EP1207340B1 - Method of controling a burner - Google Patents

Method of controling a burner Download PDF

Info

Publication number
EP1207340B1
EP1207340B1 EP01126826A EP01126826A EP1207340B1 EP 1207340 B1 EP1207340 B1 EP 1207340B1 EP 01126826 A EP01126826 A EP 01126826A EP 01126826 A EP01126826 A EP 01126826A EP 1207340 B1 EP1207340 B1 EP 1207340B1
Authority
EP
European Patent Office
Prior art keywords
phase
gas
setpoint
flame signal
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01126826A
Other languages
German (de)
French (fr)
Other versions
EP1207340A3 (en
EP1207340A2 (en
Inventor
Christian Buchczyk
Harald Hummel
Heinrich Oehler
Hans-Joachim Ripplinger
Jürgen Dr. Sterlepper
Marco Techt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Thermotechnik GmbH
Original Assignee
BBT Thermotechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10057224A external-priority patent/DE10057224C2/en
Priority claimed from DE10057225A external-priority patent/DE10057225C2/en
Priority claimed from DE10057234A external-priority patent/DE10057234C2/en
Priority claimed from DE20101085U external-priority patent/DE20101085U1/en
Application filed by BBT Thermotechnik GmbH filed Critical BBT Thermotechnik GmbH
Publication of EP1207340A2 publication Critical patent/EP1207340A2/en
Publication of EP1207340A3 publication Critical patent/EP1207340A3/en
Application granted granted Critical
Publication of EP1207340B1 publication Critical patent/EP1207340B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/725Protection against flame failure by using flame detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices

Definitions

  • the invention relates to a method for controlling a gas burner for a heater according to claim 1.
  • the gas nozzles are divided into at least two groups with different positions on the gas distributor and connected to their own gas supply. This results in a main and a secondary gas flow, so that each venturi of a fuel rod is associated with a main and at least one auxiliary gas nozzle.
  • at least one secondary gas stream is introduced into the mixing chamber in addition to the main gas stream.
  • the air ratio lambda in the mixing chamber is reduced, because by the injector effect of the main gas stream and the secondary gas is sucked.
  • it is crucial for the adjustment of the desired gas / air ratio to control the side gas flow with an actuator.
  • the gas burners have combustion sensors, such as a measuring electrode.
  • a measuring electrode In particular, with ionization often flame signals are detected or formed. Thereafter, the gas / air ratio of the burner can be adjusted via the secondary gas stream to a corresponding lambda value.
  • the ionization electrode transmits an electrical variable derived from the combustion temperature or the lambda value to a control circuit which compares this variable with a selected electrical desired value and sets corresponding control parameters as specifications. Since the flame signal for combustion control is influenced by various factors, usually takes place at regular intervals, automatic calibration. Such a calibration method is described in DE 195 39 568 C1 and US Pat. No. 5,899,683. It should be initiated after a certain number of operating hours or gas burner starts.
  • a second shut-off valve opens on a gas fitting and the main gas supply is released.
  • over-ignition must have taken place from the ignition to the main burner. If this is not the case, a safety switch-off is immediately initiated by the burner control unit.
  • the invention is based on the object, a method for automatic function verification for a gas / air composite control on a gas burner for a heater to provide, during operation, the gas / air ratio in a narrow work area to keep.
  • the setpoint for the flame signal in the gas / air composite control is changed. This preferably takes place within a starting sequence controlled according to predetermined values before the controlled, stationary burner operation. During the entire gas / air combined control check, there must always be an increasing flame signal in conjunction with an increasing open state of the actuator or a falling flame signal in conjunction with a decreasing open state of the actuator to ensure that the control loop is operating properly.
  • the actuator for the secondary gas flow is first brought to initial position, so that the largest possible adjustment range is available. This is necessary because it can be relatively wide open during the starting process, on the one hand to ensure safe flame formation and on the other hand to achieve a relatively lean combustion.
  • the setpoint value for the flame signal is then raised by a predetermined amount A.
  • the new set point must be reached within a permissible time and / or with a permissible deviation with the flame signal through the combined gas / air control.
  • the new setpoint is again reduced by an amount B at the beginning. This must also be achieved with the flame signal within the allowable time and / or with a permissible deviation for the third phase by moving the actuator.
  • the check of the chain of effects is finished and then the original setpoint for the flame signal is valid again. If the check is positive, the gas burner goes into normal operation.
  • the amount B for the new target value of the flame signal is preferably chosen to be smaller than the amount A.
  • the amount A is added to the target value of the flame signal, if the current flame signal at this time is less than or equal to the target value. In the other case, if the current flame signal at this time is greater than the setpoint, the amount A at the beginning of the second phase is added to the value of the current flame signal.
  • the values for the amounts A and B as well as the permissible duration of the phases at the burner control unit can be freely entered or changed within specified limits. If the flame signal reaches the setpoint already before the allowable time in the second and / or third phase, the progress of the check is accelerated. This then passes into the third phase during the second or the gas / air composite control then operates immediately during the third phase in response to the current flame signal and a setpoint. In addition, the check also proceeds from the second to the third phase when the flame signal in the allowable time of the second phase does not reach the set point, but at the end of the period by a certain allowable amount below the predetermined setpoint.
  • a transition to the third phase occurs when the prevailing flame signal at the end of the second phase is greater than the value of the flame signal stored at the end of the first phase.
  • the combined air / fuel ratio control operates after the third phase in response to the current flame signal and a setpoint when the flame signal does not reach the set point in the allowable time of the third phase, but by a certain allowable amount above that at the end of that period predetermined setpoint is. In this case, the flame signal prevailing at the end of the third phase is compared with the flame signal stored at the end of the second phase.
  • the combined gas / air control will transition to operation in response to the current flame signal and a setpoint value only after the third phase, if the measured flame signal at the end of the third phase is less than the stored one at the end of the second phase.
  • the calibration is initiated in a variant embodiment, when predetermined limit values for the position of a gas actuator and / or for the air quantity are achieved as control parameters. In a breakdown into a main and a secondary gas flow, the gas actuator is monitored for the secondary gas flow and its control signal used as a control parameter for assessing the need for a calibration, because with the side gas flow, the modulation of the burner or adjusting the gas / air ratio.
  • the measured values are evaluated. Detected is the control variable of the gas actuator or the position of the gas actuator to close on the gas flow.
  • the calibration is also initiated if there is a deviation of the measured value for the current at the gas actuator or its position from a mean value in the case of a heat request with a shutdown during operation. This average value is preferably formed from the last measured values, the oldest being always replaced by the most recent one. In the event of a power failure, the last measured values remain stored. Alternatively, all available memory locations for measured values can also be assigned the same value, preferably the last average value.
  • a calibration is initiated if the measured value for the control variable of the gas actuator or its position is outside a tolerance band that can be set on the controller.
  • the last control parameters are compared with stored, previous control parameters at each burner start.
  • a method for automatic function verification for a gas / air composite control on a gas burner is created at each start, with which the entire chain of effects in the control loop of the gas / air composite control is detected.
  • Both modes of action for the mixture control namely increasing and decreasing the amount of secondary gas, are tested by specifying corresponding setpoint values for the flame signal.
  • a signal change must then occur in each case.
  • the method can be combined with many different combustion sensors, is part of the fixed, controlled start-up procedure, and connects directly to the ignition from the ignition to the main burner.
  • a calibration of the gas / air composite control is carried out before the steady-state burner operation regulated according to the determined values of the combustion sensors begins.
  • the calibration according to the method according to the invention results in a safe operation of the gas burner with changing gas / air conditions in successive cycles.
  • the calibration is dynamic and variable. With this adaptation to changed boundary conditions, lockouts are avoided and an optimal burner operation is guaranteed at all times.
  • the method for operating a gas burner is characterized in that, after a safety shutdown, the gas burner restarts and a calibration integrated into the starting sequence is carried out.
  • a lockout occurs only when after a predetermined number of safety shutdowns with subsequent calibrations the signals of the combustion sensor are still outside the allowable control range. This avoids stoppages or unnecessary switching on and off of a gas burner.
  • the multiple calibration ensures automatic burner operation, which increases the availability of the gas burner or the heater. Only in the event that the ambient conditions make a burner operation impossible, the device is locked. Operating personnel is thus required only for a final fault lockout, which takes place after a predetermined number of previous safety shutdowns with subsequent calibrations, each leading to a negative result with an excess of the allowable control range.
  • the control circuit for the adjustment of the gas / air ratio with a switch or an electrical jumper is to be taken out of service. In this state, the actuator for the secondary gas flow remains closed.
  • the drawing illustrates an embodiment of the invention and shows in a single figure a diagram with the schematic sequence of a review of the gas / air composite control on a gas burner.
  • the desired value (S) for the flame signal (F), the current flame signal (F) and the opening state (O) of the actuator for the secondary gas flow are plotted over the time axis.
  • the illustrated sequence follows directly on the start phase with over-ignition, which requires a relatively wide opening state ⁇ of the actuator for the secondary gas flow. Therefore, in phase 1, the actuator is first brought to minimum position. At the beginning of phase 2, the setpoint value S for the flame signal F is then raised by a predetermined amount A.
  • the setpoint S must be achieved by the current flame signal F by readjustment with the actuator of the gas / air composite control.
  • phase 3 in which then the new setpoint S is initially reduced by an amount B in order to make a change in the flame signal F associated with the reduction of the side gas quantity up to the corresponding setpoint value S within the predetermined time.
  • the verification of the chain of effects in the control loop of the combined gas / air system is completed successfully and the combined gas / air control of the gas burner is switched to normal control mode.
  • the value 1 is the oldest in memory and will always be replaced by the newest value 3. From these three exemplary measurements - or altemative also from a higher number - a current average is formed in each case.
  • This Mean value is provided with a tolerance band which can be set to the operating conditions, which allows a deviation of ⁇ 3 in the embodiment shown.
  • everyone single measured value must be within the specified tolerances. Is not this the If so, a calibration is performed at the next burner start. For example, in the table the value 26 is twice below the current permissible for the respective burner start Limit of 27.0 or 26.3 and requires calibration.

Abstract

The ignition system performs an automatic check of the control system and checks ignition of the pilot burner and the main burner. The sequence starts with production of an electric spark to ignite the pilot burner. The first phase involves setting the gas flow control to minimum, with lean gas-air mixture. Different target values for the mixture are set as the ignition sequence proceeds.

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Gasbrenners für ein Heizgerät nach dem Patentanspruch 1.
Bei bekannten Gasbrennern sind die Gasdüsen in mindestens zwei Gruppen mit unterschiedlicher Position am Gasverteiler aufgeteilt und an jeweils eine eigene Gasversorgung angeschlossen. Damit ergibt sich ein Haupt- und ein Nebengasstrom, so dass jedem Venturirohr eines Brennstabes eine Haupt- und mindestens eine Nebengasdüse zugeordnet ist. In Abhängigkeit von Betriebsbedingungen und/oder dem Brennerbetriebszustand wird dabei mindestens ein Nebengasstrom zusätzlich zum Hauptgasstrom in den Mischraum eingebracht. Die Luftzahl Lambda im Mischraum wird reduziert, weil durch die Injektorwirkung des Hauptgasstromes auch das Nebengas angesaugt wird. Somit ist es für die Einstellung des gewünschten Gas-/Luftverhältnisses entscheidend, den Nebengasstrom mit einem Stellglied zu regeln.
Dafür besitzen die Gasbrenner Verbrennungssensoren, wie zum Beispiel eine Messelektrode. Insbesondere mit lonisationselektroden werden häufig Flammensignale erfasst bzw. gebildet. Danach kann das Gas-/ Luftverhältnis des Brenners über den Nebengasstrom auf einen entsprechenden Lambda-Wert eingestellt werden. Die lonisationselektrode gibt dabei eine von der Verbrennungstemperatur bzw. dem Lambda-Wert abgeleitete elektrische Größe an eine Regelschaltung weiter, welche diese Größe mit einem gewählten elektrischen Sollwert vergleicht und entsprechende Regelparameter als Vorgaben einstellt.
Da das Flammensignal zur Verbrennungsregelung von verschiedenen Faktoren beeinflusst wird, erfolgt in der Regel eine in regelmäßigen Zeitabständen einsetzende, automatische Kalibrierung. Ein derartiges Kalibrierverfahren ist in der DE 195 39 568 C1 und der US-A-5 899 683 beschrieben. Es soll nach einer bestimmten Anzahl von Betriebsstunden oder Einschaltungen des Gasbrenners eingeleitet werden.
The invention relates to a method for controlling a gas burner for a heater according to claim 1.
In known gas burners, the gas nozzles are divided into at least two groups with different positions on the gas distributor and connected to their own gas supply. This results in a main and a secondary gas flow, so that each venturi of a fuel rod is associated with a main and at least one auxiliary gas nozzle. Depending on operating conditions and / or the burner operating state, at least one secondary gas stream is introduced into the mixing chamber in addition to the main gas stream. The air ratio lambda in the mixing chamber is reduced, because by the injector effect of the main gas stream and the secondary gas is sucked. Thus, it is crucial for the adjustment of the desired gas / air ratio to control the side gas flow with an actuator.
For this, the gas burners have combustion sensors, such as a measuring electrode. In particular, with ionization often flame signals are detected or formed. Thereafter, the gas / air ratio of the burner can be adjusted via the secondary gas stream to a corresponding lambda value. In this case, the ionization electrode transmits an electrical variable derived from the combustion temperature or the lambda value to a control circuit which compares this variable with a selected electrical desired value and sets corresponding control parameters as specifications.
Since the flame signal for combustion control is influenced by various factors, usually takes place at regular intervals, automatic calibration. Such a calibration method is described in DE 195 39 568 C1 and US Pat. No. 5,899,683. It should be initiated after a certain number of operating hours or gas burner starts.

Unabhängig von einer Kalibrierung des Gesamtsystems muss die Funktionsfähigkeit des wichtigen Regelkreises für den Nebengasstrom überprüft werden, weil möglicherweise auftretende Fehler einen direkten Einfluss auf das Gas-/Luftverhältnis und die Verbrennungsqualität hätten.
Nachteilig ist allerdings an diesen fest vorgegebenen Intervallen zwischen einzelnen Kalibriervorgängen, dass veränderte Betriebsbedingungen möglicherweise erst beim nächsten Kalibrieren und somit relativ spät erfasst werden. In der Zwischenzeit ist der Brennerbetrieb dann nicht optimal, weil sich durch die Speicherung von Regelparametern die jeweils neuen Sollwerte als Vorgaben in einem unerwünschten, einseitigen Trend von der richtigen Einstellung entfernen würden. Es ergeben sich bei einem weitgehend auf die Betriebsbedingungen eingestellten Gasbrenner ungefähr die gleichen Werte für die Stellung eines Gasstellgliedes und es fließt dann eventuell von einer Wärmeanforderung zur nächsten eine kleine Abweichung unerkannt ein.
Bei einem Gasbrenner beginnt ein normaler Startvorgang mit der Inbetriebnahme des Zündbrenners. Anschließend öffnet ein zweites Absperrventil an einer Gasarmatur und es wird die Hauptgaszufuhr freigegeben. Innerhalb einer Sicherheitszeit muss dann ein Überzünden vom Zünd- auf den Hauptbrenner erfolgt sein. Ist dies nicht der Fall, wird sofort vom Feuerungsautomaten eine Sicherheitsabschaltung eingeleitet.
Regardless of overall system calibration, it is important to verify the functionality of the main bypass gas flow loop, as any errors that may occur will have a direct impact on the gas / air ratio and combustion quality.
A disadvantage, however, at these fixed intervals between individual calibration procedures that changed operating conditions may be detected only at the next calibration and thus relatively late. In the meantime, the burner operation is then not optimal, because the storage of control parameters would remove the new setpoints as defaults in an unwanted, one-way trend from the correct setting. There are approximately the same values for the position of a gas actuator at a largely set to the operating conditions gas burner and it then flows from one heat request to the next a small deviation unrecognized.
In the case of a gas burner, a normal starting process begins with the start-up of the pilot burner. Subsequently, a second shut-off valve opens on a gas fitting and the main gas supply is released. Within a safety period then over-ignition must have taken place from the ignition to the main burner. If this is not the case, a safety switch-off is immediately initiated by the burner control unit.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur automatischen Funktionsüberprüfung für eine Gas-/Luft-Verbundregelung an einem Gasbrenner für ein Heizgerät zu schaffen, um während des Betriebes das Gas-/Luftverhältnis in einem engen Arbeitsbereich zu halten.The invention is based on the object, a method for automatic function verification for a gas / air composite control on a gas burner for a heater to provide, during operation, the gas / air ratio in a narrow work area to keep.

Erfindungsgemäß wurde dies mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.This has been achieved with the features of claim 1 according to the invention. advantageous Further developments can be found in the dependent claims.

Bei dem Verfahren zur Regelung des Gas-/Luftverhältnisses bei einem Gasbrenner für ein Heizgerät gemäß Anspruch 1 wird bei jedem Brennerstart nach dem Überzünden die gesamte Wirkungskette der Gas-/Luft-Verbundregelung überprüft wird und dass eine Kalibrierung beim Brennerstart durchgeführt wird, wenn beim Vergleich der letzten Regelparameter mit vorhergehenden Regelparametern vorgegebene Grenzwerte für Abweichungen über- oder unterschritten werden. In the method for controlling the gas / air ratio in a gas burner for a Heater according to claim 1 is at each burner start after over-ignition the entire chain of action of the gas / air composite control is checked and that a Calibration at burner start is performed when comparing the last control parameters specified limits for deviations with previous control parameters be exceeded or fallen below.

Dazu wird der Sollwert für das Flammensignal in der Gas-/Luft-Verbundregelung verändert. Vorzugsweise erfolgt dies innerhalb eines nach vorgegebenen Werten gesteuerten Startablaufs vor dem geregelten, stationären Brennerbetrieb. Während der gesamten Überprüfung der Gas-/Luft-Verbundregelung muss immer ein steigendes Flammensignal in Verbindung mit einem zunehmenden Öffnungszustand des Stellgliedes bzw. ein fallendes Flammensignal in Verbindung mit einem abnehmenden Öffnungszustand des Stellgliedes vorhanden sein, um sicherzustellen, dass der Regelkreis richtig arbeitet.
In einer ersten Phase, welche sich unmittelbar an das Überzünden des Gasbrenners anschließt, wird das Stellglied für den Nebengasstrom zunächst auf Ausgangsstellung gebracht, damit ein möglichst großer Stellbereich zur Verfügung steht. Dies ist notwendig, weil es beim Startvorgang relativ weit geöffnet sein kann, um einerseits eine sichere Flammenbildung sicherzustellen und andererseits eine relativ magere Verbrennung zu erreichen. Zu Beginn einer zweiten Phase mit einer bestimmten Zeitdauer wird der Sollwert für das Flammensignal dann um einen festgelegten Betrag A angehoben. In dieser Phase muss der neue Sollwert innerhalb einer zulässigen Zeit und/oder mit einer zulässigen Abweichung mit dem Flammensignal durch die Gas-/Luft-Verbundregelung erreicht werden. Direkt anschließend beginnt eine dritte Phase, in welcher der neue Sollwert zu Beginn wieder um einen Betrag B herabgesetzt wird. Dieser muss ebenfalls mit dem Flammensignal innerhalb der zulässigen Zeit und/oder mit einer zulässigen Abweichung für die dritte Phase durch Verfahren des Stellgliedes erreicht werden. Nach Abschluss der dritten Phase ist die Überprüfung der Wirkungskette beendet und es gilt danach wieder der ursprüngliche Sollwert für das Flammensignal.
Verläuft die Überprüfung positiv, so geht der Gasbrenner in den Normalbetrieb über. Bei negativem Verlauf, d. h. falls der Regelkreis bereits ein in den einzelnen Phasen vorgegebenes Kriterium nicht erfüllt, beispielsweise die Sollwerte für das Flammensignal nicht erreicht oder die dafür vorgegebene Zeit nicht einhalten kann, erfolgt eine Sicherheitsabschaltung, weil die Funktionssicherheit der Gas-/Luft-Verbundregelung dann nicht gegeben ist.
Der Betrag B für den neuen Sollwert des Flammensignals ist vorzugsweise kleiner gewählt als der Betrag A. Zu Beginn der zweiten Phase wird der Betrag A mit dem Sollwert des Flammensignals addiert, wenn das aktuelle Flammensignal in diesem Zeitpunkt kleiner oder gleich dem Sollwert ist. Im anderen Fall, wenn das aktuelle Flammensignal in diesem Zeitpunkt größer als der Sollwert ist, wird der Betrag A zu Beginn der zweiten Phase mit dem Wert des aktuellen Flammensignals addiert. Für eine Anpassung an spezielle Betriebsbedingungen von Gasbrenner und Heizgerät bei der Installation, können die Werte für die Beträge A und B sowie die zulässige Zeitdauer der Phasen am Feuerungsautomaten innerhalb von festgelegten Grenzen frei eingegeben bzw. verändert werden.
Wenn das Flammensignal bereits vor der zulässigen Zeit in der zweiten und/oder dritten Phase den Sollwert erreicht, wird der Ablauf der Überprüfung beschleunigt. Diese geht dann während der zweiten sofort in die dritte Phase über bzw. es arbeitet die Gas-/ Luft-Verbundregelung dann während der dritten Phase sofort in Abhängigkeit vom aktuellen Flammensignal und einem Sollwert. In Ergänzung dazu geht die Überprüfung ebenfalls von der zweiten in die dritte Phase über, wenn das Flammensignal in der zulässigen Zeit der zweiten Phase den Sollwert zwar nicht erreicht, aber am Ende des Zeitraums um einen bestimmten, zulässigen Betrag unter dem vorgegebenen Sollwert liegt. Auch findet ein Übergang in die dritte Phase statt, wenn das vorherrschende Flammensignal am Ende der zweiten Phase größer als der am Ende der ersten Phase gespeicherte Wert des Flammensignals ist.
Die Gas-/Luft-Verbundregelung arbeitet nach der dritten Phase in Abhängigkeit vom aktuellen Flammensignal und einem Sollwert, wenn das Flammensignal in der zulässigen Zeit der dritten Phase den Sollwert zwar nicht erreicht, aber am Ende dieses Zeitraums um einen bestimmten, zulässigen Betrag über dem vorgegebenen Sollwert liegt. Dabei wird das am Ende der dritten Phase vorherrschende Flammensignal mit dem am Ende der zweiten Phase gespeicherten Flammensignal verglichen. Die Gas-/ Luft-Verbundregelung geht nur dann nach der dritten Phase auf den Betrieb in Abhängigkeit vom aktuellen Flammensignal und einem Sollwert über, wenn das gemessene Flammensignal am Ende der dritten Phase kleiner als das gespeicherte am Ende der zweiten Phase ist.
Es erfolgt eine Sicherheitsabschaltung, wenn mindestens eines der vorstehend beschriebenen Kriterien vom Flammensignal nicht erfüllt ist.
Die Kalibrierung wird bei einer Ausführungsvariante eingeleitet, wenn als Regelparameter vorgegebene Grenzwerte für die Stellung eines Gasstellgliedes und/oder für die Luftmenge erreicht werden. Bei einer Aufgliederung in einen Haupt- und einen Nebengasstrom wird das Gasstellglied für den Nebengasstrom überwacht und dessen Ansteuerungssignal als Regelparameter zur Beurteilung der Notwendigkeit einer Kalibrierung herangezogen, weil mit dem Nebengasstrom das Modulieren des Brenners bzw. Einstellen des Gas-/ Luftverhältnisses erfolgt. Jeweils am Ende einer Wärmeanforderung werden die Messwerte ausgewertet. Erfasst ist dabei die Steuergröße des Gasstellgliedes bzw. die Stellung des Gasstellgliedes, um auf den Gasdurchsatz zu schließen.
Andererseits wird die Kalibrierung auch eingeleitet, wenn bei einer Wärmeanforderung mit einer Abschaltung im Betrieb eine Abweichung des Messwertes für den Strom am Gasstellglied bzw. dessen Stellung von einem Mittelwert vorliegt. Dieser Mittelwert wird vorzugsweise aus den letzten Messwerten gebildet, wobei der älteste immer durch den aktuellsten ersetzt wird. Bei Netzausfall bleiben die letzten Messwerte gespeichert. Alternativ dazu können auch alle vorhandenen Speicherplätze für Messwerte mit dem gleichen Wert, vorzugsweise dem letzten Mittelwert, belegt werden.
Eine Kalibrierung wird eingeleitet, wenn der Messwert für die Steuergröße des Gasstellgliedes bzw. dessen Stellung außerhalb eines am Regler einstellbaren Toleranzbandes liegt. Dadurch ist es möglich, die Kalibrierung an stark schwankende Betriebs- oder Umgebungsbedingungen anzupassen. Grundsätzlich erfolgt ein Vergleich der letzten Regelparameter mit gespeicherten, vorhergehenden Regelparametern bei jedem Brennerstart.
Mit der Erfindung wird ein Verfahren zur automatischen Funktionsüberprüfung für eine Gas-/Luft-Verbundregelung an einem Gasbrenner bei jedem Start geschaffen, mit dem die gesamte Wirkungskette im Regelkreis der Gas-/Luft-Verbundregelung erfasst ist. Beide Wirkungsrichtungen für die Gemischregelung, nämlich Vergrößerung und Verringerung der Nebengasmenge, werden durch die Vorgabe entsprechender Sollwerte für das Flammensignal getestet. Innerhalb eines entsprechend festgelegten Zeitfensters muss dann jeweils eine Signaländerung eintreten. Das Verfahren lässt sich mit vielen verschiedenen Verbrennungssensoren kombinieren, gehört zum fest vorgegebenen, gesteuerten Startablauf, und schließt sich darin direkt an die Überzündung vom Zünd- auf den Hauptbrenner an. Nach der positiv verlaufenen Überprüfung erfolgt bei Bedarf noch eine Kalibrierung der Gas-/Luft-Verbundregelung, bevor der stationäre, nach den ermittelten Werten der Verbrennungssensoren geregelte Brennerbetrieb beginnt.
Mit der Kalibrierung nach dem erfindungsgemäßen Verfahren ergibt sich ein sicherer Betrieb des Gasbrenners bei wechselnden Gas-/Luftverhältnissen in aufeinanderfolgenden Laufzyklen. Die Kalibrierung läuft dynamisch und variabel ab. Mit dieser Anpassung an veränderte Randbedingungen werden Störabschaltungen vermieden und es ist jederzeit ein optimaler Brennerbetrieb gewährleistet.
For this purpose, the setpoint for the flame signal in the gas / air composite control is changed. This preferably takes place within a starting sequence controlled according to predetermined values before the controlled, stationary burner operation. During the entire gas / air combined control check, there must always be an increasing flame signal in conjunction with an increasing open state of the actuator or a falling flame signal in conjunction with a decreasing open state of the actuator to ensure that the control loop is operating properly.
In a first phase, which directly follows the overflamming of the gas burner, the actuator for the secondary gas flow is first brought to initial position, so that the largest possible adjustment range is available. This is necessary because it can be relatively wide open during the starting process, on the one hand to ensure safe flame formation and on the other hand to achieve a relatively lean combustion. At the beginning of a second phase with a certain period of time, the setpoint value for the flame signal is then raised by a predetermined amount A. In this phase, the new set point must be reached within a permissible time and / or with a permissible deviation with the flame signal through the combined gas / air control. Immediately thereafter begins a third phase in which the new setpoint is again reduced by an amount B at the beginning. This must also be achieved with the flame signal within the allowable time and / or with a permissible deviation for the third phase by moving the actuator. After completion of the third phase, the check of the chain of effects is finished and then the original setpoint for the flame signal is valid again.
If the check is positive, the gas burner goes into normal operation. In the case of a negative course, ie if the control loop does not already fulfill a criterion specified in the individual phases, for example, does not reach the setpoint values for the flame signal or can not comply with the specified time, a safety shutdown occurs because the functional reliability of the gas / air composite control then not given.
The amount B for the new target value of the flame signal is preferably chosen to be smaller than the amount A. At the beginning of the second phase, the amount A is added to the target value of the flame signal, if the current flame signal at this time is less than or equal to the target value. In the other case, if the current flame signal at this time is greater than the setpoint, the amount A at the beginning of the second phase is added to the value of the current flame signal. For adaptation to special operating conditions of the gas burner and heater during installation, the values for the amounts A and B as well as the permissible duration of the phases at the burner control unit can be freely entered or changed within specified limits.
If the flame signal reaches the setpoint already before the allowable time in the second and / or third phase, the progress of the check is accelerated. This then passes into the third phase during the second or the gas / air composite control then operates immediately during the third phase in response to the current flame signal and a setpoint. In addition, the check also proceeds from the second to the third phase when the flame signal in the allowable time of the second phase does not reach the set point, but at the end of the period by a certain allowable amount below the predetermined setpoint. Also, a transition to the third phase occurs when the prevailing flame signal at the end of the second phase is greater than the value of the flame signal stored at the end of the first phase.
The combined air / fuel ratio control operates after the third phase in response to the current flame signal and a setpoint when the flame signal does not reach the set point in the allowable time of the third phase, but by a certain allowable amount above that at the end of that period predetermined setpoint is. In this case, the flame signal prevailing at the end of the third phase is compared with the flame signal stored at the end of the second phase. The combined gas / air control will transition to operation in response to the current flame signal and a setpoint value only after the third phase, if the measured flame signal at the end of the third phase is less than the stored one at the end of the second phase.
There is a safety shutdown when at least one of the criteria described above is not met by the flame signal.
The calibration is initiated in a variant embodiment, when predetermined limit values for the position of a gas actuator and / or for the air quantity are achieved as control parameters. In a breakdown into a main and a secondary gas flow, the gas actuator is monitored for the secondary gas flow and its control signal used as a control parameter for assessing the need for a calibration, because with the side gas flow, the modulation of the burner or adjusting the gas / air ratio. At each end of a heat request, the measured values are evaluated. Detected is the control variable of the gas actuator or the position of the gas actuator to close on the gas flow.
On the other hand, the calibration is also initiated if there is a deviation of the measured value for the current at the gas actuator or its position from a mean value in the case of a heat request with a shutdown during operation. This average value is preferably formed from the last measured values, the oldest being always replaced by the most recent one. In the event of a power failure, the last measured values remain stored. Alternatively, all available memory locations for measured values can also be assigned the same value, preferably the last average value.
A calibration is initiated if the measured value for the control variable of the gas actuator or its position is outside a tolerance band that can be set on the controller. This makes it possible to adapt the calibration to highly fluctuating operating or ambient conditions. Basically, the last control parameters are compared with stored, previous control parameters at each burner start.
With the invention, a method for automatic function verification for a gas / air composite control on a gas burner is created at each start, with which the entire chain of effects in the control loop of the gas / air composite control is detected. Both modes of action for the mixture control, namely increasing and decreasing the amount of secondary gas, are tested by specifying corresponding setpoint values for the flame signal. Within a correspondingly defined time window, a signal change must then occur in each case. The method can be combined with many different combustion sensors, is part of the fixed, controlled start-up procedure, and connects directly to the ignition from the ignition to the main burner. After the positive check, if necessary, a calibration of the gas / air composite control is carried out before the steady-state burner operation regulated according to the determined values of the combustion sensors begins.
With the calibration according to the method according to the invention results in a safe operation of the gas burner with changing gas / air conditions in successive cycles. The calibration is dynamic and variable. With this adaptation to changed boundary conditions, lockouts are avoided and an optimal burner operation is guaranteed at all times.

Weiterhin ist das Verfahren zum Betrieb eines Gasbrenners dadurch gekennzeichnet, dass nach einer Sicherheitsabschaltung der Gasbrenner erneut startet und eine in den Startablauf integrierte Kalibrierung durchgeführt wird. Eine Störabschaltung erfolgt erst, wenn nach einer vorgegebenen Zahl von Sicherheitsabschaltungen mit darauffolgenden Kalibrierungen die Signale des Verbrennungssensors immer noch außerhalb des zulässigen Regelbereichs liegen. Damit werden Störabschaltungen oder ein unnötiges Ein- und Ausschalten eines Gasbrenners vermieden. Durch die mehrfache Kalibrierung ist ein möglichst automatischer Brennerbetrieb gewährleistet, welcher die Verfügbarkeit des Gasbrenners bzw. des Heizgerätes erhöht. Nur für den Fall, dass die Umgebungsbedingungen einen Brennerbetrieb unmöglich machen, wird das Gerät verriegelt. Bedienungspersonal ist somit nur bei einer endgültigen Störabschaltung erforderlich, welche erst nach einer vorgegebenen Zahl von vorangegangenen Sicherheitsabschaltungen mit darauffolgenden Kalibrierungen erfolgt, die jeweils zu einem negativen Ergebnis mit einer Überschreitung des zulässigen Regelbereiches führten.
Zusätzlich ist die Regelschaltung für die Einstellung des Gas-/Luftverhältnisses mit einem Schalter oder einer elektrischen Steckbrücke außer Betrieb zu nehmen. In diesem Zustand bleibt das Stellglied für den Nebengasstrom geschlossen.
Furthermore, the method for operating a gas burner is characterized in that, after a safety shutdown, the gas burner restarts and a calibration integrated into the starting sequence is carried out. A lockout occurs only when after a predetermined number of safety shutdowns with subsequent calibrations the signals of the combustion sensor are still outside the allowable control range. This avoids stoppages or unnecessary switching on and off of a gas burner. The multiple calibration ensures automatic burner operation, which increases the availability of the gas burner or the heater. Only in the event that the ambient conditions make a burner operation impossible, the device is locked. Operating personnel is thus required only for a final fault lockout, which takes place after a predetermined number of previous safety shutdowns with subsequent calibrations, each leading to a negative result with an excess of the allowable control range.
In addition, the control circuit for the adjustment of the gas / air ratio with a switch or an electrical jumper is to be taken out of service. In this state, the actuator for the secondary gas flow remains closed.

Die Zeichnung stellt ein Ausführungsbeispiel der Erfindung dar und zeigt in einer einzigen Figur ein Diagramm mit dem schematischen Ablauf einer Überprüfung der Gas-/Luft-Verbundregelung an einem Gasbrenner.
Dabei sind über der Zeitachse der Sollwert (S) für das Flammensignal (F), das aktuelle Flammensignal (F) und der Öffnungszustand (Ö) des Stellgliedes für den Nebengasstrom aufgetragen.
Der dargestellte Ablauf schließt sich direkt an die Startphase mit Überzündung an, welche einen relativ weiten Öffnungszustand Ö des Stellgliedes für den Nebengasstrom erfordert. Daher wird in der Phase 1 zunächst das Stellglied auf Minimalstellung gebracht. Zu Beginn der Phase 2 wird der Sollwert S für das Flammensignal F dann um einen festgelegten Betrag A angehoben. Während der für die Phase 2 vorbestimmten Zeit muss der Sollwert S vom aktuellen Flammensignal F durch Nachregeln mit dem Stellglied der Gas-/Luft-Verbundregelung erreicht werden. Es schließt sich die Phase 3 an, in der dann der neue Sollwert S zu Beginn um einen Betrag B herabgesetzt wird, um eine mit der Verringerung der Nebengasmenge einhergehende Änderung des Flammensignals F bis auf den entsprechenden Sollwert S innerhalb der vorgegebenen Zeit vorzunehmen. Nach Abschluss der dritten Phase ist die Überprüfung der Wirkungskette im Regelkreis der Gas-/Luft-Verbundregelung positiv beendet und die Gas-/Luft-Verbundregelung des Gasbrenners geht in den normalen Regelbetrieb über.
The drawing illustrates an embodiment of the invention and shows in a single figure a diagram with the schematic sequence of a review of the gas / air composite control on a gas burner.
In this case, the desired value (S) for the flame signal (F), the current flame signal (F) and the opening state (O) of the actuator for the secondary gas flow are plotted over the time axis.
The illustrated sequence follows directly on the start phase with over-ignition, which requires a relatively wide opening state Ö of the actuator for the secondary gas flow. Therefore, in phase 1, the actuator is first brought to minimum position. At the beginning of phase 2, the setpoint value S for the flame signal F is then raised by a predetermined amount A. During the predetermined time for phase 2, the setpoint S must be achieved by the current flame signal F by readjustment with the actuator of the gas / air composite control. This is followed by the phase 3, in which then the new setpoint S is initially reduced by an amount B in order to make a change in the flame signal F associated with the reduction of the side gas quantity up to the corresponding setpoint value S within the predetermined time. After completion of the third phase, the verification of the chain of effects in the control loop of the combined gas / air system is completed successfully and the combined gas / air control of the gas burner is switched to normal control mode.

Anhand der nachfolgenden Tabelle als Ausführungsbeispiel soll die Erfindung im Hinblick auf die Kalibrierung erläutert werden: Start aktuell gespeicherte Werte aktueller Mittelwert aktueller Kalibrierung erforderlich Wert 1 Wert 2 Wert 3 Min.-Wert Max.-Wert x+1 30 30 28 29,3 26,3 32,3 nein x+2 30 28 32 30,0 27,0 33,0 nein x+3 28 32 32 30,7 27,7 33,7 nein x+4 32 32 26 30,0 27,0 33,0 ja x+5 32 26 30 29,3 26,3 32,3 ja x+6 26 30 30 28,7 25,7 31,7 nein With reference to the following table as an exemplary embodiment, the invention will be explained with regard to the calibration: begin currently stored values current average current Calibration required Value 1 Value 2 Value 3 Min Value Max value x + 1 30 30 28 29.3 26.3 32.3 No x + 2 30 28 32 30.0 27.0 33.0 No x + 3 28 32 32 30.7 27.7 33.7 No x + 4 32 32 26 30.0 27.0 33.0 Yes x + 5 32 26 30 29.3 26.3 32.3 Yes x + 6 26 30 30 28.7 25.7 31.7 No

Dargestellt ist eine Anzahl von aufeinander folgenden Brennerstarts mit beliebigen Werten als Annahme für gemessene und gespeicherte Regelparameter, beispielsweise für die Stellung eines Gasstellgliedes. Der Wert 1 ist der älteste im Speicher und wird immer durch den neuesten Wert 3 ersetzt. Aus diesen drei beispielhaften Messwerten - oder altemativ auch aus einer höheren Anzahl - wird jeweils ein aktueller Mittelwert gebildet. Dieser Mittelwert ist mit einem auf die Betriebsbedingungen einstellbaren Toleranzband versehen, welches im gezeigten Ausführungsbeispiel eine Abweichung um ±3 zulässt. Jeder einzelne Messwert muss innerhalb der vorgegebenen Toleranzen liegen. Ist dies nicht der Fall, so erfolgt eine Kalibrierung beim nächsten Brennerstart. In der Tabelle liegt zum Beispiel der Wert 26 zweimal unter dem für den jeweiligen Brennerstart zulässigen aktuellen Grenzwert von 27,0 bzw. 26,3 und macht eine Kalibrierung erforderlich.Shown is a number of successive burner starts with arbitrary values as an assumption for measured and stored control parameters, for example for the Position of a gas actuator. The value 1 is the oldest in memory and will always be replaced by the newest value 3. From these three exemplary measurements - or altemative also from a higher number - a current average is formed in each case. This Mean value is provided with a tolerance band which can be set to the operating conditions, which allows a deviation of ± 3 in the embodiment shown. Everyone single measured value must be within the specified tolerances. Is not this the If so, a calibration is performed at the next burner start. For example, in the table the value 26 is twice below the current permissible for the respective burner start Limit of 27.0 or 26.3 and requires calibration.

Claims (17)

  1. A method for controlling a gas burner for a heating apparatus with a pilot burner, an automatic furnace and a gas/air coupled control, as well as a division into a primary gas flow and a secondary gas flow with a valve that is manipulated in dependence on current flame signals and at least one setpoint and serves for adjusting the gas-air ratio to a corresponding lambda setpoint in accordance with the signals of an ionization electrode, with said ionization electrode delivering an electric variable derived from the combustion temperature or the lambda value to a control circuit that compares this variable with a selected electric setpoint and carries out an adjustment, and with a calibration being carried out and control parameters being stored, wherein the entire functional chain of the gas/air coupled control is checked during each burner start after the over-ignition, and wherein a calibration is carried out as part of the burner start if predetermined limiting values for deviations are exceeded or not reached during a comparison of the last control parameters with the preceding control parameters.
  2. The method according to Claim 1, characterized in that the setpoint (S) for the flame signal (F) is changed, preferably during a monitored starting sequence before the controlled steady-state operation of the burner, in order to check the gas/air coupled control.
  3. The method according to Claim 1 or 2, characterized in that the flame signal (F) rises and the opening state (O) of the valve increases or the flame signal (F) drops and the opening state (O) of the valve decreases during the entire check of the gas/air coupled control.
  4. The method according to one of Claims 1-3, characterized in that the valve for the secondary gas flow is moved into a starting position for the largest adjusting range possible in a first phase (1), in that the setpoint (S) for the flame signal (F) is increased by a fixed amount A at the beginning of a second phase (2), wherein the new setpoint (S) needs to be reached within a permissible time and/or with a permissible deviation, in that the new setpoint (S) is decreased by an amount B in an immediately ensuing third phase (3), wherein this new setpoint also needs to be reached within a permissible time and/or with a permissible deviation, and in that the original setpoint (S) for the flame signal (F) subsequently applies again.
  5. The method according to Claim 4, characterized in that the amount A is added to the setpoint (S) for the flame signal (F) at the beginning of the second phase (2) if the current flame signal (F) is lesser than or equal to the setpoint (S) at that time.
  6. The method according to Claim 4, characterized in that the amount A is added to the value of the current flame signal (F) at the beginning of the second phase (2) if the current flame signal (F) is greater than the setpoint (S) at that time.
  7. The method according to one of Claims 4-6, characterized in that the check is immediately switched from the second phase (2) to the third phase (3) or that the gas/air coupled control is immediately operated in dependence on the current flame signal (F) and a setpoint (S) in the third phase (3) if the flame signal (F) already reaches the setpoint (S) before the maximum permissible time in the second and/or third phase (2, 3).
  8. The method according to one of Claims 4-7, characterized in that the check is switched from the second phase (2) to the third phase (3) if the flame signal (F) does not reach the setpoint (S) within the permissible time in the second phase (2) and lies below the predetermined setpoint (S) by a certain permissible amount at the end of the permissible time.
  9. The method according to one of Claims 4-7, characterized in that the predominant flame signal (F) at the end of the second phase (2) is compared with the flame signal (F) stored at the end of the first phase (1), and in that the gas/air coupled control is only switched to the third phase (3) if the flame signal (F) is greater at the end of the second phase (2) than at the end of the first phase (1).
  10. The method according to one of Claims 4-9, characterized in that the gas/air coupled control is operated in dependence on the current flame signal (F) and a setpoint (S) after the third phase (3) if the flame signal (F) does not reach the setpoint (S) within the permissible time in the third phase (3) and lies above the predetermined setpoint (S) by a certain permissible amount at the end of the permissible time.
  11. The method according to one of Claims 4-10, characterized in that the predominant flame signal (F) at the end of the third phase (3) is compared with the flame signal (F) stored at the end of the second phase (2), and in that the gas/air coupled control is only operated in dependence on the current flame signal (F) and a setpoint (S) after the third phase (3) if the flame signal (F) is smaller at the end of the third phase (3) than at the end of the second phase (2).
  12. The method according to Claim 4, characterized in that a safety shut-off takes place if at least one predetermined criterion is not fulfilled in the individual phases.
  13. The method according to one of Claims 1-12, characterized in that the calibration is initiated if predetermined limiting values for the position of a gas valve and/or the air quantity are exceeded.
  14. The method according to one of Claims 1-13, characterized in that, if the gas flow is divided into a primary and a secondary gas flow, the gas valve for the secondary gas flow is monitored and its trigger signal is used as the control parameter for evaluating whether or not a calibration needs to be carried out, wherein the actuating variable of the gas valve and/or its position is respectively evaluated as the measuring value at the end of a heat request.
  15. The method according to one of Claims 1-14, characterized in that the calibration is initiated if, during a heat request with a shut-off during the operation, the measuring value for the current at the gas valve or its position, respectively, deviates from a mean value that preferably is formed from the last measuring values and/or if the measuring value for the actuating variable of the gas valve or its position, respectively, lies outside an adjustable tolerance range.
  16. The method according to one of Claims 1-15, characterized in that the last measuring values preferably remain stored or all storage locations for measuring values are occupied with the same value, preferably the last mean value, in case of a power failure.
  17. The method according to one of Claims 1-16, characterized in that the gas burner is restarted and a calibration that is integrated into the start sequence is carried out after a safety shut-off, and in that an emergency shut-off only takes place if the signals of the combustion sensor still lie outside the permissible control range after a predetermined number of safety shut-offs with ensuing calibrations.
EP01126826A 2000-11-18 2001-11-10 Method of controling a burner Expired - Lifetime EP1207340B1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10057224A DE10057224C2 (en) 2000-11-18 2000-11-18 Procedure for automatic function check in a gas / air compound control
DE10057234 2000-11-18
DE10057225A DE10057225C2 (en) 2000-11-18 2000-11-18 Method of operating a gas burner for a heater
DE10057224 2000-11-18
DE10057225 2000-11-18
DE10057234A DE10057234C2 (en) 2000-11-18 2000-11-18 Method of controlling a gas burner for a heater
DE20101085U 2001-01-20
DE20101085U DE20101085U1 (en) 2001-01-20 2001-01-20 Gas burner

Publications (3)

Publication Number Publication Date
EP1207340A2 EP1207340A2 (en) 2002-05-22
EP1207340A3 EP1207340A3 (en) 2002-07-31
EP1207340B1 true EP1207340B1 (en) 2005-01-12

Family

ID=27437901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01126826A Expired - Lifetime EP1207340B1 (en) 2000-11-18 2001-11-10 Method of controling a burner

Country Status (3)

Country Link
EP (1) EP1207340B1 (en)
AT (1) ATE287065T1 (en)
DE (1) DE50105055D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060073B3 (en) * 2007-12-13 2009-08-20 Robert Bosch Gmbh Gas burner starting method for heating device, involves obtaining reduced degree of modulation in stages during extended time period, and extending retention time at one of stages of degree of modulation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341543A1 (en) * 2003-09-09 2005-04-28 Honeywell Bv Control method for gas burners
EP1522790B1 (en) * 2003-10-08 2011-11-23 Vaillant GmbH Method for Controlling a Gas Burner, in particular in Heating Installations with Blower
DE102006006964B4 (en) 2006-02-14 2012-09-06 Ebm-Papst Landshut Gmbh Method for starting a firing device under unknown conditions
DE102008015311A1 (en) 2008-03-20 2009-09-24 Linde Ag Device for mixture monitoring for gas mixtures of two gases
EP3477201B1 (en) * 2017-10-26 2020-05-06 Honeywell Technologies Sarl Method for operating a gas burner appliance
US10718518B2 (en) 2017-11-30 2020-07-21 Brunswick Corporation Systems and methods for avoiding harmonic modes of gas burners
US11608983B2 (en) * 2020-12-02 2023-03-21 Brunswick Corporation Gas burner systems and methods for calibrating gas burner systems
CA3215692A1 (en) * 2021-05-05 2022-11-10 Flavio Chiavetti Regulation method of a premix gas burner and control and regulation device for carrying out the method
US11940147B2 (en) 2022-06-09 2024-03-26 Brunswick Corporation Blown air heating system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9402018D0 (en) * 1994-02-02 1994-03-30 British Gas Plc Apparatus for detecting faults in a combustion sensor
DE19539568C1 (en) 1995-10-25 1997-06-19 Stiebel Eltron Gmbh & Co Kg Gas burner regulation system
US5971745A (en) * 1995-11-13 1999-10-26 Gas Research Institute Flame ionization control apparatus and method
DK0806610T3 (en) * 1996-05-09 2001-10-15 Stiebel Eltron Gmbh & Co Kg Procedure for operating a burner
DE19831648B4 (en) * 1998-07-15 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Process for the functional adaptation of control electronics to a gas heater
DE19839160B4 (en) * 1998-08-28 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Method and circuit for regulating a gas burner
DE19854824C1 (en) * 1998-11-27 2000-06-29 Stiebel Eltron Gmbh & Co Kg Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
DE19906583A1 (en) * 1999-02-17 2000-08-24 Buderus Heiztechnik Gmbh Heating boiler atmospheric gas burner operating method and device uses burner control for delaying auxiliary gas flow relative to main gas flow upon starting gas burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060073B3 (en) * 2007-12-13 2009-08-20 Robert Bosch Gmbh Gas burner starting method for heating device, involves obtaining reduced degree of modulation in stages during extended time period, and extending retention time at one of stages of degree of modulation

Also Published As

Publication number Publication date
EP1207340A3 (en) 2002-07-31
ATE287065T1 (en) 2005-01-15
EP1207340A2 (en) 2002-05-22
DE50105055D1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1207340B1 (en) Method of controling a burner
DE19820192C2 (en) Process for igniting a gas-fired burner
DE19831648A1 (en) Process for automatic adaptation of control electronics of a gas heater device so that emissions are minimized by ensuring that the Lambda value is greater than one
WO1998020281A1 (en) Pressure atomizing type burner for an engine independent heating system in a vehicle
DE102010006276A1 (en) Two-circuit burner system and method of operating such a dual-circuit burner system
EP1186831A1 (en) Apparatus controlling the air/fuel ratio of a burner
DE3905603C2 (en)
DE4107388A1 (en) METHOD FOR REGENERATING PARTICLE FILTER SYSTEMS
EP0567060A1 (en) Method for controlling a gas burner with a fan
DE10057224C2 (en) Procedure for automatic function check in a gas / air compound control
DE2356367C2 (en) Control arrangement for air deficiency protection for steam generators
DE10312111B4 (en) Method for igniting an oil burner and ignition device for an oil burner assembly
DE19601517A1 (en) Regulator for gas heater with burner and gas valve
DE10111077C2 (en) Method for regulating a burner of a gas combustion device
EP1500878B1 (en) Method to terminate the operation of a vehicle heating device
DE10057234C2 (en) Method of controlling a gas burner for a heater
AT403857B (en) METHOD FOR CONTROLLING A CIRCUIT PUMP
DE4309934C2 (en) Procedure for initiating a benning process
DE10058417C2 (en) Method of operating a gas burner for a heater
EP1209417B1 (en) Method for operating a gas burner
DE10057233C2 (en) Gas burner for a heater
EP2589871B1 (en) Method and device for controlling or monitoring an atomisation device for the atomisation of liquid fuels in a modulating burner
DE10057225C2 (en) Method of operating a gas burner for a heater
DE10059361C2 (en) Gas burner for a heater
EP3156730B1 (en) Method of calibrating a burner device for liquid fuels and control device for a burner device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020911

AKX Designation fees paid

Designated state(s): AT BE CH DE FR IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBT THERMOTECHNIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBT THERMOTECHNIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50105055

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181126

Year of fee payment: 18

Ref country code: IT

Payment date: 20181122

Year of fee payment: 18

Ref country code: FR

Payment date: 20181127

Year of fee payment: 18

Ref country code: BE

Payment date: 20181122

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190124

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105055

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 287065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110