EP1239220B1 - Method for Controlling a Gas Combustion Apparatus, particularly a Gas Heating Apparatus - Google Patents

Method for Controlling a Gas Combustion Apparatus, particularly a Gas Heating Apparatus Download PDF

Info

Publication number
EP1239220B1
EP1239220B1 EP01129917A EP01129917A EP1239220B1 EP 1239220 B1 EP1239220 B1 EP 1239220B1 EP 01129917 A EP01129917 A EP 01129917A EP 01129917 A EP01129917 A EP 01129917A EP 1239220 B1 EP1239220 B1 EP 1239220B1
Authority
EP
European Patent Office
Prior art keywords
control
control system
time
gas
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01129917A
Other languages
German (de)
French (fr)
Other versions
EP1239220A2 (en
EP1239220A3 (en
Inventor
Reinhold Pfotzer
Juergen Grossman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7676685&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1239220(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1239220A2 publication Critical patent/EP1239220A2/en
Publication of EP1239220A3 publication Critical patent/EP1239220A3/en
Application granted granted Critical
Publication of EP1239220B1 publication Critical patent/EP1239220B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen

Definitions

  • the invention relates to control methods for a gas combustion device, in particular for a gas heater.
  • a gas combustion apparatus usually has an actuator in the form of a gas fitting, with which a mixing ratio of fuel gas and air is adjustable, wherein the thus set mixture of fuel gas and air is fed to a burner of the device for combustion.
  • a sensor for example a ⁇ probe, is arranged in the exhaust gas line in order to sense a ⁇ value which correlates with the oxygen content of the exhaust gas.
  • This ⁇ sensor is connected to a control system, which is also coupled to the actuator.
  • This control system now allows a ⁇ -guided control of the actuator, ie the control system performs a target-actual comparison of a ⁇ -value determined by the ⁇ -sensor with a set or set on the control system ⁇ setpoint and actuated in dependence of this setpoint Actual comparison is the actuator to regulate the desired ⁇ setpoint.
  • the predetermined ⁇ setpoint corresponds to an optimum operating point of the respective gas combustion device, in which, for example, a minimum Pollutant emission and a long life for the gas combustion device can be achieved.
  • an upper or lower limit value for the manipulated variable which can be set on the actuator can be reached. Control beyond these limit values is not feasible, so that the gas combustion device is increasingly at an operating point is operated, which is more and more away from the optimal operating point. Accordingly, the pollutants in the exhaust gas may exceed the allowable limits; At the same time, this can reduce the life of the burner or the entire gas combustion device. Finally, the gas combustion device may fail.
  • EP 0 050 840 A1, DE 196 27 857 A1 and EP 0 209 771 A1 disclose gas combustion devices with an actuator for adjusting the mixing ratio of air and fuel gas.
  • the lambda value is detected with a sensor and processed with a microprocessor-controlled control system, which is coupled to the sensor.
  • US Pat. No. 5,329,273 A discloses a control device for signaling systems in which an error and measured value statistic is generated and evaluated.
  • the method according to the invention with the features of claim 1 has the advantage that by the knowledge of the failure time at which the manipulated variable reaches one of their limits, a timely maintenance or inspection of the gas combustion device can be performed before it to an operation of the device outside the optimal operating point and before it comes to a failure of the device.
  • the reliability of the gas combustion device can be increased as a result.
  • control system may generate a warning signal when the calculated failure time is within a predetermined minimum period of time.
  • Warning signal warns the operator or user of the device in good time.
  • a warning signal can be realized, for example, by a corresponding light signal on a display of the device.
  • control system can also generate a warning signal when the failure time has already been reached or exceeded.
  • the operator or user of the gas combustion device the increased urgency for performing an inspection or maintenance can be signaled.
  • the control system from a historical time course of the manipulated variable calculate a future time course of the manipulated variable and calculate the failure time.
  • a straight line can be interpolated in the historical time course of the manipulated variable, the extrapolation of which results in the future time course of the manipulated variable. From the length of the extrapolated straight line up to an intersection with the respective limit value of the manipulated variables, the failure time can then be determined.
  • a gas combustion device 1 which is shown only partially, has a burner 2, which is arranged in a combustion chamber 3.
  • the gas combustion device 1 may for example be designed as a gas heater and come in a heating system of a building used.
  • the gas combustion device 1 also has an actuator 4, which is formed here by a gas mixing valve.
  • the actuator 4 is connected on the input side to an air line 5 and to a fuel gas line 6, via which the actuator 4 is supplied with air or fuel gas.
  • a mixture line 7 is connected to the actuator 4, which supplies the fuel gas-air mixture generated by the actuator 4 to the burner 2.
  • an exhaust pipe 8 is connected, in which a sensor 9 is arranged.
  • This sensor 9 which is embodied, for example, as a ⁇ probe, can determine the oxygen content ⁇ of the combustion exhaust gas discharged from the combustion chamber 3 via the exhaust gas line 8.
  • the gas combustion device 1 also has a control system 10 which is connected via a signal line 11 to the sensor 9 and via a control line 12 to the actuator 4.
  • the control system 10 includes, for example, a microprocessor 13 and a cooperating memory 14.
  • the control system 10 may also include a first signal lamp 15 and a second signal lamp 16.
  • the manipulated variable y of the actuator 4 is plotted on the ordinate and the time t is plotted on the abscissa.
  • the upper limit value and the lower limit value of the manipulated variables y which can be set on the actuator 4 are denoted by y max and y min .
  • the gas combustion device 1 operates as follows:
  • the control system 10 is designed so that it adjusts an optimal operating point for the gas combustion device 1 and for the burner 2 during operation. This operating point is assigned a specific nominal value for the ⁇ value in the exhaust gas. This ⁇ setpoint is stored in the memory 14, for example. Accordingly, the control system 10 performs a ⁇ -guided control of the actuator 4 by the control system 10 in response to a desired-actual comparison between the stored ⁇ setpoint and the currently measured by the probe 9 ⁇ actual value actuates the actuator 4.
  • the operability of the actuator 4 is limited by the limits y min and y max of the actuator 4 adjustable manipulated variables y.
  • the actuator 4 and the control system 10 are formed and interconnected so that the control system 10 always knows the currently set on the actuator 4 manipulated variable y. In addition, the control system 10 knows the limits y min and y max .
  • the control can be performed permanently or cyclically clocked.
  • the control system 10 is designed such that it detects a historical time course V h of the control variables y set on the actuator 4. Due to the various control interventions of the control system 10, the snaking line shown in FIG. 2 results, for example, for the historical course V h .
  • the control system 10 can now for a current time t 0 from the historical time course V h calculate a future time course V z for to be set on the actuator 4 manipulated variables y.
  • a straight line is laid through the historical course V h (interpolated) for this purpose.
  • This future time course V z is now cut with the limit value y max or y min , to which the historical time course V h moves.
  • a failure time t 2 lying in the future can now be determined.
  • a warning time t 1 can then be determined, which results from a predetermined minimum time period t min , which is identified in FIG. 2 by a curly bracket.
  • This minimum time period t min is stored in the control system 10 and may result from maintenance intervals and may be, for example, a period of two to three months.
  • the control system 10 now checks whether a time t v remaining from the current time t 0 to the calculated failure time t 2 is greater than the predetermined minimum time period t min .
  • the remaining time period t v is also indicated in FIG. 2 by a curly bracket. In other words, the control system 10 checks whether starting from the current time t 0 after the minimum time span t min has elapsed, the failure time t 2 has been reached.
  • the control system 10 As soon as the historical course V h has progressed so far that the current time t 0 lies within the minimum time period t min , the control system 10 generates a warning signal, for example by a flashing actuation of the first signal light 15
  • Minimum time period t min on the one hand ensures that sufficient time is available to timely perform an inspection or maintenance of the heater 1 can.
  • the minimum time span t min results in a safety reserve y r for the manipulated variables y that can still be set on the actuator 4 up to the upper limit value y max . In this way, a secure control of the actuator 4 and thus a proper operation of the burner 2 and the device 1 can be ensured at least at the beginning of the minimum time period t min .
  • the said safety reserve y r results from an interface II of the warning time t 1 with the future time course V z .
  • the second signal light 16 provided here is activated by the control system 10 when the historical time course V h reaches or exceeds the failure time t 2 , that is to say the interface I. That is, when the current time t 0 coincides with the failure time t 2 . At the latest from this time t 2 , proper operation of the burner 2 or of the device 1 at the optimum operating point can no longer be guaranteed.
  • the manipulated variable y may also decrease in the course of the time t, in which case the same applies to the lower limit value y min .

Description

Stand der TechnikState of the art

Die Erfindung betrifft Regelungsverfahren für ein Gasverbrennungsgerät, insbesondere für ein Gasheizgerät. Ein solches Gasverbrennungsgerät weist üblicherweise ein Stellglied in Form einer Gasarmatur auf, mit dem ein Mischungsverhältnis von Brenngas und Luft einstellbar ist, wobei die so eingestellte Mischung aus Brenngas und Luft einem Brenner des Gerätes zur Verbrennung zugeführt wird. Bei modernen Gasverbrennungsgeräten ist im Abgasstrang ein Sensor, z.B. eine λ-Sonde, angeordnet, um so einen λ-Wert zu sensieren, der mit dem Sauerstoffgehalt des Abgases korreliert. Dieser λ-Sensor ist mit einem Regelsystem verbunden, das außerdem mit dem Stellglied gekoppelt ist. Dieses Regelsystem ermöglicht nun eine λ-geführte Regelung des Stellgliedes, d.h. das Regelsystem führt einen Soll-Ist-Vergleich eines vom λ-Sensor ermittelten λ-Istwertes mit einem am Regelsystem eingestellten oder darin gespeicherten λ-Sollwert durch und betätigt in Abhängigkeit dieses Soll-Ist-Vergleichs das Stellglied, um so den gewünschten λ-Sollwert einzuregeln. Der vorgegebene λ-Sollwert entspricht dabei einem optimalen Arbeitspunkt des jeweiligen Gasverbrennungsgerätes, bei dem beispielsweise eine minimale Schadstoffemission und eine lange Lebensdauer für das Gasverbrennungsgerät erreicht werden.The invention relates to control methods for a gas combustion device, in particular for a gas heater. Such a gas combustion apparatus usually has an actuator in the form of a gas fitting, with which a mixing ratio of fuel gas and air is adjustable, wherein the thus set mixture of fuel gas and air is fed to a burner of the device for combustion. In modern gas combustion appliances, a sensor, for example a λ probe, is arranged in the exhaust gas line in order to sense a λ value which correlates with the oxygen content of the exhaust gas. This λ sensor is connected to a control system, which is also coupled to the actuator. This control system now allows a λ-guided control of the actuator, ie the control system performs a target-actual comparison of a λ-value determined by the λ-sensor with a set or set on the control system λ setpoint and actuated in dependence of this setpoint Actual comparison is the actuator to regulate the desired λ setpoint. The predetermined λ setpoint corresponds to an optimum operating point of the respective gas combustion device, in which, for example, a minimum Pollutant emission and a long life for the gas combustion device can be achieved.

Durch Verschmutzung und/oder Alterung des Gasverbrennungsgerätes kann es im Laufe der Betriebszeit des Gerätes dazu kommen, daß ein oberer oder unterer Grenzwert für die am Stellglied einstellbare Stellgröße erreicht Eine über diese Grenzwerte hinausgehende Regelung ist nicht realisierbar, so daß das Gasverbrennungsgerät zunehmend in einem Arbeitspunkt betrieben wird, der sich mehr und mehr vom optimalen Arbeitspunkt entfernt. Dementsprechend können die Schadstoffe im Abgas die zulässigen Grenzwerte überschreiten; gleichzeitig kann sich dadurch die Lebensdauer des Brenners bzw. des gesamten Gasverbrennungsgerätes reduzieren. Schließlich kann das Gasverbrennungsgerät ausfallen.As a result of contamination and / or aging of the gas combustion device, during the operating time of the device, an upper or lower limit value for the manipulated variable which can be set on the actuator can be reached. Control beyond these limit values is not feasible, so that the gas combustion device is increasingly at an operating point is operated, which is more and more away from the optimal operating point. Accordingly, the pollutants in the exhaust gas may exceed the allowable limits; At the same time, this can reduce the life of the burner or the entire gas combustion device. Finally, the gas combustion device may fail.

Aus der EP 0 050 840 A1, DE 196 27 857 A1 und EP 0 209 771 A1 gehen Gasverbrennungsgeräte mit einem Stellglied zum Einstellen des Mischungsverhältnisses von Luft und Brenngas hervor. Dabei wird mit einem Sensor der Lambdawert erfasst und mit einem mikroprozessorgesteuerten Regelsystem, welches an den Sensor gekoppelt ist, verarbeitet. Weiterhin ist aus der US 5 329 273 A eine Kontrolleinrichtung für Signalanlagen bekannt, bei der eine Fehler- und Messwertstatistik erstellt und ausgewertet wird.EP 0 050 840 A1, DE 196 27 857 A1 and EP 0 209 771 A1 disclose gas combustion devices with an actuator for adjusting the mixing ratio of air and fuel gas. In this case, the lambda value is detected with a sensor and processed with a microprocessor-controlled control system, which is coupled to the sensor. Furthermore, US Pat. No. 5,329,273 A discloses a control device for signaling systems in which an error and measured value statistic is generated and evaluated.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß durch die Kenntnis des Ausfallzeitpunkts, bei dem die Stellgröße einen ihrer Grenzwerte erreicht, rechtzeitig eine Wartung oder Inspektion des Gasverbrennungsgerätes durchgeführt werden kann, bevor es zu einem Betrieb des Gerätes außerhalb des optimalen Arbeitspunktes und bevor es zu einem Ausfall des Gerätes kommt. Die Betriebssicherheit des Gasverbrennungsgerätes kann dadurch insgesamt erhöht werden.The method according to the invention with the features of claim 1 has the advantage that by the knowledge of the failure time at which the manipulated variable reaches one of their limits, a timely maintenance or inspection of the gas combustion device can be performed before it to an operation of the device outside the optimal operating point and before it comes to a failure of the device. The reliability of the gas combustion device can be increased as a result.

Bei einer bevorzugten Ausführungsform kann das Regelsystem ein Warnsignal erzeugen, wenn der berechnete Ausfallzeitpunkt innerhalb einer vorbestimmten Mindestzeitspanne liegt. Hierdurch wird die Sicherheit, daß eine Wartung oder Inspektion des Gerätes noch vor seinem Ausfall durchgeführt wird, zusätzlich erhöht, da dasIn a preferred embodiment, the control system may generate a warning signal when the calculated failure time is within a predetermined minimum period of time. As a result, the security that maintenance or inspection of the device is performed even before his failure, additionally increased because the

Warnsignal den Betreiber oder Verwender des Gerätes rechtzeitig warnt. Ein solches Warnsignal kann beispielsweise durch ein entsprechendes Lichtzeichen an einem Display des Gerätes realisiert sein.Warning signal warns the operator or user of the device in good time. Such a warning signal can be realized, for example, by a corresponding light signal on a display of the device.

Zusätzlich oder alternativ kann das Regelsystem auch dann ein Warnsignal erzeugen, wenn der Ausfallzeitpunkt bereits erreicht oder überschritten ist. Durch diese Maßnahme kann dem Betreiber oder Verwender des Gasverbrennungsgerätes die erhöhte Dringlichkeit zur Durchführung einer Inspektion oder Wartung signalisiert werden.Additionally or alternatively, the control system can also generate a warning signal when the failure time has already been reached or exceeded. By this measure, the operator or user of the gas combustion device, the increased urgency for performing an inspection or maintenance can be signaled.

Bei einer bevorzugten Ausführungsform kann das Regelsystem aus einem historischen zeitlichen Verlauf der Stellgröße einen zukünftigen zeitlichen Verlauf der Stellgröße berechnen und daraus den Ausfallzeitpunkt berechnen. Beispielsweise kann in den historischen zeitlichen Verlauf der Stellgröße eine Gerade interpoliert werden, deren Extrapolation den zukünftigen zeitlichen Verlauf der Stellgröße ergibt. Aus der Länge der extrapolierten Geraden bis zu einem Schnittpunkt mit dem jeweiligen Grenzwert der Stellgrößen kann dann der Ausfallzeitpunkt ermittelt werden.In a preferred embodiment, the control system from a historical time course of the manipulated variable calculate a future time course of the manipulated variable and calculate the failure time. For example, a straight line can be interpolated in the historical time course of the manipulated variable, the extrapolation of which results in the future time course of the manipulated variable. From the length of the extrapolated straight line up to an intersection with the respective limit value of the manipulated variables, the failure time can then be determined.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.

Zeichnungendrawings

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert. Es zeigen, jeweils schematisch,

Fig. 1
eine schaltplanartige Prinzipdarstellung eines Gasverbrennungsgerätes
Fig. 2
ein Diagramm zur Darstellung des zeitlichen Verlaufs der Stellgrößen eines Stellgliedes des Gasverbrennungsgerätes.
An embodiment of the invention is illustrated in the drawings and will be explained in more detail below. Show, in each case schematically,
Fig. 1
a circuit diagram-like schematic diagram of a gas combustion device
Fig. 2
a diagram illustrating the timing of the control variables of an actuator of the gas combustion device.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Entsprechend Fig. 1 weist ein nur teilweise dargestelltes Gasverbrennungsgerät 1 einen Brenner 2 auf, der in einem Brennraum 3 angeordnet ist. Das Gasverbrennungsgerät 1 kann beispielsweise als Gasheizgerät ausgebildet sein und in einer Heizungsanlage eines Gebäudes zum Einsatz kommen. Das Gasverbrennungsgerät 1 weist außerdem ein Stellglied 4 auf, das hier durch eine Gasmischarmatur gebildet ist. Das Stellglied 4 ist eingangsseitig an eine Luftleitung 5 und an eine Brenngasleitung 6 angeschlossen, über die das Stellglied 4 mit Luft bzw. Brenngas versorgt wird. Ausgangsseitig ist an das Stellglied 4 eine Gemischleitung 7 angeschlossen, die das vom Stellglied 4 erzeugte Brenngas-Luft-Gemisch dem Brenner 2 zuführt.According to FIG. 1, a gas combustion device 1, which is shown only partially, has a burner 2, which is arranged in a combustion chamber 3. The gas combustion device 1 may for example be designed as a gas heater and come in a heating system of a building used. The gas combustion device 1 also has an actuator 4, which is formed here by a gas mixing valve. The actuator 4 is connected on the input side to an air line 5 and to a fuel gas line 6, via which the actuator 4 is supplied with air or fuel gas. On the output side, a mixture line 7 is connected to the actuator 4, which supplies the fuel gas-air mixture generated by the actuator 4 to the burner 2.

An die Brennkammer 3 ist eine Abgasleitung 8 angeschlossen, in der ein Sensor 9 angeordnet ist. Dieser Sensor 9, der beispielsweise als λ-Sonde ausgebildet ist, kann den Sauerstoffgehalt λ des über die Abgasleitung 8 aus dem Brennraum 3 abgeführten Verbrennungsabgases ermitteln.To the combustion chamber 3, an exhaust pipe 8 is connected, in which a sensor 9 is arranged. This sensor 9, which is embodied, for example, as a λ probe, can determine the oxygen content λ of the combustion exhaust gas discharged from the combustion chamber 3 via the exhaust gas line 8.

Das Gasverbrennungsgerät 1 weist außerdem ein Regelsystem 10 auf, das über eine Signalleitung 11 mit dem Sensor 9 und über eine Steuerleitung 12 mit dem Stellglied 4 verbunden ist. Das Regelsystem 10 enthält beispielsweise einen Mikroprozessor 13 sowie einen damit zusammenwirkenden Speicher 14. Das Regelsystem 10 kann außerdem eine erste Signalleuchte 15 sowie eine zweite Signalleuchte 16 aufweisen.The gas combustion device 1 also has a control system 10 which is connected via a signal line 11 to the sensor 9 and via a control line 12 to the actuator 4. The control system 10 includes, for example, a microprocessor 13 and a cooperating memory 14. The control system 10 may also include a first signal lamp 15 and a second signal lamp 16.

In dem in Fig. 2 dargestellten Diagramm sind auf der Ordinate die Stellgröße y des Stellglieds 4 und auf der Abzisse die Zeit t aufgetragen. Der obere Grenzwert und der untere Grenzwert der am Stellglied 4 einstellbaren Stellgrößen y sind mit ymax und ymin bezeichnet.In the diagram shown in FIG. 2, the manipulated variable y of the actuator 4 is plotted on the ordinate and the time t is plotted on the abscissa. The upper limit value and the lower limit value of the manipulated variables y which can be set on the actuator 4 are denoted by y max and y min .

Das Gasverbrennungsgerät 1 arbeitet wie folgt:The gas combustion device 1 operates as follows:

Das Regelsystem 10 ist so ausgebildet, daß es für das Gasverbrennungsgerät 1 bzw. für den Brenner 2 im Betrieb einen optimalen Arbeitspunkt einregelt. Diesem Arbeitspunkt ist eine bestimmte Sollgröße für den λ-Wert im Abgas zugeordnet. Dieser λ-Sollwert ist beispielsweise im Speicher 14 abgelegt. Dementsprechend führt das Regelsystem 10 eine λ-geführte Regelung des Stellgliedes 4 durch, indem das Regelsystem 10 in Abhängigkeit eines Soll-Ist-Vergleichs zwischen dem gespeicherten λ-Sollwert und dem von der Sonde 9 aktuell ermittelten λ-Istwert das Stellglied 4 betätigt. Die Betätigbarkeit des Stellgliedes 4 ist durch die Grenzwerte ymin und ymax der am Stellglied 4 einstellbaren Stellgrößen y begrenzt. Das Stellglied 4 und das Regelsystem 10 sind so ausgebildet und so miteinander verbunden, daß das Regelsystem 10 stets die aktuell am Stellglied 4 eingestellte Stellgröße y kennt. Außerdem kennt das Regelsystem 10 die Grenzwerte ymin und ymax. Die Regelung kann permanent oder zyklisch getaktet durchgeführt werden.The control system 10 is designed so that it adjusts an optimal operating point for the gas combustion device 1 and for the burner 2 during operation. This operating point is assigned a specific nominal value for the λ value in the exhaust gas. This λ setpoint is stored in the memory 14, for example. Accordingly, the control system 10 performs a λ-guided control of the actuator 4 by the control system 10 in response to a desired-actual comparison between the stored λ setpoint and the currently measured by the probe 9 λ actual value actuates the actuator 4. The operability of the actuator 4 is limited by the limits y min and y max of the actuator 4 adjustable manipulated variables y. The actuator 4 and the control system 10 are formed and interconnected so that the control system 10 always knows the currently set on the actuator 4 manipulated variable y. In addition, the control system 10 knows the limits y min and y max . The control can be performed permanently or cyclically clocked.

Das Regelsystem 10 ist so ausgebildet, daß es einen historischen zeitlichen Verlauf Vh der am Stellglied 4 eingestellten Stellgrößen y erfaßt. Durch die verschiedenen Regelungseingriffe des Regelsystems 10 ergibt sich für den historischen Verlauf Vh beispielsweise die in Fig. 2 gezeigte Schlangenlinie. Das Regelsystem 10 kann nun für einen aktuellen Zeitpunkt t0 aus dem historischen zeitlichen Verlauf Vh einen zukünftigen zeitlichen Verlauf Vz für die am Stellglied 4 einzustellenden Stellgrößen y berechnen. In der Ausführungsform gemäß Fig. 2 wird hierfür eine Gerade durch den historischen Verlauf Vh gelegt (interpoliert). Dieser zukünftige zeitliche Verlauf Vz wird nun mit demjenigen Grenzwert ymax oder ymin geschnitten, auf den sich der historische zeitliche Verlauf Vh zubewegt. Im vorliegenden Fall steigt der historische Verlauf Vh an, so daß der zukünftige Verlauf Vz den oberen Grenzwert ymax bei I schneidet. Aus diesem Schnittpunkt I kann nun ein in der Zukunft liegender Ausfallzeitpunkt t2 bestimmt werden. Ausgehend von diesem Ausfallzeitpunkt t2 kann dann ein Warnzeitpunkt t1 ermittelt werden, der sich aus einer vorbestimmten Mindestzeitspanne tmin ergibt, die in Fig. 2 durch eine geschweifte Klammer gekennzeichnet ist. Diese Mindestzeitspanne tmin ist im Regelsystem 10 gespeichert und kann sich aus Wartungsintervallen ergeben und beispielsweise eine Zeitspanne von zwei bis drei Monate betragen.The control system 10 is designed such that it detects a historical time course V h of the control variables y set on the actuator 4. Due to the various control interventions of the control system 10, the snaking line shown in FIG. 2 results, for example, for the historical course V h . The control system 10 can now for a current time t 0 from the historical time course V h calculate a future time course V z for to be set on the actuator 4 manipulated variables y. In the embodiment according to FIG. 2, a straight line is laid through the historical course V h (interpolated) for this purpose. This future time course V z is now cut with the limit value y max or y min , to which the historical time course V h moves. In the present case, the historical course V h increases , so that the future course V z intersects the upper limit value y max at I. From this point of intersection I, a failure time t 2 lying in the future can now be determined. Starting from this failure time t 2 , a warning time t 1 can then be determined, which results from a predetermined minimum time period t min , which is identified in FIG. 2 by a curly bracket. This minimum time period t min is stored in the control system 10 and may result from maintenance intervals and may be, for example, a period of two to three months.

Das Regelsystem 10 überprüft nun, ob eine vom aktuellen Zeitpunkt t0 bis zum errechneten Ausfallzeitpunkt t2 verbleibende Zeitspanne tv größer ist als die vorbestimmte Mindestzeitspanne tmin. Die verbleibende Zeitspanne tv ist in Fig. 2 ebenfalls durch eine geschweifte Klammer gekennzeichnet. Mit anderen Worten: Das Regelsystem 10 überprüft, ob ausgehend vom aktuellen Zeitpunkt t0 nach Ablauf der Mindestzeitspanne tmin der Ausfallzeitpunkt t2 erreicht ist.The control system 10 now checks whether a time t v remaining from the current time t 0 to the calculated failure time t 2 is greater than the predetermined minimum time period t min . The remaining time period t v is also indicated in FIG. 2 by a curly bracket. In other words, the control system 10 checks whether starting from the current time t 0 after the minimum time span t min has elapsed, the failure time t 2 has been reached.

Sobald der historische Verlauf Vh soweit fortgeschritten ist, daß der aktuelle Zeitpunkt t0 innerhalb der Mindestzeitspanne tmin liegt, erzeugt das Regelsystem 10 ein Warnsignal, beispielsweise durch eine blinkende Betätigung der ersten Signalleuchte 15. Durch die Auswahl der Mindestzeitspanne tmin wird einerseits gewährleistet, daß hinreichend Zeit zur Verfügung steht, um rechtzeitig eine Inspektion oder Wartung des Heizgerätes 1 durchführen zu können. Andererseits ergibt sich durch die Mindestzeitspanne tmin eine Sicherheitsreserve yr für die bis zum oberen Grenzwert ymax noch am Stellglied 4 einstellbaren Stellgrößen y. Hierdurch kann eine sichere Regelung des Stellglieds 4 und somit ein ordnungsgemäßer Betrieb des Brenners 2 bzw. des Gerätes 1 zumindest zu Beginn der Mindestzeitspanne tmin gewährleistet werden. Die genannte Sicherheitsreserve yr ergibt sich dabei aus einer Schnittstelle II des Warnzeitpunktes t1 mit dem zukünftigen zeitlichen Verlauf Vz.As soon as the historical course V h has progressed so far that the current time t 0 lies within the minimum time period t min , the control system 10 generates a warning signal, for example by a flashing actuation of the first signal light 15 Minimum time period t min on the one hand ensures that sufficient time is available to timely perform an inspection or maintenance of the heater 1 can. On the other hand, the minimum time span t min results in a safety reserve y r for the manipulated variables y that can still be set on the actuator 4 up to the upper limit value y max . In this way, a secure control of the actuator 4 and thus a proper operation of the burner 2 and the device 1 can be ensured at least at the beginning of the minimum time period t min . The said safety reserve y r results from an interface II of the warning time t 1 with the future time course V z .

Die hier vorgesehene zweite Signalleuchte 16 wird vom Regelsystem 10 dann aktiviert, wenn der historische zeitliche Verlauf Vh den Ausfallzeitpunkt t2, also die Schnittstelle I erreicht oder übersteigt. Das heißt, wenn der aktuelle Zeitpunkt t0 mit dem Ausfallzeitpunkt t2 zusammenfällt. Spätestens ab diesem Zeitpunkt t2 kann ein ordnungsgemäßer Betrieb des Brenners 2 bzw. des Geräts 1 im optimalen Arbeitspunkt nicht mehr gewährleistet werden.The second signal light 16 provided here is activated by the control system 10 when the historical time course V h reaches or exceeds the failure time t 2 , that is to say the interface I. That is, when the current time t 0 coincides with the failure time t 2 . At the latest from this time t 2 , proper operation of the burner 2 or of the device 1 at the optimum operating point can no longer be guaranteed.

Obwohl in der beschriebenen Ausführungsform ein ansteigender zeitlicher Verlauf V der Stellgröße y beschrieben worden ist, kann die Stellgröße y im Verlaufe der Zeit t auch abfallen, wobei dann Entsprechendes für den unteren Grenzwert ymin gilt.Although an increasing time characteristic V of the manipulated variable y has been described in the described embodiment, the manipulated variable y may also decrease in the course of the time t, in which case the same applies to the lower limit value y min .

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
GasverbrennungsgerätGas combustion device
22
Brennerburner
33
Brennraumcombustion chamber
44
Stellgliedactuator
55
Luftleitungair line
66
BrenngasleitungFuel gas line
77
Gemischleitungmixture line
88th
Abgasleitungexhaust pipe
99
Sensorsensor
1010
Regelsystemcontrol system
1111
Signalleitungsignal line
1212
Steuerleitungcontrol line
1313
Mikroprozessormicroprocessor
1414
SpeicherStorage
1515
erste Signalleuchtefirst signal light
1616
zweite Signalleuchtesecond signal light
yy
Stellgrößemanipulated variable
ymax y max
oberer Grenzwertupper limit
ymin y min
unterer Grenzwertlower limit
yr y r
Sicherheitsreservesafety margin
tt
ZeitTime
t0 t 0
aktueller Zeitpunktcurrent time
t1 t 1
WarnzeitpunktWarning Level
t2 t 2
AusfallzeitpunktFailure time
tmin min
MindestzeitspanneMinimum time
tv t v
verbleibende Zeitspanneremaining time
Vh V h
historischer zeitlicher Verlaufhistorical time course
Vz V z
zukünftiger zeitlicher Verlauffuture time course

Claims (4)

  1. A method for adjusting a mixing ratio of fuel gas and air at a gas burner, in particular a gas heater, comprising a control element (4), comprising a sensor (9) which can sense a X value which correlates with the oxygen content of the exhaust gas and comprising a control system (10) which is coupled to the control element (4) and the sensor (9) and makes it possible to achieve a λ-led regulation of the control element (4), wherein the control system (10) recognizes the control quantity (y) set at the control element (4) and recognises the limiting values (Ymax, Ymin) of the control quantities (y) which can be adjusted at the control element (4) and wherein the control system (10) calculates a failure time (t2) from the historical time profile (Vh) of the control quantity (y) at which the control quantity (y) reaches its limiting values (Ymax, Ymin).
  2. The method according to claim 1, characterised in that the control system (10) generates a warning signal if the calculated failure time (t2) lies within a predetermined minimum time interval (tmin).
  3. The method according to claim 1 or claim 2, characterised in that the control system (10) generates a warning signal if the failure time (t2) is reached or exceeded.
  4. The method according to any one of claims 1 to 3, characterised in that the control system (10) calculates a future time profile (V2) of the control quantity (y) from the historical time profile (Vh) of the control quantity (y) and calculates the failure time (t2) from this.
EP01129917A 2001-03-08 2001-12-15 Method for Controlling a Gas Combustion Apparatus, particularly a Gas Heating Apparatus Expired - Lifetime EP1239220B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10111077A DE10111077C2 (en) 2001-03-08 2001-03-08 Method for regulating a burner of a gas combustion device
DE10111077 2001-03-08

Publications (3)

Publication Number Publication Date
EP1239220A2 EP1239220A2 (en) 2002-09-11
EP1239220A3 EP1239220A3 (en) 2002-10-30
EP1239220B1 true EP1239220B1 (en) 2007-01-03

Family

ID=7676685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01129917A Expired - Lifetime EP1239220B1 (en) 2001-03-08 2001-12-15 Method for Controlling a Gas Combustion Apparatus, particularly a Gas Heating Apparatus

Country Status (2)

Country Link
EP (1) EP1239220B1 (en)
DE (2) DE10111077C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316994A1 (en) * 2003-04-11 2004-10-28 E.On Ruhrgas Ag Method of monitoring combustion in an incinerator
DE102008015311A1 (en) 2008-03-20 2009-09-24 Linde Ag Device for mixture monitoring for gas mixtures of two gases
PT3524884T (en) * 2014-07-10 2023-10-20 Riello Spa Retrofit assembly for a fuel gas boiler and method for modifying a fuel gas boiler
ES2910172T3 (en) * 2016-09-02 2022-05-11 Bosch Gmbh Robert Procedure to define an inspection instant in a heating system, as well as a control unit and a heating system
CN113237109B (en) * 2021-05-31 2022-10-04 宁波方太厨具有限公司 Smoke and stove coordinated control device, kitchen range and range hood

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3039994A1 (en) * 1980-10-23 1982-05-06 Karl Dungs Gmbh & Co, 7067 Urbach METHOD FOR SETTING COMPONENT CONTROLLERS FOR BURNERS IN HEAT GENERATING SYSTEMS
DE3526384A1 (en) * 1985-07-24 1987-02-12 Bieler & Lang Gmbh METHOD AND ARRANGEMENT FOR FINE REGULATING THE FUEL QUANTITY CURRENT IN BURNER-OPERATED COMBUSTION PLANTS BY MEASURING THE RESIDUAL OXYGEN AND THE CARBON MONOXIDE CONTENT IN THE EXHAUST GAS
US5329273A (en) * 1992-06-03 1994-07-12 Honeywell, Inc. System controller and remote fault annunciator with cooperative storage, sharing, and presentation of fault data
DE19618573C1 (en) * 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Gas burner regulating method controlled by ionisation electrode signal
EP0770824B1 (en) * 1995-10-25 2000-01-26 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner
DE19627857C2 (en) * 1996-07-11 1998-07-09 Stiebel Eltron Gmbh & Co Kg Process for operating a gas fan burner

Also Published As

Publication number Publication date
DE10111077C2 (en) 2003-11-06
DE10111077A1 (en) 2002-09-26
DE50111790D1 (en) 2007-02-15
EP1239220A2 (en) 2002-09-11
EP1239220A3 (en) 2002-10-30

Similar Documents

Publication Publication Date Title
EP2594848B1 (en) Method for controlling a firing device and firing device
EP0030736A2 (en) Device for controlling the combustion mixture of a burner
DE3638410C2 (en)
EP3499124A1 (en) Heating device components and method for adjusting a fuel flow
EP1239220B1 (en) Method for Controlling a Gas Combustion Apparatus, particularly a Gas Heating Apparatus
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
DE60021779T2 (en) A modulating burner system for preventing the use of non-commissioned devices and testing the health of inoperative devices
EP1650502A2 (en) Process and apparatus for the calibration of a heating apparatus
EP1002997A2 (en) Method for controlling a fuel/air ratio of full premix gas burner
DE4211681A1 (en) METHOD FOR CONTROLLING THE BURNING OF A COMBUSTION GAS
EP1746345A2 (en) Method for operating a gas burner
EP1309821B1 (en) Regulation method for gas burners
EP1207340B1 (en) Method of controling a burner
DE19544179A1 (en) Control device of a gas / air mixture control for a gas flame treatment
DE4312801A1 (en) Method of controlling a gas forced draft burner
EP2354657B1 (en) Method for operating a gas burner
EP3859210B1 (en) Method for optimizing a tolerance range of a control characteristic of an electronic mixture control in a gas heater
EP1528326B1 (en) Gas cooking plate and display method
DE10056064A1 (en) Process for regulating a gas burner
DE102004063992B4 (en) Regulating and controlling process for firing apparatus involves using characteristic curve showing value range for setpoint temperature in accordance with two parameters
DE10057225C2 (en) Method of operating a gas burner for a heater
DE19737191A1 (en) Device to run heating plant
EP3168549B1 (en) Method for operating a heating assembly
DE19744008A1 (en) Gas-burner ignition method
EP4060235A1 (en) Method for operating a heater with an electronic gas / air connection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23N 5/24 A

17P Request for examination filed

Effective date: 20030502

AKX Designation fees paid

Designated state(s): DE FR GB IT

RTI1 Title (correction)

Free format text: METHOD FOR CONTROLLING A GAS COMBUSTION APPARATUS, PARTICULARLY A GAS HEATING APPARATUS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50111790

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161221

Year of fee payment: 16

Ref country code: IT

Payment date: 20161220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170224

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111790

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215