kunststoffe zu reinigen, so daß die FCKW's ersetzt werden können. Aufgrund des geringen Lösemittelausstoßes kann das Verfahren auch ohne aufwendige Filter- und Rückgewinnungssysteme betrieben werden.
  • Ein Ausführungsbeispiel wird nachfolgend anhand der Zeichnung näher erläutert, die schematisch den Aufbau einer Reinigungsanlage wiedergibt.
  • Die schematisch dargestellte Reinigungsanlage enthält einen Dampferzeuger 1, in dem flüssiges Lösemittel zur Erzeugung eines gesättigten Lösemitteldampfs erhitzt wird. Von dem Dampferzeuger 1 führt eine erste Dampfleitung 2 mit einem darin angeordneten Absperrventil 3 zu einer druckdicht verschließbaren Arbeitskammer 4, in der die zu reinigenden Teile während des Reinigungsvorgangs untergebracht sind. An der Arbeitskammer 4 ist ein Belüftungsventil 5 angeordnet. Von dem Dampferzeuger 1 führt eine zweite Dampfleitung 6 mit einem Dampfdruckventil 7 zu einem ersten Teil 8a eines luft- oder wassergekühlten Kondensators 8. Die Arbeitskammer 4 ist über eine erste Absaugleitung 9 mit einer ersten Vakuumpumpe 10 verbunden. In dieser Leitung 9 ist ein Ventil 11 angeordnet. Die erste Vakuumpumpe 10 steht außerdem mit dem Kondensator 8 über eine zweite Absaugleitung 12 in Verbindung, in der ein weiteres Ventil 13 zwischengeschaltet ist. Von der Arbeitskammer 4 führt ferner eine erste Zweigleitung 14 mit einem Ventil 15 zu dem ersten Teil des Kondensators 8. An die Arbeitskammer 4 ist außerdem eine zweite Zweigleitung 16 angeschlossen, die über ein Ventil 17 zu einer zweiten Vakuumpumpe 18 führt. Der Ausgang der zweiten Vakuumpumpe 18 ist über ein weiteres Ventil 19 mit dem Eingang eines Kompressors 20 verbunden, dessen Ausgang mit einem zweiten Teil 8b des Kondensators 8 in Verbindung steht.
  • Das im Teil 8a des zweiteilig ausgeführten Kondensators 8 verflüssigte Lösemittel läuft über eine erste Ablaufleitung 21 in einen Wasserabscheider 22 ab. Das im Teil 8b des Kondensators 8 verflüssigte Lösemittel wird über einen Kondensatabscheider 39 in die zum Wasserabscheider 22 führende Ablaufleitung 21 eingeleitet. Von dem Wasserabscheider 22 führt eine Verbindungsleitung 23 mit einem Ventil 24 zu einer Pumpe 25, durch die das Lösemitteldestillat über eine durch ein weiteres Ventil 26 absperrbare Förderleitung 27 in einen Vorratsbehälter 28 gepumpt werden kann. Von dem Vorratsbehälter 28 führt eine mit einem weiteren Ventil 29 versehene Zufuhrleitung 30 für flüssiges Lösemittel zu der Arbeitskammer 4. Über diese Leitung 30 kann das im Vorratsbehälter erwärmte flüssige Lösemittel zur Durchführung einer Badreinigung in die Arbeitskammer 4 eingeleitet werden. Zur Abführung des flüssigen Lösemittels nach erfolgter Badreinigung geht von der Arbeitskammer 4 eine zweite Ablaufleitung 31 ab, welche in die zwischen dem Wasserabscheider 22 und der Pumpe 25 angeordnete Verbindungsleitung 23 stromaufwärts der Pumpe 25 mündet. In der zweiten Ablaufleitung 31 ist ein Filter 32 zur Ausfilterung von Reinigungsrückständen zwischengeschaltet. Stromaufwärts und stromabwärts des Filters 32 ist in der Ablaufleitung 31 jeweils ein Absperrventil 33 und 34 angeordnet. Auch an dem Dampferzeuger 1 ist eine mit einem Ablaufventil 35 versehene dritte Ablaufleitung 36 vorgesehen, die ebenfalls in die Leitung 23 mündet. Zwischen dem Vorratsbehälter 28 und dem Dampferzeuger 1 verläuft außerdem eine Überlaufleitung 37 mit einem Absperrventil 38.
  • Mit Hilfe des Dampfdruckventils 7 wird der Dampfdruck im Dampferzeuger 1 geregelt. Das Dampfdruckventil wird bei Überschreiten eines einstellbaren Dampfdruck-Grenzwertes geöffnet und bei Unterschreiten des gewünschten Dampfdrucks geschlossen. Wenn das Dampfdruckventil 7 geöffnet ist, stellt sich in dem System ein Druck ein, der dem Gleichgewicht zwischen Verdampfer und Kondensations-Temperatur entspricht. Bei Verwendung von Trichlorethylen als Lösemittel und luftleerem System beträgt dieser Druck ca. 150 mbar. Die Dampftemperatur von Trichlorethylen bei 150 mbar liegt jedoch bei nur ca. 40°C, was z.B. zum Entfernen von erst bei 55°C schmelzenden Polierpasten nicht ausreichend ist. Die Einstellung des Dampfdruckventils kann dann z.B. so gewählt werden, daß dieses erst bei 950 mbar öffnet, was einer Dampftemperatur von ca. 83°C entspricht. Über das Dampfdruckventil kann so die für das verwendetet Lösemittel und den jeweiligen Einsatzzweck optimale Dampftemperatur festgelegt werden.
  • Die Arbeitsweise der Reinigungsanlage ist wie folgt:
  • Vor dem eigentlichen Reinigungsbetrieb wird über die Vakuumpumpe 10 zunächst die im System befindliche Luft abgesaugt. Wenn das System luftleer ist, kann eine kontinuierliche Destillation erfolgen, ohne daß die Vakuumpumpe 10 weiterläuft. Dabei strömt der im Dampferzeuger 1 erzeugte Lösemitteldampf bei geschlossenem Ventil 3 über die Leitung 6 zu dem Teil 8a des Kondensators 8 und wird dort verflüssigt. Das aus dem Kondensator 8 austretende Kondensat gelangt in den Wasserabscheider 22. Das dort vom Wasser getrennte Destillat wird durch die Pumpe 25 über die Leitung 27 wieder in den Vorratsbehälter 28 eingeleitet. Überschüssiges Lösemittel kann über die Überlaufleitung 37 in den Dampfdruckbehälter 1 abgeleitet werden. Durch die kontinuierliche Destillation kann eine gleichbleibende Reinigungsqualität gewährleistet und eine Anreicherung des Lösemittels mit Ölen und Fetten verhindert werden.
  • Nachdem die Arbeitskammer 4 mit den zu reinigenden Teilen befüllt und verschlossen und von der Vakuumpumpe 10 über die Leitung 9 bis zu einem Druck unterhalb von 1 mbar evakuiert wurde, wird das Ventil 11 geschlossen und es kann die eigentliche Reinigung der Teile nach einem auswählbaren Reinigungsprogramm erfolgen.
  • Zum Waschen der Teile in einem Reinigungsbad wird das Ventil 29 geöffnet, wodurch die Arbeitskammer 4 mit dem im Vorratsbehälter 28 erwärmten Lösemittel geflutet werden kann. Nach Beendigung der Badreinigung wird das Lösemittel über die dann geöffneten Ventile 33 und 34 sowie den Filter 32 abgelassen und kann über die Pumpe 25 wieder in den Vorratsbehälter 28 zurückgeführt werden.
  • Zur Durchführung einer Dampfentfettung wird das Ventil 3 geöffnet, wodurch der im Dampferzeuger 1 befindliche Lösemittel-Sattdampf über die Leitung 2 in die Arbeitskammer 4 strömt. In der Arbeitskammer 4 wird das zu reinigende Gut durch den Lösemitteldampf von anhaftendem Fett oder Öl befreit.
  • Am Ende dieses Reinigungsschrittes wird das Ventil 15 geöffnet, wodurch Sattdampf aus der Arbeitskammer 4 zum Teil 8a des luft- oder wassergekühlten Kondensators 8 bis annähernd zum Kondensationsdruck des Kondensators strömt und dort verflüssigt wird. Das aus dem Kondensator 8 austretende Kondensat wird über den Wasserabscheider 22 und die Pumpe 25 wieder dem Vorratsbehälter 28 zugeführt.
  • Stellt sich ein Druckausgleich zwischen der Arbeitskammer 4 und dem Teil 8a des Kondensators 8 ein, wird das Ventil 15 geschlossen und das Ventil 17 geöffnet. Über die zweite Vakuumpumpe 18 wird der noch in der Arbeitskammer 4 befindliche restliche Lösemitteldampf abgesaugt und durch den Kompressor 20 verdichtet. Über den Kompressor 20 wird der Druck so erhöht, daß der restliche Lösemitteldampf durch eine Luft- oder Wasserkühlung auskondensiert werden kann. Die Druckerhöhung hängt vom verwendeten Lösemittel ab. Bei Verwendung von z.B. Trichlorethylen oder Perchlorethylen als Lösemittel wird der Druck auf über 1 bar erhöht. Bei Verwendung von Methylchlorid wird der Druck auf mehr als 2 bar erhöht. Dadurch wird der Lösemitteldampf derart warm, daß er mit einer Luft- oder Wasserkühlung leicht kondensierbar ist. Der über den Kompressor 20 verdichtete Dampf wird so im Teil 8b des Kondensators 8 verflüssigt und das Kondensat kann über den Kondensatabscheider 39 und den Wasserabscheider 22 wieder dem Vorratsbehälter 28 zugeführt werden.
  • Anstelle des Kompressors 20 kann auch ein druckgesteuertes Absperrventil bzw. Überströmventil vorgesehen werden, das erst öffnet, wenn der durch die Vakuumpumpe 18 druckseitig mögliche Druck erreicht wird. Auch dadurch kann der dem Kondensator zugeführte Restdampf auf einen Druck gebracht werden, der eine Kondensation mit einer Luft- oder Wasserkühlung ermöglicht.
  • Sind die restlichen Lösemitteldämpfe aus der Arbeitskammer 4 abgesaugt, dann wird das Ventil 17 geschlossen. Das Belüftungsventil 5 kann nunmehr geöffnet werden, wodurch Frischluft in die Arbeitskammer 4 strömt. Herrscht ein Druckausgleich zwischen der Umgebung und der Arbeitskammer 4, kann diese geöffnet und die gereinigten Werkstücke können entnommen werden.
  • Bei dem vorstehend beschriebenen Ausführungsbeispiel ist der Kondensator 8 zweigeteilt. Der Kondensator kann aber auch einteilig ausgeführt sein, wenn entsprechende Maßnahmen zur Gewährleitung der unterschiedlichen Druckverhältnisse während der unterschiedlichen Kondensationsphasen getroffen werden.

Claims (3)

  1. Verfahren zur Behandlung eines zu reinigenden Guts in einer Reinigungsanlage, die eine verschließbare Arbeitskammer (4) zur Behandlung des zu reinigenden Guts mit einem Lösemittel, einen Dampferzeuger (1) zur Erzeugung eines Lösemittel-Sattdampfs, eine Vakuumpumpe (18) zum Abpumpen des Lösemittel-Sattdampfs aus der Arbeitskammer (4) nach der Behandlung des zu reinigenden Guts mit dem Lösemittel-Sattdampf, einen Kondensator (8) zur Kondensation des Lösemitteldampfs und eine Pumpe (25) zur Rückführung des Lösemittelkondensats in einen Vorratsbehälter (28) enthält, mit folgenden Verfahrensschritten:
    a) Einbringen des Guts in die Arbeitskammer (4),
    b) Entfernen der Luft aus der Arbeitskammer (4), dem Kondensator (8) und aus einem Leitungssystem (9, 12), das Arbeitskammer (4) und Kondensator (8) miteinander verbindet, durch Anlegen eines hohen Unterdrucks nach dem Verschließen der Arbeitskammer (4),
    c) Einleiten von Lösemittels in die Arbeitskammer (4) zur Reinigung des Guts durch das Lösemittel, wobei zuletzt Lösemittel-Sattdampf vom Dampferzeuger (1) der Arbeitskammer (4) zugeführt wird,
    d) Herstellen einer ersten Verbindung (14) zwischen der Arbeitskammer (4) und dem Kondensator (8), bei dem es sich um einen luft- oder wassergekühlten Kondensator handelt, bis ein Druckausgleich zwischen der Arbeitskammer (4) und dem Kondensator (8) vorhanden ist,
    e) Unterbrechen der ersten Verbindung (14) und Herstellen einer zweiten Verbindung (16) zwischen der Arbeitskammer (4) und dem Kondensator (8) wonach mit der Vakuumpumpe (18) Dampf von der Arbeitskammer (4) abgesaugt wird, auf einen Druck verdichtet wird, der über dem atmosphärischen Druck liegt, so dass die Kondensationstemperatur des Lösemitteldampfs bei dem herrschenden Druck über der Kondensatortemperatur liegt, und dem Kondensator (8) zugeführt wird
    f) Zuführen des im Kondensator (8) erzeugten Lösemittelkondensats zum Vorratsbehälter (28) während der Schritte d) und e) und
    g) Belüften der Arbeitskammer (4) nach Erreichen eines vorgegebenen Unterdrucks in der Arbeitskammer (4) und Öffnen der Arbeitskammer (4).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach dem Entfernen der Luft die erste und die zweite Verbindung verschlossen und während des Reinigens des Reinigungsguts verschlossen gehalten werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zu entfernende Luft abgekühlt wird.
EP02007976A 2001-04-12 2002-04-10 Verfahren zum Betrieb einer Reinigungsanlage Expired - Lifetime EP1249263B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118601A DE10118601C1 (de) 2001-04-12 2001-04-12 Verfahren zum Betrieb einer Reinigungsanlage
DE10118601 2001-04-12

Publications (3)

Publication Number Publication Date
EP1249263A2 EP1249263A2 (de) 2002-10-16
EP1249263A3 EP1249263A3 (de) 2003-01-22
EP1249263B1 true EP1249263B1 (de) 2007-01-24

Family

ID=7681587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02007976A Expired - Lifetime EP1249263B1 (de) 2001-04-12 2002-04-10 Verfahren zum Betrieb einer Reinigungsanlage

Country Status (2)

Country Link
EP (1) EP1249263B1 (de)
DE (2) DE10118601C1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042694A1 (de) 2004-12-30 2006-07-20 Volkswagen Ag Navigationssystem für ein Kraftfahrzeug
CN103128074B (zh) 2011-11-25 2016-06-22 株式会社Ihi 真空清洗装置以及真空清洗方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304253A (en) * 1990-09-12 1994-04-19 Baxter International Inc. Method for cleaning with a volatile solvent
US5538025A (en) * 1991-11-05 1996-07-23 Serec Partners Solvent cleaning system
IT1260831B (it) * 1992-07-17 1996-04-22 Procedimento di sgrassatura di pezzi meccanici ed impianto per effettuare il procedimento
DE19939032A1 (de) * 1999-03-24 2000-10-05 Wolf Gmbh Verfahren und Anlage zur Oberflächenbehandlung von Teilen mit einem Lösungsmittel

Also Published As

Publication number Publication date
DE10118601C1 (de) 2002-08-14
DE50209322D1 (de) 2007-03-15
EP1249263A2 (de) 2002-10-16
EP1249263A3 (de) 2003-01-22

Similar Documents

Publication Publication Date Title
DE60010460T2 (de) Textilreinigungsgerät mit behandlungsgas in verdichtetem flüssigen zustand
DE19527317A1 (de) Verbessertes Lösungsmittel-Reinigungssystem
EP0639658B1 (de) Verfahren zur schonenden Entfettung und Reinigung von mit fett- und/oder Ölhaltigen Stoffen behaftetem Gut
EP1249263B1 (de) Verfahren zum Betrieb einer Reinigungsanlage
EP0630992B1 (de) Verfahren zum Reinigen von metallischen Werkstücken
DE102008031834B4 (de) Vorrichtung zum Abscheiden von Partikeln in einem Kühlkreislauf bei der Profilextrusion
DE4430839C2 (de) Anlage zur Reinigung von Werkstücken mittels einer organischen Reinigungsflüssigkeit
DE3933111A1 (de) Verfahren und vorrichtung zum auffangen und rueckgewinnen von loesungsmitteln aus loesungsmittelhaltiger abluft
EP0087055B1 (de) Verfahren für die Lösungsmittelbehandlung von insbesondere metallischem Behandlungsgut
DE2719599B1 (de) Fahrzeug zum Kanalreinigen und zum Schlammtransport
DE4402499C1 (de) Verfahren und Vorrichtung zum Destillieren einer verschmutzten Kohlenwasserstoff-Lösemittelflotte
DE19515566A1 (de) Reinigungsgerät
DE2313484A1 (de) Verfahren zur sterilisation, insbesondere von chirurgischen instrumenten, sowie vorrichtung hierzu
DE2034372A1 (de) Anlage und Verfahren zum Behandeln von Abscheidungsdampf fur die Tallöl Fraktionie rung
EP1038992B1 (de) Verfahren und Anlage zur Oberflächenbehandlung von Teilen mit einem Lösungsmittel
DE4200670A1 (de) Verfahren und anlage zur entsorgung von bei der mechanischen walzoelfiltration anfallendem oelhaltigem filterkuchen
DE19939032A1 (de) Verfahren und Anlage zur Oberflächenbehandlung von Teilen mit einem Lösungsmittel
EP0356638B1 (de) Lösungsmittelaufbereitungsanlage
DE4128699A1 (de) Verfahren und vorrichtung zum entfetten und reinigen von behandlungsgut mit hilfe von loesungsmitteln
DE3715235A1 (de) Verfahren und vorrichtung zum extrahieren von oel oder polychloriertem biphenyl aus impraegnierten elektrischen teilen mittels eines loesungsmittels sowie zur destillation des loesungsmittels
DE4335231C2 (de) Verfahren und Anlage zum chargenweisen Reinigen und/oder Trocknen von Werkstücken
DE496434C (de) Verfahren zum Entfernen von Geruchstoffen und anderen mit Wasserdampf o. dgl. fluechtigen Verunreinigungen aus OElen und Fetten
DE19522066C1 (de) Verfahren zum Reinigen von ölbenetzten Bauteilen
DE102009049823A1 (de) Verfahren und Vorrichtung zur Aufbereitung von Prozesswasser
DE19729258C2 (de) Verfahren und Anlage zum Reinigen von Lösemittel (Perchlorethylen)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 23G 5/02 A, 7D 06F 43/08 B, 7F 26B 25/00 B, 7F 26B 21/08 B, 7B 01D 5/00 B, 7B 01D 53/00 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030530

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20031230

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50209322

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070307

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180327

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180329

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180326

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200605

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209322

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103