EP1209417B1 - Method for operating a gas burner - Google Patents

Method for operating a gas burner Download PDF

Info

Publication number
EP1209417B1
EP1209417B1 EP01126827A EP01126827A EP1209417B1 EP 1209417 B1 EP1209417 B1 EP 1209417B1 EP 01126827 A EP01126827 A EP 01126827A EP 01126827 A EP01126827 A EP 01126827A EP 1209417 B1 EP1209417 B1 EP 1209417B1
Authority
EP
European Patent Office
Prior art keywords
burner
flame
ohb
value
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01126827A
Other languages
German (de)
French (fr)
Other versions
EP1209417A1 (en
Inventor
Rudolf Haug
Harald Hummel
Heinrich Oehler
Hans-Joachim Ripplinger
Marco Techt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
BBT Thermotechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000158417 external-priority patent/DE10058417C2/en
Priority claimed from DE2000159361 external-priority patent/DE10059361C2/en
Application filed by BBT Thermotechnik GmbH filed Critical BBT Thermotechnik GmbH
Publication of EP1209417A1 publication Critical patent/EP1209417A1/en
Application granted granted Critical
Publication of EP1209417B1 publication Critical patent/EP1209417B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means

Definitions

  • the invention relates to a method for operating a gas burner for a heater according to claim 1.
  • Generic gas burners have a pilot burner for starting the main burner and a measuring electrode, in particular an ionization electrode for detecting or forming flame signals.
  • the ionisation signal is produced by the rectifier effect of the flame on the ionization electrode.
  • a damped or filtered signal with a much larger time constant is generated with a flame amplifier.
  • the gas-air ratio of the burner can be set to a corresponding lambda value according to the measured values.
  • the ionization electrode transmits an electrical quantity derived from the combustion temperature or the air number to a control circuit which compares this variable with a selected electrical desired value and sets corresponding control parameters as specifications.
  • a normal starting process begins with the start-up of the pilot burner. Subsequently, a second shut-off valve opens on a gas fitting and the main gas supply is released. Within a safety period then over-ignition must have taken place from the ignition to the main burner. If this is not the case, a safety switch-off is immediately initiated by the burner control unit. Problems can arise with pilot burners having a single ionization electrode for monitoring the function of ignition and main burners which are not shut down after the safety time. It must be ensured a capture, whether the over-ignition has taken place on the main burner. There is the possibility that the ionization electrode may only detect the flame of the pilot burner and in the presence of the main flame no signal differences for the control circuit for flame monitoring arise.
  • From DE 196 18 573 C1 discloses a method for calibrating a control device to a gas burner, which is activated after certain operating times.
  • nominal values for the flame signal are determined in accordance with the type of gas present, which are decisive for setting the gas / air ratio during main burner operation.
  • the setpoint is subject to a relatively narrow, toleranced band of values. This is tied to the setpoint, so that the upper and lower limits change accordingly in parallel.
  • drifting of the setpoint in one direction for example due to changed environmental conditions in successive calibrations, is not detected. In unfavorable conditions, therefore, the combustion can no longer be optimal, because the control range of the gas burner may be limited.
  • US 5 538 416 discloses a method of operating a gas burner with a pilot and a main burner.
  • An ionization electrode is arranged in the flame region of the pilot burner, wherein a safety shutdown occurs when a predetermined setpoint value of the ionization signal is not reached during the burner operation.
  • the invention has for its object to provide a safe method for operating a gas burner for a heater with a permanently operated pilot burner, and to ensure at startup that after the release of the gas supply for the main burner over-ignition from the pilot burner has taken place on the main burner.
  • the gas burner for a heater is characterized in that a safety shutdown takes place when a predetermined threshold value derived from the ionization signal electrical variable is not reached during Zündbrenner vulgar horrinsky horrinsky horrinsky satusky satusky satusky satusky satusky satusky satusky satusky satusky satusky satusky s, a predetermined safety shutdown.
  • S-OHB, B-OHB or UHB specified absolute limit values
  • the threshold value of the electrical variable derived from the ionization signal must be exceeded within a predetermined safety time after the release of the gas supply for the main burner operation.
  • the amplification of the flame amplifier and its dependence on the flame intensity is checked. This is done by a comparison of two points in the characteristic curve or the current signal curve with predetermined nominal values.
  • the ionization electrode is designed so that it simultaneously detects the flame area of the ignition and main burners due to their arrangement and design.
  • the flame signals are monitored by the burner control unit and compared with preset, absolute limit values which must not be exceeded or undershot during normal operation.
  • the limit values in operation form a narrower permissible value range for the flame signal than in the starting phase, because in this case the ignition from the ignition to the main burner, the stabilization and / or calibration is carried out, the flame signal assuming different values than during operation.
  • a new upper limit for the flame signal applies from the beginning of main burner operation. This is above the upper limit valid for stationary burner operation.
  • the increase of the upper limit ends after a so-called preliminary operation as completion of the starting phase. It follows that from the stationary main burner operation, in which the gas / air ratio is controlled by the flame signals, a lower upper limit applies.
  • the value for the flame signal in pilot burner operation must be above a minimum value, namely the pilot burner switch-off value, and below a predetermined threshold value until the end of a first stabilization phase. After the safety time for over-firing on the main burner then the value for the flame signal must always be greater than the threshold value. If this is not the case or if a predetermined upper or lower limit value for the flame signal is exceeded or undershot, then a safety shutdown takes place. The same occurs when the predetermined threshold value for the electrical variable derived from the ionization signal is not reached during the pilot burner operation and / or is not exceeded during the subsequent main burner operation.
  • the threshold value for the ignition or main burner operation, all limit values for the flame signal and the switch-off value for the pilot burner are preferably adjustable in a predetermined value range on the automatic burner control.
  • the existing ambient conditions can be taken into account when installing and maintaining the gas burner.
  • a simple, reliable monitoring option for the ignition from the ignition to the main burner is provided in a gas burner.
  • the process leads to a functionally reliable, low-emission operation.
  • the effect is exploited that in principle the flame signal, in particular the ionization signal, is significantly lower in pilot burner operation than during operation of the main burner.
  • Possible errors due to, for example, greatly altered environmental conditions or component defects are detected immediately by the analog monitoring, so that false interpretations of the signals that lead to improper combustion or material damage are excluded.
  • the flame signal may therefore fluctuate in the rules during operation by a variably determined setpoint with a value band of parallel variable upper and lower limits.
  • the limit values according to the invention prevent the setpoint from drifting in one direction due to a safety shutdown. Starting the gas burner is only possible with full compliance with all conditions.
  • the drawing illustrates an embodiment of the invention and shows in a single figure a diagram with the starting sequence in a gas burner.
  • the predetermined flame signal value is plotted with its limits over the time axis.
  • Starting a gas burner initially starts with a start-up phase for the pilot burner. This is followed by a first safety time SZ1, during which the pilot flame must form.
  • a first safety time SZ1 during which the pilot flame must form.
  • the value for the flame signal detected by the ionization electrode must be above a minimum value, namely the switch-off limit for the pilot burner AZB.
  • the flame signal during the entire start-up phase, the safety time SZ1 and the stabilization phase 1 must not exceed a predetermined threshold SW.
  • the main burner operation begins with the opening of the main gas valve at the beginning of a safety time SZ2, in which the main flame must be completely formed by igniting the pilot burner.
  • an upper and a lower limit value OHB or UHB is defined for the flame signal.
  • the value of the current flame signal from the beginning of the safety time SZ2 above the Threshold SW lie.
  • the lower limit value UHB has a larger value and thus some distance from the threshold value SW.
  • a stabilization phase 2 in which, for example, the measured values are checked for plausibility and, if appropriate, a calibration if the current flame signals deviate too much from the specifications and / or from the values of the last burner operation.

Abstract

A method of operating a gas-burner for a heating device and using an ignition-burner and monitoring of the functioning of the ignition- and main-burner with an ionization electrode used as a measurement electrode in the flame zone. A safety-switch-off results when a specified threshold value (SW) of the electrical magnitude derived from the ionization signal during the ignition burner operation is not attained and/or during the ensuing main burner operation is not exceeded, and when the flame signals exceed or fail to attain specified absolute threshold values (S-OHB, B-OHB or UHB) in the control operation.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Gasbrenners für ein Heizgerät nach Patentanspruch 1.
Gattungsgemäße Gasbrenner besitzen einen Zündbrenner zum Starten des Hauptbrenners sowie eine Messelektrode, insbesondere eine lonisationselektrode zur Erfassung bzw. Bildung von Flammensignalen. Dabei entsteht das lonisationssignal durch die Gleichrichterwirkung der Flamme an der lonisationselektrode. Zusätzlich wird ein gedämpftes bzw. gefiltertes Signal mit einer wesentlich größeren Zeitkonstante mit einem Flammenverstärker erzeugt. Das Gas-Luft-Verhältnis des Brenners kann nach den Messwerten auf einen entsprechenden Lambda-Wert eingestellt werden. Die lonisationselektrode gibt dabei eine von der Verbrennungstemperatur bzw. der Luftzahl abgeleitete elektrische Größe an eine Regelschaltung weiter, welche diese Größe mit einem gewählten elektrischen Sollwert vergleicht und entsprechende Regelparameter als Vorgaben einstellt.
Bei einem Gasbrenner beginnt ein normaler Startvorgang mit der Inbetriebnahme des Zündbrenners. Anschließend öffnet ein zweites Absperrventil an einer Gasarmatur und es wird die Hauptgaszufuhr freigegeben. Innerhalb einer Sicherheitszeit muss dann ein Überzünden vom Zünd- auf den Hauptbrenner erfolgt sein. Ist dies nicht der Fall, wird sofort vom Feuerungsautomaten eine Sicherheitsabschaltung eingeleitet.
Probleme können bei Zündbrennem mit einer einzigen lonisationselektrode zur Überwachung der Funktion von Zünd- und Hauptbrenner entstehen, die nach der Sicherheitszeit nicht abgeschaltet werden. Es muss dabei eine Erfassung gewährleistet sein, ob das Überzünden auf den Hauptbrenner stattgefunden hat. Dabei besteht die Möglichkeit, dass die lonisationselektrode eventuell nur die Flamme des Zündbrenners detektiert und beim Vorhandensein der Hauptflamme keine Signal-Unterschiede für die Regelschaltung zur Flammenüberwachung entstehen.
The invention relates to a method for operating a gas burner for a heater according to claim 1.
Generic gas burners have a pilot burner for starting the main burner and a measuring electrode, in particular an ionization electrode for detecting or forming flame signals. The ionisation signal is produced by the rectifier effect of the flame on the ionization electrode. In addition, a damped or filtered signal with a much larger time constant is generated with a flame amplifier. The gas-air ratio of the burner can be set to a corresponding lambda value according to the measured values. In this case, the ionization electrode transmits an electrical quantity derived from the combustion temperature or the air number to a control circuit which compares this variable with a selected electrical desired value and sets corresponding control parameters as specifications.
In the case of a gas burner, a normal starting process begins with the start-up of the pilot burner. Subsequently, a second shut-off valve opens on a gas fitting and the main gas supply is released. Within a safety period then over-ignition must have taken place from the ignition to the main burner. If this is not the case, a safety switch-off is immediately initiated by the burner control unit.
Problems can arise with pilot burners having a single ionization electrode for monitoring the function of ignition and main burners which are not shut down after the safety time. It must be ensured a capture, whether the over-ignition has taken place on the main burner. There is the possibility that the ionization electrode may only detect the flame of the pilot burner and in the presence of the main flame no signal differences for the control circuit for flame monitoring arise.

Aus der DE 196 18 573 C1 ein Verfahren zur Kalibrierung einer Regeleinrichtung an einem Gasbrenner bekannt, welches nach bestimmten Betriebszeiten aktiviert wird. Dadurch werden - entsprechend der vorhandenen Gasart - Sollwerte für das Flammensignal ermittelt, die während des Hauptbrennerbetriebes für die Einstellung des Gas-/Luft-Verhältnisses maßgebend sind. Weil des Flammensignal im Betrieb schwankt, gilt um den Sollwert ein relativ enges, toleriertes Werteband. Dieses ist an den Sollwert gebunden, so dass sich die oberen und unteren Grenzen dementsprechend parallel verändern. Allerdings ist dabei ein Driften des Sollwertes in eine Richtung, beispielsweise durch veränderte Umgebungsbedingungen bei aufeinanderfolgenden Kalibrierungen, nicht erfasst. Bei ungünstigen Verhältnissen kann daher die Verbrennung nicht mehr optimal sein, weil der Regelbereich des Gasbrenners möglicherweise eingeschränkt ist.From DE 196 18 573 C1 discloses a method for calibrating a control device to a gas burner, which is activated after certain operating times. As a result, nominal values for the flame signal are determined in accordance with the type of gas present, which are decisive for setting the gas / air ratio during main burner operation. Because the flame signal fluctuates during operation, the setpoint is subject to a relatively narrow, toleranced band of values. This is tied to the setpoint, so that the upper and lower limits change accordingly in parallel. However, drifting of the setpoint in one direction, for example due to changed environmental conditions in successive calibrations, is not detected. In unfavorable conditions, therefore, the combustion can no longer be optimal, because the control range of the gas burner may be limited.

US 5 538 416 offenbart ein Verfahren zum Betrieb eines Gasbrenners mit einem Zünd- und einem Hauptbrenner. Eine Ionisationselektrode ist in Flammenbereich des Zündbrenners angeordnet wobei eine Sicherheitsabschaltung erfolgt wenn ein vorgegebener Sollwert des Ionisationssignals während des Zumdbrennerbetriebes nicht erreicht wird.US 5 538 416 discloses a method of operating a gas burner with a pilot and a main burner. An ionization electrode is arranged in the flame region of the pilot burner, wherein a safety shutdown occurs when a predetermined setpoint value of the ionization signal is not reached during the burner operation.

Der Erfindung liegt die Aufgabe zugrunde, ein sicheres Verfahren zum Betreiben eines Gasbrenners für ein Heizgerät mit einem dauerhaft betriebenen Zündbrenner zu schaffen, und beim Starten sicherzustellen, dass nach der Freigabe der Gaszufuhr für den Hauptbrenner eine Überzündung vom Zündbrenner auf den Hauptbrenner stattgefunden hat.The invention has for its object to provide a safe method for operating a gas burner for a heater with a permanently operated pilot burner, and to ensure at startup that after the release of the gas supply for the main burner over-ignition from the pilot burner has taken place on the main burner.

Erfindungsgemäß wurde dies mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.
Der Gasbrenner für ein Heizgerät ist dadurch gekennzeichnet, dass eine Sicherheitsabschaltung erfolgt, wenn während des Zündbrennerbetriebes ein vorgegebener Schwellwert der aus dem lonisationssignal abgeleiteten elektrischen Größe nicht erreicht wird und/oder wenn dieser Schwellwert während des anschließenden Hauptbrennerbetriebes nicht überschritten wird. Zudem kommt es auf jeden Fall zu einer Sicherheitsabschaltung, wenn die Flammensignale vorgegebene, absolute Grenzwerte (S-OHB, B-OHB oder UHB) im Regelbetrieb über- oder unterschreiten.
Dabei muss der Schwellwert der aus dem lonisationssignal abgeleiteten elektrischen Größe innerhalb einer vorgegebenen Sicherheitszeit nach der Freigabe der Gaszufuhr für den Hauptbrennerbetrieb überschritten sein. Vorzugsweise wird in der Sicherheitszeit nach der Freigabe der Gaszufuhr für den Hauptbrennerbetrieb die Verstärkung des Flammenverstärkers und seine Abhängigkeit von der Flammenintensität überprüft. Dies erfolgt durch einen Vergleich von zwei Punkten in der Kennlinie bzw. dem aktuellen Signalverlauf mit vorgegebenen Sollwerten. Für eine sichere Funktion der Überwachung ist die lonisationselektrode so gestaltet, dass sie aufgrund ihrer Anordnung und Bauform gleichzeitig den Flammenbereich von Zünd- und Hauptbrenner erfasst.
Die Flammensignale werden vom Feuerungsautomaten überwacht und mit vorgegebenen, absoluten Grenzwerten verglichen, welche im Regelbetrieb nicht über- oder unterschritten werden dürfen. Dabei bilden die Grenzwerte im Betrieb einen engeren zulässigen Wertebereich für das Flammensignal als in der Startphase, weil in dieser das Überzünden vom Zünd- auf den Hauptbrenner, die Stabilisierung und/oder die Kalibrierung durchgeführt wird, wobei das Flammensignal andere Werte einnimmt als im Betrieb.
Während der Startphase gilt ab dem Beginn des Hauptbrennerbetriebes ein neuer oberer Grenzwert für das Flammensignal. Dieser liegt über dem für den stationären Brennerbetrieb gültigen oberen Grenzwert. Die Anhebung des oberen Grenzwertes endet nach einem so genannten Vorbetrieb als Abschluss der Startphase. Daraus folgt, dass ab dem stationären Hauptbrennerbetrieb, in dem das Gas-/Luft-Verhältnis nach den Flammensignalen geregelt wird, ein niedrigerer oberer Grenzwert gilt.
Weiterhin muss der Wert für das Flammensignal im Zündbrennerbetrieb bis zum Ende einer ersten Stabilisierungsphase über einem Mindestwert, nämlich dem Ausschaltwert für den Zündbrenner, und unter einem vorgegebenen Schwellwert liegen. Nach der Sicherheitszeit für das Überzünden auf den Hauptbrenner muss dann der Wert für das Flammensignal immer größer als der Schwellwert sein. Ist dies nicht der Fall oder wird ein vorgegebener oberer oder unterer Grenzwert für das Flammensignal über- bzw. unterschritten, so erfolgt eine Sicherheitsabschaltung. Dasselbe tritt ein, wenn der vorgegebene Schwellwert für die aus dem lonisationssignal abgeleitete elektrischen Größe während des Zündbrennerbetriebes nicht erreicht wird und/oder während des anschließenden Hauptbrennerbetriebes nicht überschritten wird.
Generell sind der Schwellwert für den Zünd- bzw. Hauptbrennerbetrieb, alle Grenzwerte für das Flammensignal sowie der Ausschaltwert für den Zündbrenner vorzugsweise in einem vorgegebenen Wertebereich am Feuerungsautomaten einstellbar. Damit können bei Installations- und Wartungsarbeiten am Gasbrenner die vorhandenen Umgebungsbedingungen bei Bedarf berücksichtigt werden.
This has been achieved with the features of claim 1 according to the invention. Advantageous developments can be found in the dependent claims.
The gas burner for a heater is characterized in that a safety shutdown takes place when a predetermined threshold value derived from the ionization signal electrical variable is not reached during Zündbrennerbetriebbetrieb and / or if this threshold is not exceeded during the subsequent main burner operation. In addition, there is definitely a safety shutdown if the flame signals exceed or fall below specified absolute limit values (S-OHB, B-OHB or UHB) during normal operation.
In this case, the threshold value of the electrical variable derived from the ionization signal must be exceeded within a predetermined safety time after the release of the gas supply for the main burner operation. Preferably, in the safety period after the release of the gas supply for the main burner operation, the amplification of the flame amplifier and its dependence on the flame intensity is checked. This is done by a comparison of two points in the characteristic curve or the current signal curve with predetermined nominal values. For a reliable function of the monitoring, the ionization electrode is designed so that it simultaneously detects the flame area of the ignition and main burners due to their arrangement and design.
The flame signals are monitored by the burner control unit and compared with preset, absolute limit values which must not be exceeded or undershot during normal operation. In operation, the limit values in operation form a narrower permissible value range for the flame signal than in the starting phase, because in this case the ignition from the ignition to the main burner, the stabilization and / or calibration is carried out, the flame signal assuming different values than during operation.
During the starting phase, a new upper limit for the flame signal applies from the beginning of main burner operation. This is above the upper limit valid for stationary burner operation. The increase of the upper limit ends after a so-called preliminary operation as completion of the starting phase. It follows that from the stationary main burner operation, in which the gas / air ratio is controlled by the flame signals, a lower upper limit applies.
Furthermore, the value for the flame signal in pilot burner operation must be above a minimum value, namely the pilot burner switch-off value, and below a predetermined threshold value until the end of a first stabilization phase. After the safety time for over-firing on the main burner then the value for the flame signal must always be greater than the threshold value. If this is not the case or if a predetermined upper or lower limit value for the flame signal is exceeded or undershot, then a safety shutdown takes place. The same occurs when the predetermined threshold value for the electrical variable derived from the ionization signal is not reached during the pilot burner operation and / or is not exceeded during the subsequent main burner operation.
In general, the threshold value for the ignition or main burner operation, all limit values for the flame signal and the switch-off value for the pilot burner are preferably adjustable in a predetermined value range on the automatic burner control. Thus, the existing ambient conditions can be taken into account when installing and maintaining the gas burner.

Mit der Erfindung wird eine einfache, funktionssichere Überwachungsmöglichkeit für die Überzündung vom Zünd- auf den Hauptbrenner bei einem Gasbrenner geschaffen. Das Verfahren führt zu einem funktionssicheren, emissionsarmen Betrieb. Ausgenutzt wird der Effekt, dass grundsätzlich das Flammensignal, insbesondere das lonisationssignal, im Zündbrennerbetrieb deutlich niedriger als beim Betrieb des Hauptbrenners ist. Mögliche Fehler durch beispielsweise stark veränderte Umgebungsbedingungen oder Mängel an Bauteilen werden durch die analoge Überwachung sofort erkannt, so dass falsche Interpretationen der Signale, die zu einer unsauberen Verbrennung oder zu Materialschäden führen, ausgeschlossen sind. Das Flammensignal darf somit beim Regeln im Betrieb um einen variabel ermittelten Sollwert mit einem Werteband aus parallel veränderlichen oberen und unteren Grenzen schwanken. Zusätzlich verhindern die erfindungsgemäßen Grenzwerte ein Driften des Sollwertes in eine Richtung durch eine Sicherheitsabschaltung. Ein Starten des Gasbrenners ist nur mit dem vollständigen Erfüllen aller Bedingungen möglich.With the invention, a simple, reliable monitoring option for the ignition from the ignition to the main burner is provided in a gas burner. The process leads to a functionally reliable, low-emission operation. The effect is exploited that in principle the flame signal, in particular the ionization signal, is significantly lower in pilot burner operation than during operation of the main burner. Possible errors due to, for example, greatly altered environmental conditions or component defects are detected immediately by the analog monitoring, so that false interpretations of the signals that lead to improper combustion or material damage are excluded. The flame signal may therefore fluctuate in the rules during operation by a variably determined setpoint with a value band of parallel variable upper and lower limits. In addition, the limit values according to the invention prevent the setpoint from drifting in one direction due to a safety shutdown. Starting the gas burner is only possible with full compliance with all conditions.

Die Zeichnung stellt ein Ausführungsbeispiel der Erfindung dar und zeigt in einer einzigen Figur ein Diagramm mit dem Startablauf bei einem Gasbrenner. Dabei ist der vorgegebene Flammensignalwert mit seinen Grenzen über der Zeitachse aufgetragen.The drawing illustrates an embodiment of the invention and shows in a single figure a diagram with the starting sequence in a gas burner. In this case, the predetermined flame signal value is plotted with its limits over the time axis.

Das Starten eines Gasbrenners beginnt zunächst mit einer Anlaufphase für den Zündbrenner. Daran schließt sich eine erste Sicherheitszeit SZ1 an, während der sich die Zündflamme bilden muss. Bereits in der nachfolgenden Stabilisierungsphase 1 muss der von der lonisationselektrode erfasste Wert für das Flammensignal über einem Mindestwert, nämlich der Ausschaltgrenze für den Zündbrenner AZB, liegen. Zusätzlich darf das Flammensignal während der gesamten Anlaufphase, der Sicherheitszeit SZ1 und der Stabilisierungsphase 1 einen vorgegebenen Schwellwert SW nicht überschreiten.
Der Hauptbrennerbetrieb beginnt mit dem Öffnen des Hauptgasventils am Anfang einer Sicherheitszeit SZ2, in der die Hauptflamme durch Überzünden vom Zündbrenner vollständig gebildet sein muss. Für den Betrieb des Hauptbrenners ist ein oberer und ein unterer Grenzwert OHB bzw. UHB für das Flammensignal festgelegt. Weiterhin muss der Wert des aktuellen Flammensignals ab dem Beginn der Sicherheitszeit SZ2 oberhalb des Schwellwertes SW liegen. Um Abschaltungen zu vermeiden, ist es günstig, wenn der untere Grenzwert UHB einen größeren Wert und somit etwas Abstand zum Schwellwert SW hat.
Danach folgt eine Stabilisierungsphase 2, in der beispielsweise die gemessenen Werte auf Plausibilität geprüft werden, und gegebenenfalls eine Kalibrierung, wenn die aktuellen Flammensignale zu stark von den Vorgaben und/oder von den Werten des letzten Brennerbetriebes abweichen. Es schließt sich nur noch ein Vorbetrieb an, bevor der stationäre Betrieb beginnt.
Speziell für den stationären Betrieb des Hauptbrenners nach der gesamten Startphase ist ein oberer und ein unterer Grenzwert B-OHB bzw. UHB für das Flammensignal festgelegt. Nur während der Startphase gilt ab dem Beginn des Hauptbrennerbetriebes, d. h. ab der Sicherheitszeit 2, ein anderer oberer Grenzwert S-OHB für das Flammensignal. Dieser liegt über dem für den stationären Brennerbetrieb festgelegten oberen Grenzwert B-OHB. Die Anhebung des oberen Grenzwertes S-OHB endet nach dem Vorbetrieb, so dass ab dem stationären Betrieb des Hauptbrenners der niedrigere obere Grenzwert B-OHB maßgebend ist. Somit ergibt sich ein engerer zulässiger Wertebereich zwischen den Grenzwerten B-OHB und UHB für das Flammensignal im Betrieb, nachdem die Startphase mit den zwangsläufigen Schwankungen der Flammensignal-Werte bei Überzündung, Stabilisierung und/oder Kalibrierung absolviert ist.
Sobald die vorgegebenen Grenzen bzw. die zulässigen Werte vom aktuellen Flammensignal überschritten werden, erfolgt eine Sicherheitsabschaltung. Ein Starten des Gasbrenners bzw. Übergang in den stationären Brennerbetrieb ist nur mit dem vollständigen Erfüllen aller Bedingungen möglich.
Starting a gas burner initially starts with a start-up phase for the pilot burner. This is followed by a first safety time SZ1, during which the pilot flame must form. Already in the subsequent stabilization phase 1, the value for the flame signal detected by the ionization electrode must be above a minimum value, namely the switch-off limit for the pilot burner AZB. In addition, the flame signal during the entire start-up phase, the safety time SZ1 and the stabilization phase 1 must not exceed a predetermined threshold SW.
The main burner operation begins with the opening of the main gas valve at the beginning of a safety time SZ2, in which the main flame must be completely formed by igniting the pilot burner. For the operation of the main burner, an upper and a lower limit value OHB or UHB is defined for the flame signal. Furthermore, the value of the current flame signal from the beginning of the safety time SZ2 above the Threshold SW lie. In order to avoid shutdowns, it is favorable if the lower limit value UHB has a larger value and thus some distance from the threshold value SW.
This is followed by a stabilization phase 2 in which, for example, the measured values are checked for plausibility and, if appropriate, a calibration if the current flame signals deviate too much from the specifications and / or from the values of the last burner operation. This is followed by only one pre-operation before stationary operation begins.
Specifically for the stationary operation of the main burner after the entire starting phase, an upper and a lower limit value B-OHB or UHB is set for the flame signal. Only during the start phase, from the beginning of the main burner operation, ie from the safety time 2, another upper limit value S-OHB applies to the flame signal. This is above the upper limit value B-OHB set for stationary burner operation. The raising of the upper limit value S-OHB ends after the preliminary operation, so that from the stationary operation of the main burner, the lower upper limit value B-OHB is decisive. This results in a narrower permissible value range between the limit values B-OHB and UHB for the flame signal in operation, after the start phase with the inevitable fluctuations of the flame signal values during over-ignition, stabilization and / or calibration has been completed.
As soon as the specified limits or the permissible values of the current flame signal are exceeded, a safety shutdown takes place. A start of the gas burner or transition to the stationary burner operation is possible only with the complete fulfillment of all conditions.

Claims (9)

  1. Method for operating a gas burner for a heater comprising a pilot burner and monitoring of the function of pilot and main burner comprising an ionisation electrode as the measuring electrode in the flame zone, which, as a result of the rectifier effect of the flame and depending on the combustion, supplies an electrical quantity derived from the combustion temperature or the air number to a control circuit, wherein flame signals having different time constants are produced and passed on to an automatic firing system, wherein a safety shutdown takes place if a predetermined threshold value (SW) of the electrical quantity derived from the ionisation signal is not achieved during operation of the pilot burner and/or is not exceeded during operation of the main burner and if the flame signals exceed or fall below predetermined absolute limiting values (S-OHB, B-OHB or UHB) in control mode.
  2. The method according to claim 1,
    characterised in that the threshold value (SW) of the electrical quantity derived from the ionisation signal must be exceeded within a predetermined safety time (SZ2) after release of the gas supply for the main burner operation.
  3. The method according to claim 1 or 2,
    characterised in that the intensification of the flame intensifier and its dependence on the flame intensity is checked preferably in the safety time (SZ2) after release of the gas supply for the main burner operation.
  4. The method according to any one of claims 1 to 3,
    characterised in that the checking in the safety time (SZ2) preferably takes place by comparing two points in the characteristic curve or the signal profile with predetermined desired values.
  5. The method according to any one of claims 1 to 4,
    characterised in that as a result of its arrangement and design, the ionisation electrode simultaneously covers the flame zone of the pilot burner and the main burner.
  6. The method according to any one of claims 1 to 5,
    characterised in that the limiting values (B-OHB or UHB) during operation form a narrower permissible range of values for the flame signal than in the starting phase in order to execute over-ignition from the pilot to the main burner with a stabilisation and/or a calibration.
  7. The method according to any one of claims 1 to 6,
    characterised in that in the starting phase, from the beginning of the operation of the main burner, the upper limiting value (S-OHB) for the flame signal is increased above the upper limiting value (B-OHB) specified for stationary burner operation and that after preliminary operation, the upper limiting value (B-OHB) is valid as the end of the starting phase.
  8. The method according to any one of claims 1 to 7,
    characterised in that the value for the flame signal during operation of the pilot burner must lie above a minimum value, namely the switch-off value (AZB) for the pilot burner, and below a predetermined threshold value (SW) until the end of a first stabilisation phase and that the value for the flame signal after the safety time (SZ2) must be higher than the threshold value (SW) for over-ignition to the main burner.
  9. The method according to any one of claims 1 to 8,
    characterised in that the threshold value (SW) for the pilot or main burner operation, all the limiting values (S-OHB, B-OHB or UHB) for the flame signal and the switch-off value (AZB) for the pilot burner can preferably be adjusted in a predetermined range of values at the automatic firing system.
EP01126827A 2000-11-24 2001-11-10 Method for operating a gas burner Expired - Lifetime EP1209417B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2000158417 DE10058417C2 (en) 2000-11-24 2000-11-24 Method of operating a gas burner for a heater
DE10058417 2000-11-24
DE10059361 2000-11-29
DE2000159361 DE10059361C2 (en) 2000-11-29 2000-11-29 Gas burner for a heater

Publications (2)

Publication Number Publication Date
EP1209417A1 EP1209417A1 (en) 2002-05-29
EP1209417B1 true EP1209417B1 (en) 2006-03-22

Family

ID=26007774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01126827A Expired - Lifetime EP1209417B1 (en) 2000-11-24 2001-11-10 Method for operating a gas burner

Country Status (3)

Country Link
EP (1) EP1209417B1 (en)
AT (1) ATE321244T1 (en)
DE (1) DE50109273D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292810A1 (en) * 2005-12-14 2007-12-20 Hni Corporation Fireplace control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9400289D0 (en) * 1994-01-08 1994-03-09 Carver & Co Eng Burner control apparatus
US5538416A (en) * 1995-02-27 1996-07-23 Honeywell Inc. Gas burner controller with main valve delay after pilot flame lightoff
DE19618573C1 (en) * 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Gas burner regulating method controlled by ionisation electrode signal
DE19822362B4 (en) * 1998-05-19 2005-03-17 Stiebel Eltron Gmbh & Co. Kg Method for igniting a gas burner

Also Published As

Publication number Publication date
ATE321244T1 (en) 2006-04-15
EP1209417A1 (en) 2002-05-29
DE50109273D1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP0770824B1 (en) Method and circuit for controlling a gas burner
DE19539568C1 (en) Gas burner regulation system
EP3919817A1 (en) Method and device for detecting faults in the ignition of a burner with a fan for supplying air and a fuel valve
EP2387737B1 (en) Method and measurement device for determining a condition of an electric igniter of a gas turbine burner and an ignition device for a gas turbine burner
DE202018105594U1 (en) An intelligent gas stove with safe ignition
EP1207340B1 (en) Method of controling a burner
EP1209417B1 (en) Method for operating a gas burner
WO2004082971A1 (en) Heating device comprising an adjustable heater plug/flame monitor
DE19734574B4 (en) Method and device for controlling a burner, in particular a fully premixing gas burner
EP3721124B1 (en) Valve monitoring system for a coaxial dual-safety valve
DE10058417C2 (en) Method of operating a gas burner for a heater
EP1843645B1 (en) Switching assembly for high pressure gas discharge lamps
DE19501749C2 (en) Method and device for controlling a gas fan burner
DE10059361C2 (en) Gas burner for a heater
DE19822140C1 (en) Method of flame monitoring for motor vehicle heater with a glow pin with two parallel glow coils
DE10057233C2 (en) Gas burner for a heater
DE102007060073B3 (en) Gas burner starting method for heating device, involves obtaining reduced degree of modulation in stages during extended time period, and extending retention time at one of stages of degree of modulation
DE102020108198A1 (en) Method and device for improving the ignition behavior of a premix burner
DE10214879A1 (en) Method for monitoring a gas device, in particular a heat generator, with predominantly flameless oxidation and monitoring module for carrying out the method
DE202005013753U1 (en) Electronic ballast for operating discharge lamp, has control device to ignite lamp discharging in non-repetitive process for parameter e.g. voltage, that is correlated to temperature of electrodes during measurement of parameter
DE10057225C2 (en) Method of operating a gas burner for a heater
DE102021113220A1 (en) Method for monitoring the operation of a heater, heater and computer program and computer-readable medium
WO2007065814A1 (en) Method for the detection of a fault during the operation of high-pressure discharge lamps on ballasts
DE10312111A1 (en) Method of igniting an oil burner and igniter for an oil burner assembly
EP0996315B1 (en) Method and apparatus for generating a status signal representing the operating state of a high-pressure gas discharge lamp in a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020911

AKX Designation fees paid

Designated state(s): AT BE CH DE FR IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBT THERMOTECHNIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBT THERMOTECHNIK GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060322

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50109273

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20181120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20181122

Year of fee payment: 18

Ref country code: FR

Payment date: 20181127

Year of fee payment: 18

Ref country code: IT

Payment date: 20181122

Year of fee payment: 18

Ref country code: CH

Payment date: 20181126

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190124

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109273

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 321244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110