EP1239543B1 - Flat antenna for the mobil satellite communication - Google Patents
Flat antenna for the mobil satellite communication Download PDFInfo
- Publication number
- EP1239543B1 EP1239543B1 EP02002836A EP02002836A EP1239543B1 EP 1239543 B1 EP1239543 B1 EP 1239543B1 EP 02002836 A EP02002836 A EP 02002836A EP 02002836 A EP02002836 A EP 02002836A EP 1239543 B1 EP1239543 B1 EP 1239543B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- conductor
- impedance
- antenna according
- connection point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 title claims abstract description 18
- 239000004020 conductor Substances 0.000 claims abstract description 76
- 238000010586 diagram Methods 0.000 claims description 31
- 230000008878 coupling Effects 0.000 claims description 24
- 238000010168 coupling process Methods 0.000 claims description 24
- 238000005859 coupling reaction Methods 0.000 claims description 24
- 230000010287 polarization Effects 0.000 claims description 20
- 239000003990 capacitor Substances 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 230000002457 bidirectional effect Effects 0.000 claims description 7
- 230000002349 favourable effect Effects 0.000 claims description 3
- 238000004904 shortening Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000003116 impacting effect Effects 0.000 claims 1
- 230000005404 monopole Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 230000005684 electric field Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 208000004350 Strabismus Diseases 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/44—Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/32—Vertical arrangement of element
- H01Q9/36—Vertical arrangement of element with top loading
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Definitions
- the invention relates to an antenna for the mobile satellite communication on a substantially horizontally oriented conductive base consisting of substantially linear conductor parts and an antenna connection point.
- Antennas of this type are known from DE 40 08 505.8.
- This antenna consists of crossed horizontal dipoles with V-shaped downwardly inclined dipole halves made of linear ladder sections mechanically fixed at 90 degrees to each other and attached to the upper end of a linear vertical conductor mounted on a horizontally oriented conductive base.
- the horizontal dipoles which are inclined downwards in both V-shaped directions, are interconnected electrically via a 90-degree phase network.
- an antenna gain of constant 3dBi for circular polarization is strictly required in the elevation angle range between 25 and 30 degrees and 90 degrees. With antennas of this design, the antenna gain required in the area of the zenith angle can generally be realized problem-free.
- the required antenna gain in the range of low elevation angle of 20 to 30 degrees is difficult and due to the V-shaped downwardly inclined horizontal dipoles, which naturally require a sufficiently large distance from the conductive base for their function, not - as for the mobile Use required - can be realized with very small height of the antennas.
- the invention is therefore based on the object first of all to specify an antenna which allows the ratio of antenna gain in the low elevation range to the antenna gain in the zenith angle range in an azimuthal main plane according to requirements set and which makes it possible by combining a plurality of such antennas a directional diagram according to the profit requirements for To realize the satellite communication with circularly polarized waves at an electrically small height of the antenna.
- Antennas according to the invention can be produced in a particularly simple and thus cost-effective manner, in particular in their form of training for satellite communications. Furthermore, they are particularly suitable for use on vehicles due to their structure over a conductive base and their small design height. Another advantage is that it can be extended to the combination antenna for terrestrial communication, which goes hand in hand with the saving of installation space in motor vehicles. A further advantage is that measures can be taken to ensure that in the presence of discontinuities in the conductive base or in their imbalance, such. Roof slope or roof edge, relative to the horizontal, the resulting disturbance of the directional diagram can be largely compensated.
- Fig. 1 shows the basic shape of an antenna according to the invention consisting of a formed together with the conductive base 1 high frequency conductive ring structure 2 with ladder parts with essential horizontal extension 4b and ladder parts with significant vertical extent 4a within a plane 0, which on the conductive base is vertical.
- An essential function according to the present invention takes in this case the impedance 7, which is introduced in an interruption point of the high-frequency conducting ring structure 2 into the impedance connection point 6 with the first impedance connection point 6a and the second impedance connection point 6b.
- the horizontal electrical field components are mainly taken up by the conductor parts with substantial horizontal expansion 4b and - correspondingly - the vertical electric field components mainly by the conductor parts with substantially vertical Extension 4a.
- FIG. 2 From US Pat. No. 3,427,624, there in FIG. 2, an antenna with a ring structure is known in which, with the aid of tunable capacitors, which are connected in the longitudinal train of the ring structure, a resonance-like impedance matching can be tuned in a wide frequency range. An influence of the directional diagram with the help of these capacitors is not provided.
- the ring structure of the antenna in Fig. 2 is not broken in the document D1 to provide an antenna connection point.
- the creation of the Antennenanschlnssticians happens there at the end of an additional antenna part in the form of a "feed wire 5", which is coupled in parallel to the ring structure.
- the design of the predetermined ratio of the antenna gain in the zenith angle range to the antenna gain in the range of low elevation angles is the basic requirement
- two identical impedances 7, which are also positioned symmetrically to the vertical line of symmetry 8, and a mirrored to the first antenna connection point 5 introduced antenna connection point 5 'at the conductive base 1 has.
- the coupling of the ring structure 2 to the conductive base 1 allows, as shown in Fig. 3b, the advantageous embodiment of a Umsymmetriernetzwerks 9, which can be realized for example with the aid of a ⁇ / 2 detour line of the signals.
- the decoupling of the unbalanced receiving voltages Uu which form symmetrically with respect to the conductive base area 1, whose direction is indicated by arrows in the figures, is effected by simple parallel connection of the unbalanced lines in FIG. 3b whose lengths differ by ⁇ / 2.
- the combined symmetrical receive voltage -Us is available at the collection point 11 in FIG. 3b.
- Such Umsymmetriernetzwerk 9 can be performed very advantageous and inexpensive in printed microstrip line technology.
- the vertical diagrams shown in FIG. 11 can be produced in the plane 0 if the design of the impedance 7 is different.
- the positioning of the impedance 7 within the ring structure 2 can be freely selected within wide limits, with a stretched conductor length for the section 16 of ⁇ / 4 marked in FIGS. 3a and 3b proving particularly favorable.
- the setting of the appropriate vertical diagram can be done within wide limits for different lengths of the section 16 by appropriate choice of the impedance 7.
- the directional diagrams shown in FIG. 11 can be achieved at a height 14 of less than a quarter wavelength.
- the impedance 7 is designed as a capacitance. This causes the increase in the radiation in the range of low elevation angle with increasing reactance, that is, decreasing capacitance value. This is indicated by diagrams D3, D2 and D1 in Fig. 11 for decreasing capacitance values.
- the impedance 7 is implemented as an inductance instead of a capacitance, then the elevation diagrams denoted by D4 and D5 result in Fig. 11. These have the property to hide an angular range at medium elevation largely.
- the inductance value of the directional diagram D5 is chosen larger than for the directional diagram D4.
- capacities are used as impedance 7. For combining several such antennas into a circularly polarized satellite communication antenna, this property of the antenna is essential.
- a further advantageous decoupling of the symmetrical voltage Us can, as in FIG. 4 a, take place at an antenna connection point 5 arranged in the vertical symmetry line 8.
- a two-wire line 24 is connected to the first antenna connection point 5a and the second antenna connection point 5b in FIG. 4b (detail from FIG. 4a) and guided in the vertical line of symmetry 8 to the conductive base 1, in the vicinity of which a line connection point 25 is designed.
- the voltage -Us proportional to the symmetrical receiving voltages Us and, between each end point of the two-wire line 24 and the conductive base 1, the voltage -Uu proportional to the asymmetrical receiving voltages Uu are formed.
- the two-wire line 24 can be replaced by a shielded two-wire line 23, the shield conductor is connected to the conductive base 1.
- the shielded two-wire line 23 can be carried out in a simple manner by means of two coaxial lines 22 guided in parallel, as in FIG. 4d, their screens are connected to the conductive base 1. With the aid of the power divider 21, the voltages -Us and -Uu, as described above, can be coupled out separately with the arrangements of FIGS. 4b, 4c and 4d.
- the ring structure 2 is configured substantially rectangular.
- Realized antenna shapes with a section 16 of about 1 ⁇ 4 ⁇ , a transverse dimension 15 of about 1/3 ⁇ and a height 14 of about 1/6 ⁇ have given sufficiently small losses for required directional diagrams.
- a realized antenna according to the invention for frequencies around 2.3 GHz has e.g. only a height 14 of 2cm with a transverse dimension 15 of 4.5 cm. With a smaller overall height, the demands on the directional diagram can be fulfilled when a corresponding capacitance value for the impedance 7 is selected, but increasing losses are to be expected. The losses occurring in the downstream matching network 17 thus increase with a smaller antenna height.
- An essential advantageous embodiment of the invention consists in the combination of several antennas according to Fig. 5 to a satellite communication antenna for circular polarization.
- a satellite communication antenna for circular polarization For this purpose, in a particularly advantageous embodiment, two antennas whose planes 0 are perpendicular to each other, combined, each antenna having a Umsymmetriernetztechnik 9 and a matching circuit 17 as in Fig. 6a and Fig. 6c.
- the voltage for circular polarization Uz with the aid of a phase shifter 18 and a summing circuit 19 is formed.
- the latter are realized in Fig. 6c by means of a parallel connection of lines whose length differs by ⁇ / 4.
- the matching circuit 17 can be advantageously realized by printed dummy elements as shown in Fig. 6b.
- the lines for balancing are designed as lines 10a, b, the network as adaptation as series or spur lines 17 and for interconnection and 90 degree phase rotation as a line 18 each printed.
- FIG. 11 a suitable elevational diagram of Fig. 11 is set by the character of the diagrams D2 and D3 for the single antenna of Fig. 5.
- FIG. 12b spatialal diagram
- the conductive base is skewed, e.g. In the case of a curved vehicle roof in the edge region of a window, the asymmetry of the conductive base area 1 and the inclination can be compensated for by different capacitance values in the individual antenna branches. This corresponds to a squint of the diagram.
- a squinting diagram adjustable with antennas according to the invention with a squint angle of approximately 15 degrees with respect to the zenith angle is shown by way of example in FIG. 13.
- N antennas can be arranged rotationally symmetrically at an angular distance of 360 / N degrees to a vertical symmetry line 8 as in FIG. 7. Accordingly, phase shifters 18 are provided with a respective phase rotation angle of 360 / N degrees, whose output signals are combined in the summation circuit 19 and are available at the collection point 11. With regard to the design of the impedance 7, the above rules apply.
- the circular healing of the azimuthal directional diagram can be further improved by choosing sufficiently large values of N.
- the rotational symmetry of such an arrangement allows the elimination of the vertical conductor 4a ', as in Fig. 8 to.
- the satellite communication antenna is extended to a combination antenna for which the additional terrestrial communication with vertical polarization at a frequency deviating from the satellite radio frequency.
- a connection port Tu is formed to form an unbalanced voltage Uu.
- the conductor parts with a horizontal extent 4b act as a roofing capacitance for the vertical antenna conductor 20.
- the symmetrical voltages are tapped from the ring structure 2 at the corresponding gates T1a and T1b.
- the matching network 29 in FIG. 9b is used for the frequency-selective adaptation of the connection gate Tu for the frequency of the terrestrial radio service present impedance to the characteristic impedance of conventional coaxial cables.
- At the output of this matching network 29 is the voltage Uu proportional to Uu.
- the matching network 29 is advantageously designed so that the port gate Tu is loaded at the satellite radio frequency with a reactance or particularly advantageous with a short circuit or no load.
- the symmetry of the arrangement can advantageously be used for decoupling the connection doors Tu from the connection gates T1a, T1b when they are connected to the balancing network 9. This is particularly important for the protection of the satellite service if the terrestrial communication is bidirectional. With remaining residual unbalance, it is advantageous to improve the decoupling of the satellite service to make the Umsymmetriernetzwerk 9 such that the ports T1a and T1b are loaded at the frequency of the terrestrial radio service with a short circuit.
- Fig. 10a the complete satellite communication antenna for circular polarization with the vertical antenna conductor 20 is shown.
- connection ports T2a and T2b of the antenna rotated by 90 degrees with respect to the antenna with the ports T1a, T1b, a balancing network 9 with subsequent adaptation circuit 17 as shown in FIG.
- the above statements apply.
- the conductor parts are designed with a substantial horizontal extension 4b to form a roofing capacity 31 with a curved surface in the form of a semi-ellipsoid and the boundary is guided in a surface 30, which in one of its dimensions substantially perpendicular to the plane 0 and thus oriented substantially parallel to the plane 1.
- a surface 30 which in one of its dimensions substantially perpendicular to the plane 0 and thus oriented substantially parallel to the plane 1.
- FIGS. 14a and 14b By suitable choice of size and shape of the effective as a roof capacitance 31 curved surface in conjunction with the appropriate dimensioning of the impedances 7, both the vertical diagram and the present at the base of the ladder parts with essential vertical extension 4a footpoint impedances can be set as desired.
- the conductor parts with a substantial horizontal extent 4b for the formation of the roof capacity 31 of wire or strip-shaped conductors 32 may be formed, as indicated in Fig.14b and be designed as a grid structures.
- a roofing capacitor 31 it is completely disposed in the surface 30 as a plane parallel to the conductive base 1 ( Figure 15a) and preferably formed in printed wire technology, as shown in Figures 15a and 15b.
- the conductor parts with essential horizontal extension 4b and a plurality of impedances 7,7 ' are formed such that with respect to the level 0, in which the conductor parts are guided with a significant vertical extent 4a also with respect to Impedance values of the impedances 7,7 'symmetrical arrangement is given.
- the symmetry of the arrangement should also be given with respect to a symmetry plane 33 oriented perpendicular to both the base surface 0 and the base plane 1.
- Such arrangements are shown in Figures 17a, 17b and 17c.
- the ring structure 2 in Fig. 17a should first be considered.
- Such a ring structure contains the capacitances 7, 7 ', whereby, given equality of the capacitances lying symmetrically to the vertical symmetry line, the frame formed thereby is also electrically symmetrical. Also, capacitances between ladder sections of substantial horizontal extent 4b and the surrounding space do not disturb this symmetry.
- the arrangement in Fig. 17a represents an antenna designed according to the main claim of the invention and additionally having the property of symmetry. To better identify the operation of this arrangement, the level 0, in which ladder parts are introduced with significant vertical extent 4a and the plane of symmetry 33 shaded located.
- FIG. 17a are additionally indicated at 1 with respect to the gates labeled T1a and T1b with corresponding indexes 7,7 'for placement with respect to the plane of symmetry 33 and common action on the gates T1a and T1b.
- Fig. 17b the ladder parts having a substantial vertical extent 4a with respect to the goals T1a, T1b are omitted for the sake of understanding.
- a ring structure 2 with the associated gates T2a and T2b is formed in the plane of symmetry 33.
- the designations for the dummy elements 7 are accordingly related to these two gates in accordance with the nomenclature introduced in FIG. 17a.
- two ring structures 2 in FIGS. 17a and 17b are combined to form the complete arrangement shown in FIG. 17c, two ring structures 2 which are completely symmetrical with respect to the vertical symmetry line 8 are obtained according to the invention.
- FIG. 18a is, with a suitable choice of the dimensions of the roof capacitors 31 shown there, which form coupling capacitances, as shown in Fig. 17c, is also designed according to the invention, if the coupling capacitances by suitable design of the roof capacitances according to the invention effective impedances 7 with the required size form.
- the current arrows for the currents I1 and I2 indicated in FIG. 18a indicate the principal current flow of the two frames 2.
- the current arrows show the way in which the impedance network consisting of impedances 7 works together for both frame parts and in which of the impedances 7 the currents I1 and I2 are uniform and in which they are superimposed in opposite directions.
- Fig. 18a an example of a wiring of the four gates T1a, T1b, T2a, T2b is given, which allows to make in the described manner an antenna according to the invention for the circularly polarized radiation.
- exemplary embodiments for an antenna of this type are listed in FIGS. 18b, 19 and 20.
- the two frames are in the vicinity of the vertical Symmetry line 8 coupled via a conductive central structure 37 via preferably printed coupling capacitances.
- the correspondingly designed roof capacities 31 with their coupling capacitances 34 to one another and such capacitances to the ring-shaped central structure 37 make it possible to dimension the antenna with regard to a desired directional diagram.
- the annular central structure 37 of the antenna in FIG. 19 permits the introduction of a vertical antenna conductor 20, which is suitably coupled to the ring-shaped central structure 37 to form a desired impedance at the connection port Tu with a radiator coupling capacitance 38 which can be configured in a simple manner.
- a combination of roof capacitances 31 which are suitably formed on a dielectric body of the shape of a truncated pyramid is arranged in FIG. 20, so that the suitable directional diagram is established via the coupling and space capacities.
- the antenna is designed for the coordinated and simultaneous reception of circularly polarized satellite radio signals and of vertically polarized radio signals emitted by terrestrial radio stations in a frequency closely adjacent high-frequency band.
- a frequency-selective decoupling of the terrestrial radio service from the satellite service is not possible due to the small frequency spacing.
- the symmetrical embodiment of the antennas described above has complete decoupling between the vertical antenna conductor 20 and the output for receiving the circular polarization.
- the system does not rely on narrow band frequency selection between the two radio services, and the terrestrial broadcast signal and the satellite broadcast signal can be independently received. A mutual damping by the power extraction at the other gate is not given by.
- an antenna for the additionally combined bidirectional radio operation with vertically polarized terrestrial radio stations is shown in FIG.
- the vertical antenna conductor 20 is additionally used for at least one bidirectional radio operation with vertically polarized terrestrial radio stations.
- the radiator length 43 of the vertical antenna conductor 20 for the lowest frequency radio service is advantageously chosen to be sufficiently large.
- a required frequency selective shortening of the electrically effective radiator length 43 for higher radio channel frequencies as shown in Figures 21a and 21b, advantageously in the L Lucass convinced the vertical antenna conductor 20 interruption points with suitable dummy elements 41 for designing the vertical diagram and the treating Vietnamesesimpedanz for this Frequency inserted.
- Fig. 21a the block diagram of such a combination antenna is shown.
- corresponding matching networks 29a, 29b, 29c with outputs 40a, 40b, 40c are advantageously used to connect the corresponding radios.
- the inputs of the matching networks 29a, 29b, 29c are respectively connected to the common connection port Tu via a frequency-selective separation circuit 39a, 39b, 39c, respectively; the matching conditions at the port gate Tu in the radio frequency channels of the various radio services are influenced as little as possible by each other.
- decoupling networks 42 are advantageously used in the vicinity of the foot points of the conductor parts with a substantial vertical extent 4a. These are designed so that they act for signals on the frequency of bidirectional radio operation with vertically polarized radio stations blocking, but are permeable to the frequency of the circularly polarized satellite radio signal. This causes in a beneficial manner that the impedances present at the gates T1a and T1b via the balancing network 9 do not cause any disturbing effect on their frequency of a bidirectional radio service via their active component or undesired reactances on such a frequency.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
Description
Die Erfindung betriftt eine Antenne für die mobile Satellitenkommunikation auf einer im wesentlichen horizontal orientierten leitenden Grundfläche bestehend aus im wesentlichen linearen Leiterteilen und einer Antennenanschlußstelle. Antennen dieser Art sind bekannt aus DE 40 08 505.8. Diese Antenne besteht aus gekreuzten Horizontaldipolen mit V-förmig nach unten geneigten, aus linearen Leiterteilen bestehenden Dipolhälften, die unter einem Winkel von 90 Grad zueinander mechanisch fixiert und am oberen Ende eines auf einer horizontal orientierten leitenden Grundfläche befestigten linearen vertikalen Leiters angebracht sind.The invention relates to an antenna for the mobile satellite communication on a substantially horizontally oriented conductive base consisting of substantially linear conductor parts and an antenna connection point. Antennas of this type are known from
Zur Erzeugung der bei der Satellitenkommunikation üblicherweise geforderten Zirkularpolarisation werden die unter beiden V-förmig nach unten geneigten Horizontaldipole elektrisch über ein 90 Grad Phasennetzwerk zusammengeschaltet. Für Satellitenantennen je nach Satellitenkommunikationssystem wird im Elevationswinkelbereich zwischen 25 bzw.30 Grad und 90 Grad ein Antennengewinn von konstant 3dBi für zirkulare Polarisation streng gefordert. Mit Antennen dieser Bauform läßt sich der im Bereich des Zenitwinkels geforderte Antennengewinn im allgemeinen problemfrei realisieren. Im Gegensatz hierzu wird der geforderte Antennengewinn im Bereich niedriger Elevationswinkel von 20 bis 30 Grad nur schwer und aufgrund der V-förmig nach unten geneigten Horizontaldipole, welche für ihre Funktion naturgemäß einen hinreichend großen Abstand von der leitenden Grundfläche fordern, keinesfalls - wie für den mobilen Einsatz gefordert - mit sehr kleiner Bauhöhe der Antennen realisiert werden können.In order to generate the circular polarization usually required in satellite communication, the horizontal dipoles, which are inclined downwards in both V-shaped directions, are interconnected electrically via a 90-degree phase network. For satellite antennas depending on the satellite communication system, an antenna gain of constant 3dBi for circular polarization is strictly required in the elevation angle range between 25 and 30 degrees and 90 degrees. With antennas of this design, the antenna gain required in the area of the zenith angle can generally be realized problem-free. In contrast, the required antenna gain in the range of low elevation angle of 20 to 30 degrees is difficult and due to the V-shaped downwardly inclined horizontal dipoles, which naturally require a sufficiently large distance from the conductive base for their function, not - as for the mobile Use required - can be realized with very small height of the antennas.
Es ist weiterhin bekannt, zur Erfüllung der Gewinnanforderungen sowohl im Winkelbereich niedriger Elevation als auch bei Steilstrahlung aus linearen Leitern gebogene Antennen zu verwenden. Die heute häufig verwendete Antennenform ist die Quadrifilar-Helix Antenne nach Kilgus (IEEE Transactions on Antennas and Propagation, 1976, S.238 - 241). Solche Antennen besitzen oft eine Länge von mehreren Wellenlängen und sind nicht als Flachantennen mit niedriger Bauhöhe bekannt. Auch mit einer in der EP 0 952 625 A2 angegebenen Antenne mit niedriger Bauhöhe lassen sich die oben genannten Gewinnwerte im Winkelbereich mit niedriger Elevation nicht erfüllen.It is also known to use curved antennas to meet the profit requirements both in the low-elevation angle range and in the case of steep-angle radiation from linear conductors. The most commonly used antenna form today is the Kilgus quadrifilar helix antenna (IEEE Transactions on Antennas and Propagation, 1976, p.238-241). Such antennas often have a length of several wavelengths and are not known as low-profile flat antennas. Even with a low-height antenna specified in
Der Erfindung liegt deshalb die Aufgabe zugrunde, zunächst eine Antenne anzugeben, die es gestattet, das Verhältnis von Antennengewinn im niedrigen Elevationsbereich zum Antennengewinn im Zenitwinkelbereich in einer azimutalen Hauptebene anforderungsgemäß einzustellen und die es ermöglicht, durch Kombination mehrerer solcher Antennen ein Richtdiagramm gemäß den Gewinnanforderungen für die Satellitenkommunikation mit zirkular polarisierten Wellen bei elektrisch kleiner Bauhöhe der Antenne zu realisieren.The invention is therefore based on the object first of all to specify an antenna which allows the ratio of antenna gain in the low elevation range to the antenna gain in the zenith angle range in an azimuthal main plane according to requirements set and which makes it possible by combining a plurality of such antennas a directional diagram according to the profit requirements for To realize the satellite communication with circularly polarized waves at an electrically small height of the antenna.
Diese Aufgabe wird bei einer Antenne nach dem Oberbegriff des Hauptanspruchs durch die kennzeichnenden Merkmale des Hauptanspruchs und die in den weiteren Ansprüchen vorgeschlagenen Maßnahmen gelöst.This object is achieved in an antenna according to the preamble of the main claim by the characterizing features of the main claim and the measures proposed in the other claims.
Antennen nach der Erfindung können insbesondere in ihrer Ausbildungsform für Satellitenkommunikation besonders einfach und damit kostengünstig hergestellt werden. Ferner eignen sie sich auf Grund ihres Aufbaus über einer leitenden Grundfläche und ihrer klein gestaltbaren Bauhöhe besonders für den Einsatz auf Fahrzeugen. Ein weiterer Vorteil besteht darin, dass sie zur Kombinationsantenne für die terrestrische Kommunikation erweitert werden kann, was mit der Einsparung von Bauräumen in Kraftfahrzeugen einher geht. Ein weiterer Vorteil besteht darin, dass Maßnahmen ergriffen werden können, damit bei Vorhandensein von Diskontinuitäten in der leitenden Grundfläche bzw. bei deren Schieflage, wie z.B. Dachneigung oder Dachrand, gegenüber der Horizontalen die davon herrührende Störung des Richtdiagramms weitgehend ausgeglichen werden kann.Antennas according to the invention can be produced in a particularly simple and thus cost-effective manner, in particular in their form of training for satellite communications. Furthermore, they are particularly suitable for use on vehicles due to their structure over a conductive base and their small design height. Another advantage is that it can be extended to the combination antenna for terrestrial communication, which goes hand in hand with the saving of installation space in motor vehicles. A further advantage is that measures can be taken to ensure that in the presence of discontinuities in the conductive base or in their imbalance, such. Roof slope or roof edge, relative to the horizontal, the resulting disturbance of the directional diagram can be largely compensated.
Die Erfindung wird im folgenden anhand der Figuren näher beschrieben. Es zeigen:
- Fig. 1: Prinzip einer Antenne nach der Erfindung mit einer hochfrequent
leitenden Ringstruktur 2, gebildet aus im wesentlichenvertikalen Leiterteilen 4a und im wesentlichenhorizontalen Leiterteilen 4b und derleitenden Grundebene 1. - Fig. 2: Prinzip einer Antenne nach der Erfindung mit einseitiger Auskopplung an der
Antennenanschlußstelle 5. - Fig. 3a: Symmetrische Antenne einer Antenne nach der Erfindung mit den
Antennenanschlußstellen 5 und 5' und einemUmsymmetriernetzwerk 9, gebildet ausunsymmetrischen Leitungen 10a und 10b. - Fig. 3b: Symmetrische Antenne nach der Erfindung mit einem
Umsymmetriernetzwerk 9, gebildet ausunsymmetrischen Leitungen 10a und 10b, deren Länge sich um ein ungeradzahliges Vielfaches der halben Betriebswellenlänge unterscheidet. - Fig. 3c: Symmetrische Antenne nach der Erfindung mit einem
Umsymmetriernetzwerk 9 nach dem transormatorischen Prinzip zur getrennten unsymmetrischen Auskopplung der symmetrischen und der unsymmetrischen Spannungen. - Fig. 4a: Symmetrische Antenne nach der Erfindung, bei der die
Antennenanschlußstelle 5 im Bereich derSymmetrieachse 8 der Antenne angeordnet ist und bei der die Signale mittels einer symmetrischen Zweidrahtleitung nach unten geführt sind. - Fig. 4b: Detail aus Fig. 4a.
- Fig. 4c: Detail aus Fig. 4a, aber mit einer geschirmten Zweidrahtleitung.
- Fig. 4d: Antenne nach der Erfindung ähnlich Fig. 4a, jedoch mit zwei Koaxialleitungen an Stelle der Zweidrahtleitung und mit einem
Umsymmetriernetzwerk 9 nach dem transformatorischen Prinzip zur getrennten unsymmetrischen Auskopplung der symmetrischen und der unsymmetrischen Spannungen. - Fig. 5: Antenne nach der Erfindung mit Bemassungsangaben und mit einem
Anpaßnetzwerk 17. - Fig. 6a: Antenne für Zirkularpolarisation, gebildet aus zwei Antennen nach der Erfindung in aufeinander senkrecht stehenden Ebenen, deren Ausgangssignale über ein 90-
Grad Phasendrehglied 18 in einerSummationsschaltung 19 zusammengefaßt sind. - Fig. 6b: Beispiel für ein Streifenleitungslayout für die Antenne nach Fig. 6a.
- Fig. 6c: Räumliche Darstellung der Antenne für Zirkularpolarisation.
- Fig. 7: Antenne für Zirkularpolarisation, gebildet aus drei Antennen nach der Erfindung in drei Ebenen, die azimutal in 120°-Winkeln angeordnet sind, deren Ausgangssignale über 120-
Grad Phasendrehglieder 18 in einerSummationsschaltung 19 zusammengefaßt sind. - Fig. 8: Antenne für Zirkularpolarisation nach Fig. 7, bei der der
vertikale Leiter 4a' im Symmetriepunkt der Anordnung entfällt. - Fig. 9a: Antenne nach der Erfindung mit einem weiteren Anschlußtor Tu zur Auskopplung einer unsymmetrischen Spannung.
- Fig. 9b: Prinzip der Signalauskopplung bei einer erfindungsgemäßen Antenne nach Fig. 9a.
- Fig. 10a: Antenne für Zirkularpolarisation, gebildet aus zwei Antennen nach der Erfindung in aufeinander senkrecht stehenden Ebenen, deren Ausgangssignale über ein 90-
Grad Phasendrehglied 18 in einerSummationsschaltung 19 zusammengefaßt sind mit einem weiteren Anschlußtor Tu zur Auskopplung einer unsymmetrischen Spannung. - Fig. 10b: Prinzip der Signalauskopplung bei einer erfindungsgemäßen Antenne nach Fig. 10a.
- Fig. 11: Variation der Richtdiagramme bei Änderung des Werts und des Charakters (induktiv oder kapazitiv) der
Impedanz 7 bei einem Beispiel einer erfindungsgemäßen Antennen. - Fig. 12a: Elevationsdiagramm eines Beispiels einer erfindungsgemäßen Antenne
- Fig. 12b: Dreidimensional dargestelltes Diagramm einer erfindungsgemäßen Antenne.
- Fig. 13: Elevationsdiagramm eines Beispiels einer schielenden erfindungsgemäßen Antenne.
- Fig. 14a: Ausbildung einer
flächenhaften Dachkapazität 31 in Form eines durch dieImpedanz 7 unterbrochenen Halbellipsoids parallel zurEbene 1 - Fig. 14b: Wie Fig. 14a, jedoch mit leiterförmiger Ausbildung des Halbellipsoids
- Fig. 15a: Draht- oder streifenförmige Leiterteile 32 mit wesentlicher horizontaler Ausdehnung 4b in
der Ebene 30parallel zur Ebene 1 - Fig. 15b: Wie Fig. 15a, jedoch mit flächenhaft gestalteten Leiterteilen 4b vorzugsweise in gedruckter Leitertechnik
- Fig. 16: Ähnliche Ausführungsform wie Fig. 15b, ebenfalls in gedruckter Leitertechnik
- Fig. 17a-c: Erklärung der prinzipiellen Wirkungsweise erfindungsgemäßer Antennen mit streng symmetrischem Aufbau im Hinblick auf die kapazitiven Koppeleffekte
- Fig. 18a: Erfindungsgemäße Antenne für Zirkularpolarisation und streng symmetrischem Aufbau mit dreiecksförmigen Dachkapazitäten 31 und zur Erläuterung der Strompfade
- Fig. 18b: Antenne
mit ringförmiger Zentralstruktur 37 und Koppelkapazitäten 34 - Fig. 19: Erfindungsgemäße Antenne ähnlich Fig. 18b, jedoch mit zusätzlichem vertikalen Antennenleiter 20 in der vertikalen Symmetrielinie 8
- Fig. 20:
Kombination aus Dachkapazitäten 31, welche auf einem dielektrischen Körper von der Form eines Pyramidenstumpfs geeignet ausgebildet sind. - Fig. 21a: Ähnlich Fig. 10b, jedoch mit weiteren
40c zur Auskopplung unsymmetrischer Spannungen für weitere FunkdiensteAnschlusstoren 40a bis - Fig. 21b: Wie Fig. 21a, jedoch mit frequenzselektiven Entkopplungsnetzwerken 42 in den Anschlusstoren T1a, T1b, T2a und T2b
- Fig. 22: Prinzipieller möglicher Aufbau einer erfindungsgemäßen Antenne für Satellitenfunk und mehrere terrestrische Funkdienste
- Fig. 1: Principle of an antenna according to the invention with a high-frequency
conductive ring structure 2, formed of substantiallyvertical conductor parts 4a and substantiallyhorizontal conductor parts 4b and the conductive ground plane. 1 - Fig. 2: Principle of an antenna according to the invention with unilateral decoupling at the antenna connection point. 5
- Fig. 3a: Symmetrical antenna of an antenna according to the invention with the
antenna terminals 5 and 5 'and aUmsymmetriernetzwerk 9, formed of 10a and 10b.unbalanced lines - Fig. 3b: Symmetrical antenna according to the invention with a
Umsymmetriernetzwerk 9, formed of 10a and 10b, whose length differs by an odd multiple of half the operating wavelength.unbalanced lines - Fig. 3c: Symmetrical antenna according to the invention with a
Umsymmetriernetzwerk 9 according to the transormatory principle for the separate unbalanced extraction of the balanced and the unbalanced voltages. - Fig. 4a: Symmetrical antenna according to the invention, in which the
antenna connection point 5 is arranged in the region of thesymmetry axis 8 of the antenna and in which the signals are guided by means of a symmetrical two-wire line down. - Fig. 4b: Detail of Fig. 4a.
- Fig. 4c: Detail of Fig. 4a, but with a shielded two-wire line.
- Fig. 4d: Antenna according to the invention similar to Fig. 4a, but with two coaxial lines instead of the two-wire line and with a
Umsymmetriernetzwerk 9 according to the transformer principle for the separate unbalanced extraction of the balanced and the unbalanced voltages. - Fig. 5: Antenna according to the invention with dimensions and with a matching network 17th
- Fig. 6a: Antenna for circular polarization, formed from two antennas according to the invention in mutually perpendicular planes whose output signals are combined via a 90-degree
phase shift member 18 in a summingcircuit 19. - Fig. 6b: Example of a stripline layout for the antenna of Fig. 6a.
- Fig. 6c: Spatial representation of the antenna for circular polarization.
- Fig. 7: Antenna for circular polarization formed by three antennas according to the invention in three planes, which are arranged azimuthally at 120 ° angles, whose output signals over 120-
degree phase shifters 18 are combined in asummation circuit 19. - FIG. 8: Antenna for circular polarization according to FIG. 7, in which the
vertical conductor 4a 'in the symmetry point of the arrangement is omitted. - Fig. 9a: antenna according to the invention with a further connection port Tu for coupling an unbalanced voltage.
- Fig. 9b: principle of the signal extraction in an antenna according to the invention of Fig. 9a.
- Fig. 10a: Antenna for circular polarization formed by two antennas according to the invention in mutually perpendicular planes whose output signals via a 90-
degree phase shifter 18 are combined in asummation circuit 19 with a further connection port Tu for coupling an unbalanced voltage. - 10b: Principle of signal extraction in an antenna according to the invention according to FIG. 10a.
- 11: Variation of the directional diagrams when the value and the character (inductive or capacitive) of the
impedance 7 change in an example of an antenna according to the invention. - Fig. 12a: elevation diagram of an example of an antenna according to the invention
- 12b shows a three-dimensional diagram of an antenna according to the invention.
- Fig. 13: elevation diagram of an example of a squinting antenna according to the invention.
- FIG. 14 a: Formation of a
planar roof capacitance 31 in the form of a semi-ellipsoid interrupted by theimpedance 7, parallel to theplane 1 - Fig. 14b: Like Fig. 14a, but with a ladder-shaped formation of the semi-ellipsoid
- FIG. 15 a: Wire or strip-shaped
conductor parts 32 with a substantialhorizontal extension 4 b in theplane 30 parallel to theplane 1 - Fig. 15b: As in Fig. 15a, but with areal shaped
ladder parts 4b preferably in printed wire technology - Fig. 16: Similar embodiment as Fig. 15b, also in printed circuit technology
- 17a-c: Explanation of the principle of operation of antennas according to the invention with a strictly symmetrical design with regard to the capacitive coupling effects
- 18a: Antenna according to the invention for circular polarization and strictly symmetrical construction with
triangular roof capacities 31 and for explaining the current paths - FIG. 18b: Antenna with annular
central structure 37 andcoupling capacitances 34 - FIG. 19: Antenna according to the invention, similar to FIG. 18b, but with additional
vertical antenna conductor 20 in thevertical symmetry line 8 - Fig. 20: Combination of
roof capacitances 31 which are suitably formed on a dielectric body of the shape of a truncated pyramid. - FIG. 21 a: Similar to FIG. 10 b, but with
further connection gates 40 a to 40 c for coupling unbalanced voltages for further radio services - Fig. 21b: As Fig. 21a, but with frequency-
selective decoupling networks 42 in the connection gates T1a, T1b, T2a and T2b - Fig. 22: Principal possible structure of an antenna according to the invention for satellite radio and several terrestrial radio services
Fig. 1 zeigt die Grundform einer Antenne nach der Erfindung bestehend aus einer zusammen mit der leitenden Grundfläche 1 gebildeten hochfrequent leitenden Ringstruktur 2 mit Leiterteilen mit wesentlicher horizontaler Ausdehnung 4b und Leiterteilen mit wesentlicher vertikaler Ausdehnung 4a innerhalb einer Ebene 0, welche auf der leitenden Grundfläche 1 senkrecht steht. Eine gemäß der vorliegenden Erfindung wesentliche Funktion nimmt hierbei die Impedanz 7 ein, welche in einer Unterbrechungsstelle der hochfrequent leitenden Ringstruktur 2 in die Impedanzanschlußstelle 6 mit dem ersten Impedanzanschlußpunkt 6a und dem zweiten Impedanzanschlußpunkt 6b eingebracht ist. Bei Einfall einer in der Ebene 0 polarisierten elektromagnetischen Welle unter einem bestimmten Elevationswinkel 81 erfolgt die Aufnahme horizontaler elektrischer Feldkomponenten in der Hauptsache durch die Leiterteile mit wesentlicher horizontaler Ausdehnung 4b und - entsprechend hierzu - die vertikalen elektrischen Feldkomponenten in der Hauptsache durch die Leiterteile mit wesentlicher vertikaler Ausdehnung 4a. Bei geeigneter Position der Antennenanschlußstelle 5 in einer Unterbrechungsstelle der Ringstruktur 2 und bei geeigneter Positionierung der Impedanz 7 innerhalb der Ringstruktur 2 läßt sich ein Vertikaldiagramm mit einer gewünschten Überlagerung der Aufnahme von vertikalen und horizontalen elektrischen Feldkomponenten einstellen.Fig. 1 shows the basic shape of an antenna according to the invention consisting of a formed together with the
Aus der US 3 427 624 , dort in Figur 2, ist eine Antenne mit Ringstruktur bekannt, bei welcher mit Hilfe abstimmbarer Kondensatoren, die in den Längszug der Ringstruktur geschaltet sind, in einem weiten Frequenzbereich abstimmbar eine resonanzartige Impedanzanpassung realisiert ist. Eine Beeinflussung des Richtdiagramms mit Hilfe dieser Kondensatoren ist nicht vorgesehen. Im Gegensatz zur vorliegenden Erfindung ist die Ringstruktur der Antenne in Fig. 2 in dem Dokument D1 nicht unterbrochen, um einen Antennenanschlusspunkt zu schaffen. Die Schaffung des Antennenanschlnsspunkts geschieht dort am Ende eines zusätzlichen Antennenteils in Form eines "feed wire 5", welcher parallel an die Ringstruktur angekoppelt ist.From US Pat. No. 3,427,624, there in FIG. 2, an antenna with a ring structure is known in which, with the aid of tunable capacitors, which are connected in the longitudinal train of the ring structure, a resonance-like impedance matching can be tuned in a wide frequency range. An influence of the directional diagram with the help of these capacitors is not provided. In contrast to the present invention, the ring structure of the antenna in Fig. 2 is not broken in the document D1 to provide an antenna connection point. The creation of the Antennenanschlnsspunkts happens there at the end of an additional antenna part in the form of a "
Die Gestaltung des vorgegebenen Verhältnisses des Antennengewinns im Zenitwinkelbereich zum Antennengewinn im Bereich niedriger Elevationswinkel ist die Grundforderung an somit zwei gleiche Impedanzen 7, welche ebenfalls symmetrisch zur vertikalen Symmetrielinie 8 positioniert sind, und eine zur ersten Antennenanschlußstelle 5 gespiegelt eingebrachte Antennenanschlußstelle 5' an der leitenden Grundfläche 1 aufweist. Die Ankopplung der Ringstruktur 2 an die leitende Grundfläche 1 ermöglicht, wie in Fig. 3b dargestellt, die vorteilhafte Ausgestaltung eines Umsymmetriernetzwerks 9, welches z.B. mit Hilfe einer λ/2-Umwegleitung der Signale realisiert werden kann. Die Auskopplung der sich symmetrisch zur leitenden Grundfläche 1 ausbildenden unsymmetrischen Empfangsspannungen Uu, deren Richtung durch Pfeile in den Figuren kenntlich gemacht ist, erfolgt durch einfache Parallelschaltung der unsymmetrisch ausgeführten Leitungen in Fig. 3b, deren Längen sich um λ/2 unterscheiden. Die zusammengefaßte symmetrische Empfangsspannung -Us steht am Sammelpunkt 11 in Fig. 3b zur Verfügung.The design of the predetermined ratio of the antenna gain in the zenith angle range to the antenna gain in the range of low elevation angles is the basic requirement Thus, two
Ein solches Umsymmetriernetzwerk 9 kann sehr vorteilhaft und kostengünstig in gedruckter Mikrostreifenleitungstechnik ausgeführt werden. Mit dieser Anordnung lassen sich bei unterschiedlicher Gestaltung der Impedanz 7 die in Fig. 11 dargestellten Vertikaldiagramme in der Ebene 0 herstellen. Die Positionierung der Impedanz 7 innerhalb der Ringstruktur 2 kann in weiten Grenzen frei gewählt werden, wobei sich eine gestreckte Leiterlänge für den in den Figuren 3a und 3b gekennzeichneten Abschnitt 16 von λ/4 als besonders günstig erweist. Dies gilt insbesondere im Hinblick auf die an den Antennenanschlußstellen 5 wirksamen Antennenimpedanzen, welche sich insbesondere im Hinblick auf ein leicht realisierbares Umsymmetriernetzwerk 9 durch Leitungsschaltungen eignen sollten. Die Einstellung des passenden Vertikaldiagramms kann dagegen in weiten Grenzen für verschiedene Längen des Abschnitt 16 durch entsprechende Wahl der Impedanz 7 erfolgen. Bei einer bevorzugten Querabmessung 15 von etwas weniger als einer halben Wellenlänge lassen sich die in Fig. 11 dargestellten Richtdiagramme bei einer Bauhöhe 14 von weniger als einer Viertelwellenlänge erreichen. Um den Nachteil von Satellitenkommunikationsantennen nach dem Stande der Technik zu überwinden, ist es notwendig, die Strahlung im Bereich niedriger Elevationswinkel im Vergleich zur Strahlung im Zenitwinkelbereich anzuheben. Dies erfolgt erfindungsgemäß durch Gestaltung der Impedanz 7 als eine Kapazität. Diese bewirkt, daß die Anhebung der Strahlung im Bereich niedriger Elevationswinkel mit steigendem Blindwiderstand, das heißt, sinkendem Kapazitätswert erfolgt. Dies drücken die Diagramme D3, D2 und D1 in Fig. 11 für kleiner werdende Kapazitätswerte aus. Wird die Impedanz 7 anstelle einer Kapazität als eine Induktivität ausgeführt, dann ergeben sich die mit D4 und D5 bezeichneten Elevationsdiagramme in Fig. 11. Diese haben die Eigenschaft, einen Winkelbereich bei mittlerer Elevation weitgehend auszublenden. Der Induktivitätswert des Richtdiagramms D5 ist dabei größer gewählt als für das Richtdiagramm D4. Für die Satellitenkommunikation kommen deshalb, von Sonderfällen für Spezialanwendungen abgesehen, aufgrund der oben geschilderten Forderung bei einer Antenne nach der Erfindung Kapazitäten als Impedanz 7 zur Anwendung. Für die Kombination mehrerer solcher Antennen zu einer zirkular polarisierten Satellitenkommunikationsantenne ist diese Eigenschaft der Antenne essentiell.
Als vorteilhaft zeigt sich die zusätzliche Verfügbarkeit der unsymmetrischen Spannungen Uu an den Antennenanschlußstellen 5, welche in Fig. 3c dadurch genutzt wird, daß in einer Summationsschaltung 19 neben einem Umsymmetriernetzwerk 9 zur Auskopplung der unsymmetrischen Empfangsspannungen Uu ein Leistungsteiler 21 zur Auskopplung der symmetrischen Empfangsspannungen Us vorhanden ist. Am Sammelpunkt für symmetrische Spannungen 11a und am Sammelpunkt für unsymmetrische Spannungen 11b in Fig. 3c können somit sowohl unsymmetrische Empfangsspannungen Uu als auch symmetrische Empfangsspannungen Us getrennt voneinander ausgekoppelt werden.Advantageous is the additional availability of the unbalanced voltages Uu at the antenna connection points 5, which is used in Fig. 3c, that in a
Eine weitere vorteilhafte Auskopplung der symmetrischen Spannung Us kann, wie in Fig. 4a, an einer, in der vertikalen Symmetrielinie 8 angeordneten Antennenanschlußstelle 5 erfolgen. Hierzu ist in Fig. 4b (Detail aus Fig. 4a) eine Zweidrahtleitung 24 an den ersten Antennenanschlußpunkt 5a und den zweiten Antennenanschlußpunkt 5b angeschlossen und in der vertikalen Symmetrielinie 8 zur leitenden Grundfläche 1 geführt, in deren Nähe eine Leitungsanschlußstelle 25 gestaltet ist. Dort bilden sich zwischen den Endpunkten der Zweidrahtleitung 24 die zu den symmetrischen Empfangsspannungen Us proportionale Spannung -Us und jeweils zwischen einem Endpunkt der Zweidrahtleitung 24 und der leitenden Grundfläche 1 die zu den unsymmetrischen Empfangsspannungen Uu proportionale Spannung -Uu aus.A further advantageous decoupling of the symmetrical voltage Us can, as in FIG. 4 a, take place at an
In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann, wie in Fig. 4c, die Zweidrahtleitung 24 durch eine geschirmte Zweidrahtleitung 23 ersetzt werden, deren Schirmleiter mit der leitenden Grundfläche 1 verbunden ist. Hierdurch wird eine günstigere Auskopplung der Spannung -Uu an der leitenden Grundfläche 1 ermöglicht. In einer weiteren günstigen Ausführungsform kann die geschirmte Zweidrahtleitung 23 auf einfache Weise durch zwei parallel geführte Koaxialleitungen 22, wie in Fig. 4d, ausgeführt werden, deren Schirme mit der leitenden Grundfläche 1 verbunden sind. Mit Hilfe des Leistungsteilers 21 können die Spannungen -Us und -Uu, wie oben beschrieben, mit den Anordnungen der Figuren 4b, 4c und 4d getrennt ausgekoppelt werden.In a further advantageous embodiment of the invention, as in Fig. 4c, the two-
Bei einer besonders einfach herstellbaren Antenne nach der Erfindung ist, wie in Fig. 5 gezeigt, die Ringstruktur 2 im wesentlichen rechteckförmig ausgestaltet. Realisierte Antennenformen mit einem Abschnitt 16 von ca. ¼ λ, einer Querabmessung 15 von etwa 1/3 λ und einer Bauhöhe 14 von etwa 1/6 λ haben bei geforderten Richtdiagrammen hinreichend kleine Verluste ergeben. Eine realisierte erfindungsgemäße Antenne für Frequenzen um 2,3 GHz weist z.B. nur eine Bauhöhe 14 von 2cm bei einer Querabmessung 15 von 4,5 cm auf. Bei kleinerer Bauhöhe lassen sich bei Wahl eines entsprechenden Kapazitätswerts für die Impedanz 7 zwar die Forderungen an das Richtdiagramm erfüllen, es ist jedoch mit ansteigenden Verlusten zu rechnen. Die im nachgeschalteten Anpaßnetzwerk 17 auftretenden Verluste steigen also mit kleinerer Antennenhöhe.In a particularly easy to manufacture antenna according to the invention, as shown in Fig. 5, the
Eine wesentliche vorteilhafte Ausgestaltung der Erfindung besteht in der Kombination mehrerer Antennen nach Fig. 5 zu einer Satellitenkommunikationsantenne für Zirkularpolarisation. Hierzu werden in einer besonders vorteilhaften Ausführungsform zwei Antennen, deren Ebenen 0 senkrecht aufeinander stehen, kombiniert, wobei jede Antenne wie in Fig. 6a und Fig. 6c ein Umsymmetriernetzwerk 9 und eine Anpaßschaltung 17 besitzt. Am Ausgang der Anpaßschaltung 17 wird die Spannung für Zirkularpolarisation Uz mit Hilfe eines Phasendrehglieds 18 und einer Summationsschaltung 19 gebildet. Letztere sind in Fig. 6c mit Hilfe einer Parallelschaltung von Leitungen, deren Länge sich um λ/4 unterscheidet, realisiert. Die Anpaßschaltung 17 kann vorteilhaft durch gedruckte Blindelemente wie in Fig. 6b dargestellt realisiert werden. Die Leitungen zur Umsymmetrierung sind als Leitungen 10a,b, das Netzwerk als Anpassung als Serien- bzw. Stichleitungen 17 und zur Zusammenschaltung und 90 Grad-Phasendrehung als Leitung 18 jeweils gedruckt ausgeführt.An essential advantageous embodiment of the invention consists in the combination of several antennas according to Fig. 5 to a satellite communication antenna for circular polarization. For this purpose, in a particularly advantageous embodiment, two antennas whose
Mit Antennen dieser Ausführungsform wird ein geeignetes Elevationsdiagramm nach Fig. 11 vom Charakter der Diagramme D2 und D3 für die Einzelantenne nach Fig. 5 eingestellt. Nach der Zusammenschaltung gemäß Fig. 6c stellt sich daraus das für Zirkularpolarisation geforderte Gesamtdiagramm nach Fig. 12a (Schnitt Azimutalwinkel = const.) und Fig. 12b (räumliches Diagramm) ein.With antennas of this embodiment, a suitable elevational diagram of Fig. 11 is set by the character of the diagrams D2 and D3 for the single antenna of Fig. 5. After the interconnection according to FIG. 6c, the total diagram required for circular polarization according to FIG. 12a (section azimuthal angle = const.) And FIG. 12b (spatial diagram) are set therefrom.
Bei einer Schieflage der leitenden Grundfläche, z.B. bei einem gekrümmten Fahrzeugdach im Randbereich eines Fensters kann die Unsymmetrie der leitenden Grundfläche 1 und die Neigung durch unterschiedliche Kapazitätswerte in den einzelnen Antennenzweigen ausgeglichen werden. Dies entspricht einem Schielen des Diagramms. Ein mit erfindungsgemäßen Antennen einstellbares schielendes Diagramm mit einem Schielwinkel von ca. 15 Grad gegenüber dem Zenitwinkel zeigt beispielhaft Fig. 13.If the conductive base is skewed, e.g. In the case of a curved vehicle roof in the edge region of a window, the asymmetry of the
In einer weiteren vorteilhaften Ausgestaltung der Erfindung können N Antennen rotationssymmetrisch im Winkelabstand von jeweils 360/N Grad zu einer vertikalen Symmetrielinie 8 wie in Fig. 7 angeordnet werden. Entsprechend werden Phasendrehglieder 18 mit einem jeweiligen Phasendrehwinkel von 360/N Grad vorgesehen, deren Ausgangssignale in der Summationsschaltung 19 zusammengeführt werden und am Sammelpunkt 11 verfügbar sind. Hinsichtlich der Ausgestaltung der Impedanz 7 gelten die oben genannten Regeln. Die Rundheilt des azimutalen Richtdiagramms kann durch Wahl hinreichend großer Werte von N weiter verbessert werden. Die Rotationssymmetrie einer derartigen Anordnung läßt den Wegfall des vertikalen Leiters 4a', wie in Fig. 8, zu.In a further advantageous embodiment of the invention, N antennas can be arranged rotationally symmetrically at an angular distance of 360 / N degrees to a
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Satellitenkommunikationsantenne zu einer Kombinationsantenne für den die zusätzliche terrestrische Kommunikation mit vertikaler Polarisation auf einer von der Satellitenfunkfrequenz abweichenden Frequenz erweitert. Dies geht sehr vorteilhaft mit einer Einsparung von Bauräumen in Kraftfahrzeugen einher.
Bei einer aus zwei Antennen gemäß der Grundform dieser Erfindung gestalteten symmetrischen Antenne wie in Fig. 9a ist längs der Symmetrielinie 8 ein vertikaler Antennenleiter 20, welcher am einen Ende mit einem Horizontalteil der Ringstruktur 2 verbunden ist und zwischen dessen unterem Ende und der leitenden Grundfläche 1 ein Anschlußtor Tu zur Ausbildung einer unsymmetrischen Spannung Uu gebildet ist. Hierbei wirken die Leiterteile mit horizontaler Ausdehnung 4b als Dachkapazität für den vertikalen Antennenleiter 20. Die symmetrischen Spannungen werden an den entsprechenden Toren T1a bzw. T1b aus der Ringstruktur 2 abgegriffen. Das Anpaßnetzwerk 29 in Fig. 9b dient zur frequenzselektiven Anpassung der am Anschlußtor Tu für die Frequenz des terrestrischen Funkdienstes vorliegenden Impedanz an den Wellenwiderstand üblicher Koaxialleitungen. Am Ausgang dieses Anpaßnetzwerks 29 liegt die zu Uu proportionale Spannung -Uu vor.In a further advantageous embodiment of the invention, the satellite communication antenna is extended to a combination antenna for which the additional terrestrial communication with vertical polarization at a frequency deviating from the satellite radio frequency. This is very advantageous associated with a saving of space in motor vehicles.
In a symmetrical antenna constructed of two antennas according to the basic form of this invention as in FIG. 9a, along the
Um den Satellitenfunkdienst nicht zu beeinträchtigen, ist das Anpaßnetzwerk 29 vorteilhaft so zu gestalten, daß das Anschlußtor Tu bei der Satellitenfunkfrequenz mit einem Blindwiderstand oder besonders vorteilhaft mit einem Kurzschluß oder Leerlauf belastet ist. Die Symmetrie der Anordnung kann vorteilhaft zur Entkopplung der Anschlußtore Tu von den Anschlußtoren T1a, T1b bei deren Beschaltung mit dem Umsymmetriernetzwerk 9 verwendet werden. Dies ist zum Schutze des Satellitenfunkdienstes besonders wichtig, wenn die terrestrische Kommunikation bidirektional erfolgt. Bei verbleibender Restunsymmetrie ist es zur Verbesserung der Entkopplung des Satellitenfunkdienstes vorteilhaft, das Umsymmetriernetzwerk 9 derart zu gestalten, daß die Anschlußtore T1a und T1b bei der Frequenz des terrestrischen Funkdienstes mit einem Kurzschluß belastet sind.In order not to interfere with the satellite service, the
In Fig. 10a ist die vollständige Satellitenkommunikationsantenne für zirkulare Polarisation mit dem vertikalen Antennenleiter 20 dargestellt. An den Anschlußtoren T2a und T2b der um 90 Grad gegenüber der Antenne mit den Toren T1a, T1b gedrehten Antenne wird entsprechend der Antenne in Fig. 6c ein Umsymmetriernetzwerk 9 mit nachfolgender Anpaßschaltung 17 wie in Fig. 10b gezeigt, angeschlossen. Bezüglich der Belastung der Tore T2a und T2b bei der Frequenz des terrestrischen Kommunikationsdienstes zum Schutz des Satellitenfunkdienstes gelten die obigen Ausführungen.In Fig. 10a the complete satellite communication antenna for circular polarization with the
In der vorteilhaften Ausgestaltung der Erfindung werden die Leiterteile mit wesentlicher horizontaler Ausdehnung 4b zur Ausbildung einer Dachkapazität 31 mit einer gekrümmten Oberfläche in Form eines Halbellipsoids ausgestaltet und die Berandung in einer Fläche 30 geführt ist, welche in einer ihrer Dimensionen im wesentlichen senkrecht zur Ebene 0 und somit im wesentlichen parallel zur Ebene 1 orientiert ist. Dies ist beispielhaft in den Figuren 14a und 14b dargestellt. Durch geeignete Wahl von Größe und Form der als Dachkapazität 31 wirksamen gekrümmten Oberfläche in Verbindung mit der geeigneten Dimensionierung der Impedanzen 7 lassen sich sowohl das Vertikaldiagramm als auch die im Fußpunkt der Leiterteile mit wesentlicher vertikaler Ausdehnung 4a vorliegenden Fußpunktsimpedanzen wunschgemäß einstellen. Hierbei können die Leiterteile mit wesentlicher horizontaler Ausdehnung 4b zur Ausbildung der Dachkapazität 31 aus draht- oder streifenförmigen Leitern 32 gebildet sein, wie es in Fig.14b angedeutet ist und auch als Gitterstrukturen ausgeführt sein. Für eine auf besonders einfache Weise gebildetete Ausführungsform einer Dachkapazität 31 ist diese komplett in der Fläche 30 als einer Ebene parallel zur leitenden Grundfläche 1 angeordnet (Fig. 15a) und vorzugsweise in gedruckter Leitertechnik ausgebildet, wie es in den Figuren 15a und 15b dargestellt ist. Hierbei ergibt sich die besonders vorteilhafte Eigenschaft, dass sowohl die Dachkapazität 31 und die meist kapazitv ausgeführten Impedanzen 7 hoch genau und reproduzierbar hergestellt werden können und damit sowohl das Richtdiagramm als auch die o.g. Fußpunktsimpedanzen bei der Serienherstellung mit kleinen Streuungen sichergestellt werden können. Eine weitere erfindungsgemäße Ausführungsform in gedruckter Technik zeigt Fig. 16.In the advantageous embodiment of the invention, the conductor parts are designed with a substantial
In einer weiteren vorteilhaften Ausgestaltung der Erfindung werden in der Ringstruktur 2 die Leiterteile mit wesentlicher horizontaler Ausdehnung 4b und mehrere Impedanzen 7,7' derart ausgebildet, dass bezüglich der Ebene 0, in welcher die Leiterteile mit wesentlicher vertikaler Ausdehnung 4a geführt sind eine auch hinsichtlich der Impedanzwerte der Impedanzen 7,7' symmetrische Anordnung gegeben ist. Dabei soll die Symmetrie der Anordnung auch bezüglich einer sowohl zur Grundfläche 0 als auch bezüglich der Grundebene 1 senkrecht orientierten Symmetrieebene 33 gegeben sein. Solche Anordnungen sind in den Figuren 17a, 17b und 17c dargestellt. Zur Erläuterung der Wirkungsweise einer Antenne nach der Erfindung, wie sie in Fig. 17c dargestellt ist, soll zunächst die Ringstruktur 2 in Fig. 17a betrachtet werden. Eine solche Ringstruktur enthält die Kapazitäten 7,7', wobei bei Gleichheit der jeweils zur senkrechten Symmetrielinie symmetrisch liegenden Kapazitäten der dadurch gebildete Rahmen auch elektrisch symmetrisch ist. Auch Kapazitäten zwischen Leiterteilen mit wesentlicher horizontaler Ausdehnung 4b und dem umgebenden Raum stören diese Symmetrie nicht. Somit stellt die Anordnung in Fig. 17a eine Antenne dar, welche nach dem Hauptanspruch der Erfindung gestaltet ist und zusätzlich die Eigenschaft der Symmetrie besitzt. Zur besseren Kenntlichmachung der Wirkungsweise dieser Anordnung sind die Ebene 0, in welcher auch Leiterteile mit wesentlicher vertikaler Ausdehnung 4a eingebracht sind und die Symmetrieebene 33 schattiert eingezeichnet.In a further advantageous embodiment of the invention, in the
Durch die beschriebene Ankopplung eines Umsymmetriernetzwerks 9, wie es z.B. in Fig. 9b angegeben ist, kann somit aus den Anschlußtoren T1a und T1b aus der symmetrischen Antennenanordnung eine Spannung Us ausgekoppelt werden. Zur Erläuterung der Wirkungsweise wird bemerkt, daß in der Ebene 33 in Fig. 17a zunächst keine Leiterteile mit wesentlicher vertikaler Ausdehnung 4a eingebracht sind. Entsprechend der Nomenklatur in Fig. 3a werden die mit 7,7' gekennzeichneten Impedanzen auf der einen Seite der vertikalen Symmetrielinie 8 in den Figuren 17a bis 17c mit 7 und auf der anderen Seite der Symmetrielinie 8 mit 7' gekennzeichnet. Somit sind alle wirksamen Impedanzen in Fig. 17a bezüglich der mit T1a und T1b gekennzeichneten Tore mit entsprechenden Indizierungen 7,7' hinsichtlich der Platzierung in Bezug auf die Symmetrieebene 33 und aufgrund der gemeinsamen Wirkung auf die Tore T1a und T1b zusätzlich mit 1 indiziert. Die in Fig. 17a unbezeichneten Kapazitäten, welche sich in der Symmetrieebene 33 befinden, sind hinsichtlich der Tore T1a und T1b wirkungslos. In Fig. 17b sind zum Verständnis die Leiterteile mit wesentlicher vertikaler Ausdehnung 4a bezüglich der Tore T1a, T1b weggelassen. Bei gleichbleibender Anordnung sämtlicher in Fig. 17a beschriebener Blindelemente 7 wird in der Symmetrieebene 33 eine Ringstruktur 2 mit den zugehörigen Toren T2a und T2b gebildet. Die Bezeichnungen für die Blindelemente 7 werden demnach entsprechend der in Fig. 17a eingeführten Nomenklatur entsprechend auf diese beiden Tore bezogen. Bei Kombination der beiden Ringstrukturen 2 in den Figuren 17a und 17b zu der in Fig. 17c dargestellten vollständigen Anordnung ergeben sich erfindungsgemäß zwei bezüglich der vertikalen Symmetrielinie 8 vollkommen symmetrische Ringstrukturen 2. Daraus geht hervor, daß eine Anordnung, wie sie in Fig. 18a dargestellt ist, bei geeigneter Wahl der Abmessungen der dort dargestellten Dachkapazitäten 31, welche Koppelkapazitäten ausbilden, wie sie in Fig. 17c dargestellt sind, ebenfalls nach der Erfindung gestaltet ist, wenn die Koppelkapazitäten durch geeignete Ausbildung der Dachkapazitäten die erfindungsgemäß wirksamen Impedanzen 7 mit der geforderten Größe bilden.By the described coupling of a
Die in Fig. 18a eingezeichneten Strompfeile für die Ströme I1 und I2 deuten den prinzipiellen Stromfluss der beiden Rahmen 2 an. Die Strompfeile lassen erkennen, auf welche Weise das Impedanznetzwerk bestehend aus Impedanzen 7 gemeinsam für beide Rahmenteile wirksam sind und in welchen der Impedanzen 7 die Ströme I1 und I2 gleichförmig und in welchen sie gegensinnig überlagert sind. In Fig. 18a ist beispielhaft eine Beschaltung der vier Tore T1a, T1b, T2a, T2b angegeben, die es erlaubt, in der geschilderten Weise eine Antenne nach der Erfindung für die zirkular polarisierte Strahlung zu gestalten. Im folgenden werden in den Figuren 18b, 19 und 20 beispielhafte Ausführungsformen für eine Antenne dieser Art aufgeführt. In Fig. 18b werden die beiden Rahmen in der Umgebung der vertikalen Symmetrielinie 8 über eine leitende Zentralstruktur 37 über vorzugsweise gedruckte Koppelkapazitäten verkoppelt. Die entsprechend gestalteten Dachkapazitäten 31 mit ihren Koppelkapazitäten 34 zueinander und solchen Kapazitäten zur ringförmig ausgebildeten Zentralstruktur 37 ermöglichen die Dimensionierung der Antenne im Hinblick auf ein gewünschtes Richtdiagramm. Die leitende Zentralstruktur 37 der Antenne in Fig. 19 erlaubt bei ringförmiger Ausbildung die Einbringung eines vertikalen Antennenleiters 20, welcher zur Ausbildung einer gewünschten Impedanz am Anschlußtor Tu mit einer auf einfache Weise gestaltbaren Strahlerkoppelkapazität 38 zur ringförmigen Zentralstruktur 37 geeignet angekoppelt ist. Bei einem weiteren Beispiel einer Antenne nach der Erfindung ist in Fig. 20 eine Kombination aus Dachkapazitäten 31, welche auf einem dielektrischen Körper von der Form eines Pyramidenstumpfs geeignet ausgebildet sind, angebracht, so dass sich über die Koppel- und Raumkapazitäten das geeignete Richtdiagramm einstellt.The current arrows for the currents I1 and I2 indicated in FIG. 18a indicate the principal current flow of the two
In einer weiteren sehr vorteilhaften Ausführungsform der Erfindung ist die Antenne für den koordinierten und gleichzeitigen Empfang von zirkular polarisierten Satellitenfunksignalen und von in einem in der Frequenz dicht benachbarten Hochfrequenzband von terrestrischen Funkstellen ausgestrahlten, vertikal polarisierten Funksignalen gestaltet. Für eine derartige Anwendung ist eine frequenzselektive Entkopplung des terrestrischen Funkdiensts vom Satellitenfunkdienst aufgrund des kleinen Frequenzabstandes nicht möglich. Die symmetrische Ausführungsform der oben geschilderten Antennen besitzt dagegen eine vollkommene Entkopplung zwischen dem vertikalen Antennenleiter 20 und dem Ausgang für den Empfang der Zirkularpolarisation Zu. Somit ist das System nicht auf eine schmalbandige Frequenzselektion zwischen den beiden Funkdiensten angewiesen und es können das terrestrisch ausgestrahlte Signal und das vom Satelliten ausgestrahlte Signal unabhängig voneinander empfangen werden. Eine gegenseitige Bedämpfung durch die Leistungsentnahme an dem jeweils anderen Tor ist dadurch nicht gegeben. Aufgrund der Symmetrie der Antenne ist diese Eigenschaft somit auch für gleichfrequente Signale gegeben derart, daß der Empfang vertikal polarisierter elektrischer Feldkomponenten am vertikalen Antennenleiter 20 keine Bedämpfüng bezüglich des Empfangs vertikal polarisierter elektrischer Feldkomponenten am Tor bezüglich des Ausgangs für den Empfang der Zirkularpolarisation Zu bewirkt. Dieser Sachverhalt ist in den Antennen nach den Figuren 10a, 10b, 19, 20 und 22 gegeben.In a further very advantageous embodiment of the invention, the antenna is designed for the coordinated and simultaneous reception of circularly polarized satellite radio signals and of vertically polarized radio signals emitted by terrestrial radio stations in a frequency closely adjacent high-frequency band. For such an application, a frequency-selective decoupling of the terrestrial radio service from the satellite service is not possible due to the small frequency spacing. The symmetrical embodiment of the antennas described above, on the other hand, has complete decoupling between the
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in Fig. 22 eine Antenne für den zusätzlich kombinierten bidirektionalen Funkbetrieb mit vertikal polarisierten terrestrischen Funkstellen dargestellt. Hierbei ist der vertikale Antennenleiter 20 zusätzlich für mindestens einen bidirektionalen Funkbetrieb mit vertikal polarisierten terrestrischen Funkstellen eingesetzt. Die Strahlerlänge 43 des vertikalen Antennenleiters 20 für den Funkdienst mit der niedrigsten Frequenz wird dabei auf vorteilhafte Weise hinreichend groß gewählt. Für den Fall einer erforderlichen frequenzselektiven Verkürzung der elektrisch wirksamen Strahlerlänge 43 für höhere Funkkanalfrequenzen werden, wie in den Figuren 21a und 21b angedeutet, auf vorteilhafte Weise in den Längszug des vertikalen Antennenleiters 20 Unterbrechungsstellen mit geeigneten Blindelementen 41 zur Gestaltung des Vertikaldiagramms und der Fußpunktsimpedanz für diese Frequenz eingefügt.In a further advantageous embodiment of the invention, an antenna for the additionally combined bidirectional radio operation with vertically polarized terrestrial radio stations is shown in FIG. In this case, the
In Fig. 21a ist das Blockschaltbild einer derartigen Kombinationsantenne dargestellt. Um die Impedanzanpassung für die verschiedenen Funkdienste zu bewirken, werden vorteilhaft entsprechende Anpassnetzwerke 29a, 29b, 29c mit Ausgängen 40a, 40b, 40c zum Anschluß der entsprechenden Funkgeräte eingesetzt. Zur Trennung der Impedanzwirkungen und der Signale in den verschiedenen Frequenzbereichen sind die Eingänge der Anpassnetzwerke 29a, 29b, 29c jeweils über eine frequenzselektive Trennschaltung 39a, bzw. 39b, bzw. 39c an das gemeinsame Anschlußtor Tu derart angeschaltet; dass die Anpassungsverhältnisse am Anschlusstor Tu in den Funkfrequenzkanälen der verschiedenen Funkdienste gegenseitig so wenig wie möglich beeinflusst sind.In Fig. 21a, the block diagram of such a combination antenna is shown. In order to effect the impedance matching for the various radio services, corresponding
Zur Vermeidung der durch Strahlung bedingten Verkopplung zwischen dem Anschlußtor Tu des vertikalen Antennenleiters 20 und den Anschlußtoren T1a, T1b, T2a, T2b der Ringstrukturen 2 werden vorteilhaft in der Nähe der Fußpunkte der Leiterteile mit wesentlicher vertikaler Ausdehnung 4a jeweils Entkopplungsnetzwerke 42 eingesetzt. Diese sind derart ausgeführt, dass sie für Signale auf der Frequenz eines bidirektionalen Funkbetriebs mit vertikal polarisierten Funkstellen sperrend wirken, für die Frequenz des zirkular polarisierten Satellitenfunksignals jedoch durchlässig sind. Dadurch wird auf vorteihafte Weise bewirkt, dass die über das Umsymmetriernetzwerk 9 an den Toren T1a und T1b vorliegenden Impedanzen weder über ihre Wirkkomponente eine Strahlungsdämpfung auf der Frequenz eines bidirektionalen Funkdienstes noch über unerwünschte Reaktanzen auf einer derartigen Frequenz eine störende Wirkung hervorrufen.To avoid radiation-induced coupling between the connection port Tu of the
-
Ebene 0
Level 0 -
leitende Grundfläche 1
conductive base 1 -
Ringstruktur 2
Ring structure 2 -
Leiterteile mit wesentlicher vertikaler Ausdehnung 4aLadder parts with substantial
vertical extension 4a -
Leiterteile mit wesentlicher horizontaler Ausdehnung 4bLadder parts with essential
horizontal extension 4b - Antennenanschlußstellen 5, 5'Antenna connection points 5, 5 '
-
erster Antennenanschlußpunkt 5a, 5a'first
5a, 5a 'antenna connection point -
zweiter Antennenanschlußpunkt 5b, 5b'second
5b, 5b 'antenna connection point - Impedanzanschlußstelle 6, 6'Impedance connection point 6, 6 '
-
erster Impedanzanschlußpunkt 6a, 6a'first
6a, 6a 'impedance connection point -
zweiter Impedanzanschlußpunkt 6b, 6b'second
6b, 6b 'impedance connection point -
Impedanz 7, 7'
Impedance 7, 7 ' -
vertikale Symmetrielinie 8
vertical symmetry line 8 - symmetrische Empfangsspannungen Ussymmetrical reception voltages Us
- unymmetrische Empfangsspannungen Uuunbalanced receiving voltages Uu
-
Umsymmetriernetzwerk 9Balancing
network 9 -
Unsymmetrische Leitungen 10a,b
Unbalanced lines 10a, b -
Sammelpunkt 11
Collection point 11 -
Sammelpunkt für symmetrische Spannungen 11aCollection point for
symmetrical voltages 11a -
Sammelpunkt für unsymmetrische Spannungen 11bCollection point for
unbalanced voltages 11b -
Symmetriepunkt 12
Symmetry point 12 - Symmetrische Leitung 13Symmetrical line 13
-
Bauhöhe 14
Height 14 -
Querabmessung 15
Transverse dimension 15 -
Abschnitt 16
Section 16 -
Anpaßschaltung 17
Matching circuit 17 -
Phasendrehglied 18
Phase turn member 18 -
Summationsschaltung 19Summing
circuit 19 -
vertikaler Antennenleiter 20
vertical antenna conductor 20 -
Leistungsteiler 21
Power divider 21 -
Koaxialleitung 22
Coaxial line 22 -
geschirmte Zweidrahtleitung 23Shielded two-
wire line 23 -
Zweidrahtleitung 24Two-
wire line 24 - Leitungsanschlußstelle 25Line connection point 25
- Anschluß für Zirkularpolarisation 26Connection for circular polarization 26
-
Leiterplatte 27Printed
circuit board 27 - Umwegleitung 28Detour line 28
-
Anpaßnetzwerk 29
Matching Network 29 -
Fläche 30
Area 30 -
Dachkapazität 31
Roof capacity 31 -
Draht-oder streifenförmige Leiter 32Wire or
strip conductors 32 - Symmetrieebene 33Symmetry plane 33
-
Koppelkapazitäten 34Coupling
capacities 34 - flächige Leiterstrukturen (35)planar conductor structures (35)
- Trennspalten (36)Separating columns (36)
- Zentralstruktur (37)Central structure (37)
- Strahlerlänge (43)Spotlight length (43)
- Strahlerkoppelkapazität (38)Radiator coupling capacity (38)
- frequenzselektive Trennschaltungen (39)Frequency-selective separation circuits (39)
- Ausgang(40)Output (40)
- Blindelemente (41)Blind elements (41)
- Entkopplungsnetzwerk (42)Decoupling network (42)
-
Welleneinfall 80
Wave incidence 80 -
Elevationswinkel 81
Elevation angle 81 - Anschlußtor T1aConnection door T1a
- Anschlußtor T1bConnection door T1b
- Anschlußtor T2aConnection port T2a
- Anschlußtor T2bConnection port T2b
- Anschlußtor TuConnection door Tu
- symmetrische Spannungen Ussymmetrical voltages Us
- unsymmetrische Spannungen Uu Spannung für Zirkularpolarisation Uzunbalanced voltages Uu voltage for circular polarization Uz
Claims (37)
- Antenna for mobile satellite communication on a substantially horizontally oriented conductive base surface (1), comprising substantially linear conductor parts (4) having substantially vertical extent (4a) and having substantially horizontal extent (4b), as well as an antenna connection point (5), whereby- the conductor parts (4a and 4b) are disposed substantially in a plane (0) standing perpendicular to the conductive base surface (1);- the conductor parts (4a and 4b) form a high-frequency conductive ring structure (2) together with the conductive base surface (1),characterized by the following characteristics:- the ring structure (2) is interrupted by the antenna connection point (5) and by at least one impedance connection point (6) wired to an impedance (7), in the region of the conductor parts (4a and 4b),- the establishment of the position of the interruptions for the impedance connection point (6) and for the antenna connection point (5), as well as the establishment of the values for the impedance (7), in each instance, are the measures for configuring the antenna gain for different elevation angles (81).
- Antenna according to claim 1,
characterized in that
the antenna connection point (5) is formed at the foot point of a conductor part having substantially vertical extent (4a), together with a first antenna terminal (5a) at the lower end of this conductor part, and a second antenna terminal (5b) at a point adjacent thereto on the conductive base surface (1), and the position of the impedance connection point (6) and a reactance as the impedance (7) are selected in such a way that the desired asymmetry of the radiation characteristic with respect to the zenith is formed herewith, while at the same time the guide values at low elevation angles are also sufficient (Fig. 2). - Antenna according to claim 1 and 2,
characterized in that
the ring structure (2) is formed symmetrically with respect to a symmetry line (8) standing vertically on the conductive base surface (1) and thus, in addition to the first antenna connection point, a further antenna connection point (5') disposed symmetrically relative thereto is provided at the lower end of the other conductor part impacting the conductive base surface (1), and also a further impedance connection point (6') with identical impedance (7') disposed symmetrically relative to the first is provided, and the wiring of the antenna connection points (5') is chosen such that symmetrical voltages Us are established there (Fig. 3a). - Antenna according to claim 3,
characterized in that
there is provided, for wiring the antenna connection points (5, 5'), an asymmetrizing network (9), at the output of which the symmetrical voltages Us formed symmetrically relative to the base surface (1) are available in combined asymmetrical form at a collection point (11) (Fig. 3a). - Antenna according to claim 4,
characterized in that
the asymmetrizing network (9) comprises two asymmetrical lines (10a, b) with identical characteristic wave impedance, each of which lines is connected on the input side to an antenna connection point (5), and which are connected in parallel at the output, and the lengths of which are chosen such that their electrical lengths differ from one another by an odd multiple of half the operating wavelength (Fig. 3b). - Antenna according to one of claims 2 to 5,
characterized in that
the ring structure (2) has rectangular shape and, in the interest of sufficient antenna gain values at low elevation angles (81) of the wave incidence (80), in combination with the requirement of a particularly low overall height (14), the size chosen for the cross dimension (15) is not substantially smaller than one half operating wavelength (Fig. 5). - Antenna according to one of claims 2 to 6,
characterized in that
the impedance or the impedances (7) are constructed as capacitors, whose capacitance is adjusted according to the requirement of the antenna gain values to be achieved at the predesignated elevation angles of the wave incidence (81) (Fig. 1, Fig. 5). - Antenna according to one of claims 2 to 7,
characterized in that
in order to achieve an antenna impedance which, at the antenna connection point (5), is favorable with respect to configuration of the asymmetrizing network (9), one quarter wavelength is chosen as a rough guide value for the straight length (16) of the portion of the conductor part (4b) with substantially vertical extent between the antenna connection point (5) and the position of the impedance (7) (Fig. 3a, Fig. 5). - Antenna according to one of claims 4 to 8,
characterized in that
a low-loss matching circuit (17) is connected downstream from the collection point (11) in order to transform the complex impedance present at the collection point (11) to a real impedance that can be constructed as a line-type characteristic wave impedance (Fig. 5). - Antenna for circular polarization,
characterized in that
two identical antennas according to claims 4 to 9 are provided, the substantially linear conductor parts (4) of which are routed in orthogonal planes (0) and the output signals of which are combined via a 90-degree phase-rotation element (18) in a summation circuit (19) (Fig. 6a, 6c). - Antenna according to claim 10,
characterized in that
both antennas are attached on a conductive base surface (1) configured as a printed circuit board (27), and the asymmetrizing network (9) of both antennas is designed as a micro-strip line with a length of one half wavelength, while the matching circuit (17) is made from reactive elements on this printed circuit board (27), and the 90-degree phase-rotation element (18) is constructed as a printed phasing line (28) with matching characteristic wave impedance, and the summation circuit (19) is constructed as a simple parallel circuit of printed lines (Fig. 6b). - Antenna according to one of claims 4 to 9,
characterized in that
N identical antennas are provided, the substantially linear conductor parts (4) of which are respectively routed in a plane (0), and the planes (0) are respectively spaced apart from one another by the azimuth angle of 360°/N, so that a rotationally symmetrical arrangement around a vertical symmetry line (8) is obtained in such a manner that a vertical conductor (4a') is present in this symmetry line as the conductor part having substantially vertical extent (4a) that is common to all N antennas, and the output signals of the antennas are respectively combined via phase-rotation elements (18), whose electrical phase angle corresponds identically to the associated azimuthal angular spacing of the associated plane (0), in a summation circuit (19) (Fig. 7). - Antenna according to claim 12,
characterized in that
the vertical conductor (4a'), on the basis of which rotational symmetry of the arrangement results, is dispensed with (Fig. 8). - Antenna according to one of claims 1 to 11,
characterized in that
the ring structure (2) is formed symmetrically with respect to a symmetry line (8) standing vertically on the conductive base surface (1), and the antenna connection point (5) at the symmetry point (12) is formed symmetrically with respect to the symmetry line (8) and, in addition to a first impedance connection point (6), a further impedance connection point (6') with identical impedance (7) is provided symmetrically relative to the first with respect to symmetry line (8), and the wiring of the antenna connection point (5) is chosen such that voltages ~Us symmetrical with respect to the symmetry point (12) are established there (Fig. 4a, 4b). - Antenna according to claim 14,
characterized in that
two straight conductors routed parallel to one another along the symmetry line (8) are connected as a two-wire line (24) to the antenna connection point (5), and a line connection point (25) is formed at the end of the two-wire line (24) adjacent to the conductive base surface (1), in such a way that the asymmetrical voltage ~Uu is present between each conductor end and the conductive base surface (1), and the symmetrical voltage -Us is present between the two conductor ends (Fig. 4b). - Antenna according to claim 15,
characterized in that
the two-wire line (24) is designed as a shielded two-wire line (23), whose shield is connected at the other end of the line to the base surface (1) (Fig. 4c). - Antenna according to claim 16,
characterized in that,
instead of the shielded two-wire line (23), two coaxial lines routed parallel to one another are routed, each inner conductor of which is connected at each end of the line to a terminal of the antenna connection point (5), and the outer conductor of which is connected to the base surface (1), so that the symmetrical voltages ~Us are present at this point between the inner conductors, and the asymmetrical voltages ~Uu are present between each inner conductor and the base surface (1) (Fig. 4d). - Antenna according to one of claims 4 and 14 to 17,
characterized in that
a coupling-out network (9a) for coupling out asymmetrical voltages -Uu is provided in combination with the asymmetrizing network (9) and, on the input side, is connected to the antenna connection points (5) or to the line connection point (25), at the output of which coupling-out network there are present, in combined asymmetrical form, at a first collection point (11b), the asymmetrical voltages ~Uu formed asymmetrically relative to the base surface (1) on the input side, and the symmetrical voltages ~Us formed symmetrically relative to the base surface (1) are present in asymmetrical form at the output of the asymmetrizing network (9) at the second collection point for symmetrical voltages (11a) (Fig. 3 c, 4d). - Antenna according to claim 18,
characterized in that
a vertical antenna conductor (20) connected at one end to the ring structure (2) is formed along the symmetry line (8), and a connecting gate (Tu) for formation of an asymmetrical voltage ~Uu is formed at the end of the vertical antenna conductor (20) adjacent to the conductive base surface (1) (Fig. 9a, 9b). - Antenna according to claim 19,
characterized in that
a matching network (29) for configuration of matched coupling out of the asymmetrical voltage -Uu is provided in addition to the asymmetrizing network (9), which on the input side is connected to the antenna connection points (5) constructed as the first connecting gate (T1a) and second connecting gate (T1b), and to the low-loss matching circuit (17) (Fig. 9b). - Antenna according to claim 20,
characterized in that
the vertical antenna conductor (20) is connected to the two antennas at their intersection and symmetry point (12) (Fig. 10a, 10b). - Antenna for reception of circularly polarized satellite signals according to one of claims 10, 21 and 22,
characterized in that
when the length of the portion (16) is about one quarter of the operating wavelength, the capacitance of the impedance (7) is chosen such that the reactance is about 5 to 30 times greater than the impedance of a quarter-wave monopole antenna and thus is sufficiently large that the antenna gain of radiation incident at small elevation angles and the radiation incident from the zenith is sufficiently large to satisfy the requirements. (Fig. 6c, 7, 8, 10a, 10b) - Antenna according to claim 19 to 22,
characterized in that
an asymmetrical voltage ~Uu is supplied or drawn at the connecting gate (Tu) for the additional transmission or reception operation during omnidirectional radiation with vertical polarization (Fig. 10a, 10b). - Antenna according to claim 23,
characterized in that,
in the event of a difference in the frequencies of the symmetrical voltage Us and the asymmetrical voltage Uu, the decoupling between the collection point (11b) for asymmetrical voltages and the collection point (11a) for symmetrical voltages, which is limited due to residual asymmetry of the arrangement, is improved by frequency-selective measures in the matching network (29) and/or in the matching circuit (17). - Antenna according to claim 3 to 24,
characterized in that
in the event of discontinuities in the conductive base surface (1) or in the event of inclination thereof relative to the horizontal in a manner deviating from the symmetry of the arrangement that otherwise exists, appropriately different values are chosen for the impedances (7) in the individual branches in order to compensate for the resulting perturbation of the directional diagram. - Antenna according to claim 1,
characterized in that
the conductor parts having substantially horizontal extent (4b) for formation of a roof capacitor (31) have sheet-type configuration and are routed in a surface (30) which in one of its dimensions is oriented substantially perpendicular to the plane (0). (Fig. 14a) - Antenna according to claim 26,
characterized in that
the conductor parts having substantially horizontal extent (4b) for formation of the roof capacitor (31) are formed from wire-like or strip-like conductors (32). (Fig. 14b) - Antenna according to 26 and 27,
characterized in that
the surface (30) is formed as a plane parallel to the conductive base surface (1) and preferably as printed circuitry. (Fig. 15a, 15b, 16) - Antenna according to claim 28,
characterized in that
in order to configure the ring structure (2), the conductor parts having substantially horizontal extent (4b) and a plurality of impedances (7, 7') are formed in such a way that, relative to the plane (0) in which the conductor parts having substantially vertical extent (4a) are routed, an arrangement that is also symmetrical with respect to the impedance values of the impedances (7, 7') is obtained, and symmetry of the arrangement is also achieved with respect to a symmetry plane (33) oriented perpendicular both to the base surface (0) and with respect to the base plane (1) (Fig. 17a, 17b) - Antenna according to claim 29,
characterized in that
the two identical antennas are formed in such a way that the plane (0) of the one antenna forms the symmetry plane (33) of the other antenna and vice versa, and the overall arrangement is configured from congruent quadrants with respect to the vertical symmetry line (8) formed from the line of intersection of the plane (0) with the symmetry plane (33) of the antennas. (Fig. 17c, 17d) - Antenna according to claim 30,
characterized in that
to form the roof capacitors (31) of suitable size respectively loading the conductor parts having substantially vertical extent (4a) at their upper end, and to form the impedances (7) as coupling capacitors (34) for formation of the ring structures (2) of both antennas in the surface (30), there are provided sheet-type conductor structures (35) which respectively are galvanically insulated from one another and whose peripheries adjacent to one another are suitably configured by shaping and by the isolating gaps (36) disposed therebetween (Fig. 18a) - Antenna according to claim 30,
characterized in that
to form the roof capacitors (31) of suitable size respectively loading the conductor parts having substantially vertical extent (4a) at their upper end, there are provided, in the surface (30), sheet-type conductor structures (35) which respectively are galvanically insulated from one another, and there is provided a central structure (37) which surrounds the vertical symmetry line (8) and to which the roof capacitors (31) are capacitively coupled to form the impedances (7) as the coupling capacitors (34) for formation of the ring structures (2) of both antennas. (Fig. 18b) - Antenna according to claim 31 and 32,
characterized in that
the region in the immediate vicinity of the vertical symmetry line (8) of conductor parts is left unoccupied, and the vertical antenna conductor (20) is nevertheless coupled capacitively to parts of the ring structure (2), such as the central structure (37) or the roof capacitors (31), and the radiator length (43) and the radiator coupling capacitor (38) are chosen so as to adjust the capacitive coupling to a value that ensures that a suitable impedance will be present at the connecting gate (Tu). (Fig. 19, 20) - Antenna according to claim 21 or 30 for coordinated and simultaneous reception of circularly polarized satellite radio signals and of vertically polarized radio signals radiated by terrestrial radio sources in a high-frequency band of closely adjacent frequency,
characterized in that
the vertical antenna conductor (20) with the matching network (29) is configured for reception of the vertically polarized terrestrial radio signals in the asymmetrical voltage Uu, and the antenna with matching circuit (17), phase-rotation element (18) and summation circuit (19) is configured for reception of the circularly polarized satellite radio signals in the voltage for circular polarization Uz, but no active frequency-selective measures for mutual discrimination of the satellite radio signals from the terrestrial radio signals are employed, because the decoupling resulting from the symmetry is exploited (Fig. 10a, 10b, Fig. 19, Fig. 20). - Antenna according to claim 34 for combined bidirectional radio operation with vertically polarized terrestrial radio sources,
characterized in that
a sufficiently large value is chosen for the radiator length (43) of the vertical antenna conductor (20) for the radio service with the lowest frequency, and corresponding matching networks (29a, 29b, 29c, ...) with outputs (40a, 40b, 40c, ...) for connection of the corresponding radio devices are provided for the radio services, and the inputs of the matching networks (29a, 29b, 29c, ...) are respectively connected to the connecting gate Tu, and frequency-selective isolating circuits (39a, 39b, 39c, ...) are contained in such a way that the matching conditions at the connecting gate Tu are mutually influenced as little as possible in the radio-frequency channels of the various radio services. (Fig. 21 a, Fig. 22) - Antenna according to claim 35,
characterized in that
for frequency-selective shortening of the electrically effective radiator length (43) for higher radio channel frequencies, interruption points with suitable circuits of reactive elements (41) are inserted in the long stretch of the vertical antenna conductor (20). (Fig. 21 a) - Antenna according to claim 35 and 36,
characterized in that
to avoid the radiation-induced coupling between the connecting gate Tu of the vertical antenna conductor (20) and the connecting gates T1a, T1b, T2a, T2b of the ring structures (2), there are provided, in the vicinity of the foot points of the conductor parts having substantially vertical extent (4a), decoupling networks (42), which act respectively to block signals at the frequency of a bidirectional radio operation with vertically polarized radio sources, but are configured to pass the frequency of the circularly polarized satellite radio signal. (Fig. 21b)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10108910 | 2001-02-23 | ||
DE10108910 | 2001-02-23 | ||
DE10163793 | 2001-12-22 | ||
DE10163793A DE10163793A1 (en) | 2001-02-23 | 2001-12-22 | Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1239543A1 EP1239543A1 (en) | 2002-09-11 |
EP1239543B1 true EP1239543B1 (en) | 2006-08-09 |
Family
ID=26008612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02002836A Expired - Lifetime EP1239543B1 (en) | 2001-02-23 | 2002-02-08 | Flat antenna for the mobil satellite communication |
Country Status (8)
Country | Link |
---|---|
US (1) | US6653982B2 (en) |
EP (1) | EP1239543B1 (en) |
KR (1) | KR100658016B1 (en) |
AT (1) | ATE336090T1 (en) |
BR (1) | BRPI0200518B1 (en) |
CA (1) | CA2372625C (en) |
DE (2) | DE10163793A1 (en) |
MX (1) | MXPA02001913A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2226895A2 (en) | 2009-03-03 | 2010-09-08 | Delphi Delco Electronics Europe GmbH | Antenna for receiving satellite radio signals emitted circularly in a polarisation direction |
EP2424036A2 (en) | 2010-08-31 | 2012-02-29 | Delphi Delco Electronics Europe GmbH | Receiver antenna for circular polarised satellite radio signals |
DE10209060B4 (en) * | 2002-03-01 | 2012-08-16 | Heinz Lindenmeier | Reception antenna arrangement for satellite and / or terrestrial radio signals on vehicles |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8713140B2 (en) * | 2002-04-30 | 2014-04-29 | General Motors Llc | Method and system for modifying satellite radio program subscriptions in a mobile vehicle |
DE10221877A1 (en) | 2002-05-16 | 2003-12-18 | Kathrein Werke Kg | antenna array |
DE10304911B4 (en) * | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Combination antenna arrangement for multiple radio services for vehicles |
DE10304909B4 (en) * | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Antenna with monopoly character for several radio services |
KR100544675B1 (en) * | 2003-10-18 | 2006-01-23 | 한국전자통신연구원 | Apparatus for Repeating Satellite Signal using Microstrip Patch Array Antenna |
KR100643414B1 (en) * | 2004-07-06 | 2006-11-10 | 엘지전자 주식회사 | Internal Antenna for radio communication |
US7224319B2 (en) * | 2005-01-07 | 2007-05-29 | Agc Automotive Americas R&D Inc. | Multiple-element beam steering antenna |
DE102006039357B4 (en) * | 2005-09-12 | 2018-06-28 | Heinz Lindenmeier | Antenna diversity system for radio reception for vehicles |
US7292202B1 (en) * | 2005-11-02 | 2007-11-06 | The United States Of America As Represented By The National Security Agency | Range limited antenna |
US7830329B2 (en) * | 2005-11-08 | 2010-11-09 | Panasonic Corporation | Composite antenna and portable terminal using same |
US7764241B2 (en) * | 2006-11-30 | 2010-07-27 | Wemtec, Inc. | Electromagnetic reactive edge treatment |
US7973730B2 (en) * | 2006-12-29 | 2011-07-05 | Broadcom Corporation | Adjustable integrated circuit antenna structure |
DE102007017478A1 (en) * | 2007-04-13 | 2008-10-16 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity |
DE102008031068A1 (en) * | 2007-07-10 | 2009-01-15 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna diversity system for relatively broadband radio reception in vehicles |
EP2174382A1 (en) * | 2007-07-25 | 2010-04-14 | Jast SA | Omni-directional antenna for mobile satellite broadcasting applications |
DE102007039914A1 (en) * | 2007-08-01 | 2009-02-05 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna diversity system with two antennas for radio reception in vehicles |
EP2034557B1 (en) | 2007-09-06 | 2012-02-01 | Delphi Delco Electronics Europe GmbH | Antenna for satellite reception |
DE102008003532A1 (en) | 2007-09-06 | 2009-03-12 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for satellite reception |
US8031126B2 (en) * | 2007-11-13 | 2011-10-04 | Raytheon Company | Dual polarized antenna |
KR100956223B1 (en) * | 2008-03-04 | 2010-05-04 | 삼성전기주식회사 | Antenna device |
PT2209221T (en) * | 2009-01-19 | 2018-12-27 | Fuba Automotive Electronics Gmbh | Receiver for summating phased antenna signals |
DE102009023514A1 (en) * | 2009-05-30 | 2010-12-02 | Heinz Prof. Dr.-Ing. Lindenmeier | Antenna for circular polarization with a conductive base |
EP2458680B1 (en) | 2009-09-10 | 2016-07-27 | Delphi Delco Electronics Europe GmbH | Antenna for receiving circular polarised satellite radio signals |
US20120081259A1 (en) * | 2010-10-05 | 2012-04-05 | Florenio Pinili Regala | Inverted-U Crossed-Dipole Satcom Antenna |
DE102012003460A1 (en) | 2011-03-15 | 2012-09-20 | Heinz Lindenmeier | Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals |
US8604985B1 (en) * | 2011-09-13 | 2013-12-10 | Rockwell Collins, Inc. | Dual polarization antenna with high port isolation |
RU2515551C2 (en) * | 2012-05-10 | 2014-05-10 | Олег Кириллович Апухтин | Method of turning polarisation plane of radio waves |
DE102012217113B4 (en) | 2012-09-24 | 2019-12-24 | Continental Automotive Gmbh | Antenna structure of a circularly polarized antenna for a vehicle |
US9172140B2 (en) * | 2012-12-20 | 2015-10-27 | Raytheon Company | Multiple input loop antenna |
KR102206159B1 (en) * | 2015-04-24 | 2021-01-21 | 엘지이노텍 주식회사 | Antenna on vihecle |
US10396443B2 (en) * | 2015-12-18 | 2019-08-27 | Gopro, Inc. | Integrated antenna in an aerial vehicle |
DE102017009758A1 (en) | 2017-10-19 | 2019-04-25 | Heinz Lindenmeier | Antenna arrangement for circularly polarized satellite radio signals on a vehicle |
CN108321535B (en) * | 2018-01-31 | 2023-08-29 | 南京濠暻通讯科技有限公司 | Miniaturized low-profile dual-polarized omnidirectional antenna |
JP7205259B2 (en) * | 2019-01-31 | 2023-01-17 | Agc株式会社 | Vehicle glass antenna, vehicle window glass and vehicle antenna system |
WO2020222911A1 (en) * | 2019-05-02 | 2020-11-05 | Commscope Technologies Llc | Methods and apparatuses for reducing passive intermodulation distortion in transmission lines |
CN111987416B (en) * | 2020-09-04 | 2023-03-28 | 维沃移动通信有限公司 | Terminal equipment |
DE102022000191A1 (en) | 2022-01-19 | 2023-07-20 | Heinz Lindenmeier | Antenna module for a receiver for mobile reception of positioning satellite signals |
CN114447600A (en) * | 2022-01-25 | 2022-05-06 | 蓬托森思股份有限公司 | Antenna unit |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2994876A (en) * | 1957-01-14 | 1961-08-01 | Bengt Adolf Samuel Josephson | Ultrashortwave antenna |
US3427624A (en) * | 1966-07-13 | 1969-02-11 | Northrop Corp | Low profile antenna having horizontal tunable top loading member |
US3604007A (en) * | 1969-04-04 | 1971-09-07 | Robert Solby | Combined television stand and antenna system |
JPH0286201A (en) * | 1988-09-21 | 1990-03-27 | Harada Ind Co Ltd | Loop antenna for automobile |
US5173715A (en) * | 1989-12-04 | 1992-12-22 | Trimble Navigation | Antenna with curved dipole elements |
DE4008505A1 (en) * | 1990-03-16 | 1991-09-19 | Lindenmeier Heinz | Mobile antenna for satellite communication system - uses etching process on substrate with two part assembly |
JPH05327335A (en) * | 1992-05-15 | 1993-12-10 | Matsushita Electric Works Ltd | Loop antenna |
US5457470A (en) * | 1993-07-30 | 1995-10-10 | Harada Kogyo Kabushiki Kaisha | M-type antenna for vehicles |
JPH08154012A (en) * | 1994-11-28 | 1996-06-11 | Matsushita Electric Ind Co Ltd | Portable radio equipment |
US5654724A (en) * | 1995-08-07 | 1997-08-05 | Datron/Transco Inc. | Antenna providing hemispherical omnidirectional coverage |
US5629712A (en) * | 1995-10-06 | 1997-05-13 | Ford Motor Company | Vehicular slot antenna concealed in exterior trim accessory |
US5784032A (en) * | 1995-11-01 | 1998-07-21 | Telecommunications Research Laboratories | Compact diversity antenna with weak back near fields |
US6014107A (en) * | 1997-11-25 | 2000-01-11 | The United States Of America As Represented By The Secretary Of The Navy | Dual orthogonal near vertical incidence skywave antenna |
DE19817573A1 (en) | 1998-04-20 | 1999-10-21 | Heinz Lindenmeier | Antenna for multiple radio services |
US6211840B1 (en) * | 1998-10-16 | 2001-04-03 | Ems Technologies Canada, Ltd. | Crossed-drooping bent dipole antenna |
GB2363913B (en) * | 1999-05-07 | 2003-09-10 | Furuno Electric Co | Circularly polarised antennas |
US6181298B1 (en) * | 1999-08-19 | 2001-01-30 | Ems Technologies Canada, Ltd. | Top-fed quadrafilar helical antenna |
US6480158B2 (en) * | 2000-05-31 | 2002-11-12 | Bae Systems Information And Electronic Systems Integration Inc. | Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna |
-
2001
- 2001-12-22 DE DE10163793A patent/DE10163793A1/en not_active Withdrawn
-
2002
- 2002-02-08 EP EP02002836A patent/EP1239543B1/en not_active Expired - Lifetime
- 2002-02-08 AT AT02002836T patent/ATE336090T1/en not_active IP Right Cessation
- 2002-02-08 DE DE50207754T patent/DE50207754D1/en not_active Expired - Lifetime
- 2002-02-20 CA CA002372625A patent/CA2372625C/en not_active Expired - Fee Related
- 2002-02-22 MX MXPA02001913A patent/MXPA02001913A/en active IP Right Grant
- 2002-02-22 US US10/082,719 patent/US6653982B2/en not_active Expired - Lifetime
- 2002-02-23 KR KR1020020009750A patent/KR100658016B1/en not_active IP Right Cessation
- 2002-02-25 BR BRPI0200518A patent/BRPI0200518B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10209060B4 (en) * | 2002-03-01 | 2012-08-16 | Heinz Lindenmeier | Reception antenna arrangement for satellite and / or terrestrial radio signals on vehicles |
EP2226895A2 (en) | 2009-03-03 | 2010-09-08 | Delphi Delco Electronics Europe GmbH | Antenna for receiving satellite radio signals emitted circularly in a polarisation direction |
DE102009011542A1 (en) | 2009-03-03 | 2010-09-09 | Heinz Prof. Dr.-Ing. Lindenmeier | Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals |
EP2424036A2 (en) | 2010-08-31 | 2012-02-29 | Delphi Delco Electronics Europe GmbH | Receiver antenna for circular polarised satellite radio signals |
DE102010035934A1 (en) | 2010-08-31 | 2012-03-01 | Heinz Lindenmeier | Receiving antenna for circularly polarized satellite radio signals |
EP2592691A1 (en) | 2010-08-31 | 2013-05-15 | Delphi Delco Electronics Europe GmbH | Receiver antenna for circular polarised satellite radio signals |
Also Published As
Publication number | Publication date |
---|---|
BR0200518A (en) | 2002-10-01 |
DE50207754D1 (en) | 2006-09-21 |
US20020118138A1 (en) | 2002-08-29 |
BRPI0200518B1 (en) | 2016-05-24 |
CA2372625A1 (en) | 2002-08-23 |
US6653982B2 (en) | 2003-11-25 |
KR100658016B1 (en) | 2006-12-15 |
DE10163793A1 (en) | 2002-09-05 |
KR20020069178A (en) | 2002-08-29 |
ATE336090T1 (en) | 2006-09-15 |
MXPA02001913A (en) | 2004-04-21 |
CA2372625C (en) | 2003-11-18 |
EP1239543A1 (en) | 2002-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1239543B1 (en) | Flat antenna for the mobil satellite communication | |
DE102017103161B4 (en) | Antenna device and antenna array | |
DE60306513T2 (en) | ANTENNA ARRANGEMENT | |
EP3411921B1 (en) | Dual-polarized antenna | |
DE60211316T2 (en) | ANTENNA ARRANGEMENT | |
EP0965152B1 (en) | Resonant antenna | |
EP0952625B1 (en) | Antenna for several radio communications services | |
EP2256864B1 (en) | Antenna for circular polarisation with a conductive base | |
DE102010035932B4 (en) | Antenna for receiving circularly polarized satellite radio signals | |
DE69411355T2 (en) | Tunable stripline antenna with a quarter wavelength gap coupling | |
DE60034042T2 (en) | FRAME ANTENNA WITH FOUR RESONANCE FREQUENCIES | |
DE69623415T2 (en) | DOUBLE HELIX ANTENNA SYSTEM | |
EP3178129B1 (en) | Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles | |
EP2654125B1 (en) | Ring slot antenna | |
EP2424036B1 (en) | Receiver antenna for circular polarised satellite radio signals | |
DE102012003460A1 (en) | Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals | |
EP1819013A1 (en) | Dipole antenna | |
DE60019412T2 (en) | ANTENNA WITH VERTICAL POLARIZATION | |
DE19603803C2 (en) | Quad antenna, on an insulating material and process for its manufacture | |
DE19920980C2 (en) | Feeding or decoupling device for a coaxial line, in particular for a multiple coaxial line | |
WO2004102742A1 (en) | Multiband antenna | |
DE202006002143U1 (en) | Electric conductor for transducer unit of monopole- or multiple band dipole antenna, has contact area with two conductor sections including gradients that are alternating around extension axes of conductor sections | |
EP0285879B1 (en) | Broad-band polarizing junction | |
DE4219569C2 (en) | Broadband hybrid antenna | |
EP4092914A1 (en) | Radiation-coupled antennas with network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020930 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20030523 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060809 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50207754 Country of ref document: DE Date of ref document: 20060921 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061109 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070109 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20060809 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070510 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: FUBA AUTOMOTIVE G.M.B.H. & CO. KG Effective date: 20070228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060809 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170217 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170221 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50207754 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200429 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50207754 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 |