EP1234170A1 - Amplification d'un signal de fluorescence emis par un echantillon surfacique - Google Patents
Amplification d'un signal de fluorescence emis par un echantillon surfaciqueInfo
- Publication number
- EP1234170A1 EP1234170A1 EP00985381A EP00985381A EP1234170A1 EP 1234170 A1 EP1234170 A1 EP 1234170A1 EP 00985381 A EP00985381 A EP 00985381A EP 00985381 A EP00985381 A EP 00985381A EP 1234170 A1 EP1234170 A1 EP 1234170A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support
- thin layer
- fluorescence
- sample
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000002708 enhancing effect Effects 0.000 title description 3
- 238000000034 method Methods 0.000 claims description 26
- 238000005259 measurement Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- 230000005284 excitation Effects 0.000 claims description 12
- 238000000018 DNA microarray Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- 239000003550 marker Substances 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 238000003287 bathing Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 230000010070 molecular adhesion Effects 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 230000010076 replication Effects 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- -1 polypropylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 38
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HNLXNOZHXNSSPN-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCOCCOCCOCCO)C=C1 HNLXNOZHXNSSPN-UHFFFAOYSA-N 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
Definitions
- the invention relates to a method for amplifying a fluorescence signal emitted by a surface sample supported by a support in response to an excitation signal. It also relates to a device amplifying the fluorescence emitted by such a sample.
- Fluorescence measurement is a measurement method used in many technical fields. It is used in particular to exploit the chemical and / or biological analysis devices known under the name of biochip.
- the measurement of the biological activity with such a chip is done by a measurement of the fluorescence emission of a molecule attached to the biological sample, which is in the form of a surface coating, using for example an epifluorescence microscope, a scanner, a fluorimeter.
- the chip can be placed in a special chamber or cartridge. It can also be placed directly on the bottom of a Petri dish. It can still be placed in the air thanks to a mechanical support.
- the surface sample is read in so-called rear face mode, that is to say that the reading is done by crossing a support supporting on one of its faces the surface sample, the support necessarily being transparent to the fluorescence signal.
- the fluorescence excitation signal is generally directed towards the sample through its support which advantageously has the shape of a slide.
- Another way to excite the fluorescence is to generate evanescent waves by injecting the excitation light through the edge of the slide or by coupling with a prism.
- the surface sample is read in so-called front face mode, the reading taking place directly on the surface sample disposed on the support.
- the surface sample can be formed from a biospecific surface formed on one face of the support and serving as a capture phase for a body carrying a fluorescent marker. It is thus possible to form a complex, for example a duplex of nucleic acids.
- the fabrication of the biospecific surface can be carried out by a combinatorial synthesis of the probes, by deposition of the probes by a projection technique or in another way.
- This complex can also be an antibody-antigen association, the antibodies deposited on the face of the support forming the biospecific surface.
- the thickness of the surface forming the complex is between a few nanometers and a few hundred nanometers.
- the complex can also be brought to the surface after its formation, for example by drying or adsorption of the complex on the face of the support.
- the gain in fluorescence is then a function of the position of the molecules relative to the silver islands. If there is contact, the molecules are adsorbed on the surface and the fluorescence is inhibited as indicated in the article by K. SOKOLOV et al. entitled “Enhancement of molecular fluorescence near the surface of colloidal metal film", Analytical Chemistry, Vol. 70, n ° 18, pages 3898 to 3905, September 15, 1998.
- International application WO-A-99 / 23,492 discloses a fluorescence amplification technique which uses a surface capable of enhancing fluorescence, this surface being interposed between a support and the biological complex deposited on the support, the measurement being carried out through the support. This intermediate surface must however be textured and, for this, the material forming this surface is chosen from nylon membranes, material and texture causing the diffusion of the fluorescence signal, phenomenon which the invention avoids.
- Document US-A-5 822 472 discloses a method for detecting evanescently excited luminescence.
- the method uses a transparent substrate supporting a transparent guide layer wave.
- the material of the transparent layer has a refractive index greater than the refractive index of the material of the transparent substrate.
- the device also has two coupling networks. One of these networks makes it possible to introduce an excitation light beam, passing through the transparent substrate, into the transparent layer.
- the excitation beam is carried by the transparent layer forming the waveguide. Substances in contact with the transparent layer and having luminescent properties are then excited in the evanescent field of the waveguide layer.
- the coupling network ensures the exit of the excitation beam from the transparent layer, the outgoing beam then passing through the transparent substrate.
- the transparent waveguide layer has a thickness less than the wavelength of the excitation light. Its refractive index is ⁇ 1.8.
- the excitation beam is therefore transported by the transparent layer between a beam introduction zone and a beam exit zone (the coupling networks).
- the guidance of the beam by the transparent layer necessarily implies a loss of part of the fluorescence signal.
- the invention proposes another way of obtaining the amplification of a fluorescence signal while avoiding the drawbacks of the methods or devices of the known art.
- the invention makes use of the fact that molecules placed on a surface constitute a discontinuity in the refractive index and that they emit most of their fluorescence in the medium which has the highest index.
- the angular distribution of fluorescence of molecules on the surface is very different from that of molecules in volume.
- the fluorescent emission is isotropic because the fluorescent molecules are not oriented relative to each other (random distribution of the orientation of the dipole moments).
- the phenomenon is different when the fluorescent molecules constitute a thin layer of ten nanometers to a few hundred nanometers.
- the signal emitted in fluorescence is a function of the orientation of the electric dipoles formed by the fluorescent molecules. It is therefore favorable, for surface fluorescence, to place the fluorescent molecules at the interface of two very different refractive index media.
- the excitation and fluorescence signals pass through the thin layer at near normal incidence, which is therefore not used as a waveguide. There can therefore be no loss of part of the fluorescence signal.
- this thin layer composed of a stack of sublayers of different materials, this thin layer having the same optical properties as the previous thin layer, in particular as regards the refractive index and the transparency to the signal. fluorescence.
- a first object of the invention is a method for amplifying a fluorescence signal emitted by a surface sample supported by a support in response to an excitation signal, the support transmitting all or part of the fluorescence signal, consisting of interposing a thin layer between the support and the surface sample, the thin layer having a refractive index greater than the index of refraction of the support and the refractive index of the medium surrounding the surface sample, the thickness of the thin layer being chosen so that the thin layer transmits all or part of the fluorescence signal which is measured after having passed through the transparent support.
- the surface sample can be supported by a support made of a material chosen from glass, quartz, silica, plastics such as polystyrene, polypropylene, polycarbonates, polymethylmetacrylates.
- the method may consist in interposing, between the support and the surface sample, a thin layer of a material chosen from silicon nitride, silicon carbide, titanium oxides, aluminum oxide, Zr0 2 , Zr0 4 Ti, Hf0 2 , Y 2 0 3 , diamond, MgO, oxynitures (Si x 0 y N z ), fluorinated materials like YF 3 or MgF 2 -
- This thin layer can also be obtained by stacking several sub -layers whose optical properties and thickness give the assembly represented by the latter the necessary characteristics (see A. HERPIN, CR Acad. Sciences, Paris, 225, 182, 1947).
- the thin layer can be a layer obtained on the support by one of the following methods: vacuum evaporation, replication, transfer, film deposition, by CVD type processes (LPCVD, PECVD ...) or PVD type, by film transfer, by sol-gel process. It can be a layer carried over the support by one of the following methods: bonding and molecular adhesion.
- said thin layer obtained is annealed on the support.
- the surface sample can be formed by a complex associating a biospecific surface with sample molecules carrying a fluorescent marker.
- the medium surrounding the sample can be a liquid, a gel or a gas.
- a second object of the invention is a device amplifying the fluorescence emitted by a surface sample by one of the above methods, the device comprising a support transmitting all or part of the fluorescence signal and intended to support the surface sample, a thin layer of a material being interposed between the support and the surface sample, the material of the thin layer having a refractive index higher than the refractive index of the support and the refractive index of the medium surrounding it surface sample during a fluorescence measurement, the thickness of the thin layer being chosen so that the thin layer transmits all or part of the fluorescence signal which is measured after having passed through the support.
- a third object of the invention consists of a biochip, characterized in that it comprises the above device, the device supporting a plurality of surface samples constituting as many recognition zones.
- FIG. 1 represents a device according to the present invention in a first configuration for reading a fluorescence signal
- FIG. 2 shows a device according to the present invention in a second configuration for reading a fluorescence signal
- FIG. 3 shows a device according to the present invention in a third configuration for reading a fluorescence signal.
- the invention consists in interposing a thin layer between a support transparent to the fluorescence signal and a surface sample immersed in a medium and in measuring the fluorescence through the support.
- the material constituting the thin layer is chosen so that its refractive index is greater than the refractive index of the material constituting the support and greater than the refractive index of the medium surrounding the surface sample.
- the medium surrounding the surface sample is for example a liquid buffer if one wishes to perfectly control the environment for fluorescence (pH, salinity).
- the medium can be a gel if it is desired to reduce the photodestruction or "bleaching" of the fluorescent molecules.
- This medium can also be a gas (air, neutral gas) if the fluorescent complex requires such reading conditions.
- the support is a silica blade (Si0 2 ) 700 ⁇ m thick and with a refractive index 1.485 at 650 nm.
- the thin layer may be a layer of silicon nitride (Si 3 N 4 ) 150 nm thick and with a refractive index 1.997 for the same wavelength.
- the surface sample can be a DNA-based complex labeled with a fluorescent cyanine (Cy5-Amersham, registered trademark).
- the medium bathing the sample may consist of a liquid buffer for washing (SSPE 6X / Triton x 100 at 0.005%), of index 1.34.
- an amplification of the fluorescence of 60% is measured compared to the measurement carried out under the same conditions for the complex deposited directly on the support, without the presence of the thin layer.
- the measurement is made with an epifluorescence microscope and a CCD camera.
- the fluorescence excitation is centered on 635 nm and the measurement of the emission is centered on 670 nm.
- the value of the gain depends on the measurement system (wavelength, digital aperture of the optics), on the marker used (orientation of the dipole moment) and on the characteristics of the thin layer (refractive index, thickness).
- FIG. 1 represents a device according to the invention arranged in a housing in order to carry out the fluorescence measurement.
- the device 10 consists of a transparent support 11, in the form of a blade, covered on one of its faces with a thin layer 12. A surface sample 13 is deposited on the free face of the thin layer 12.
- the device 10 is for example made up of the elements described above.
- the device 10 is placed, for the measurement of fluorescence, in a housing provided in the upper wall of a housing 20. It is placed so that the surface sample 13 is directed towards the interior of the housing 20.
- the housing has an inlet orifice 21 and an outlet orifice 22 in order to bring the surface sample into contact with a liquid 30 constituting the medium surrounding the surface sample.
- the fluorescence signal is collected by a measuring instrument 40. As clearly shown in FIG. 1, the fluorescence signal reaches the measuring instrument 40 by passing through the thin layer 12 and the transparent support 11. This is the reading mode says on the rear panel.
- FIG. 2 shows the same device 10 placed on the bottom of a Petri dish 50 containing the medium 30.
- the fluorescence reading by means of the measuring instrument 40 is also done on the rear face.
- FIG. 3 represents the same device 10 placed in the air to carry out the fluorescence measurement.
- the device 10 is held by its periphery by means of a mechanical support comprising a plate 60 pierced with an opening 61 allowing the surface sample to be in contact with the air 62.
- the support can be a glass, silica or polystyrene plate. It is transparent for the spectral range of the fluorescence measurement.
- the thin layer deposited on one face of the support can be manufactured by evaporation under vacuum - or by replication (optical thin layer techniques) for materials such as silicon nitride, titanium oxide, aluminum oxide. It can be deposited in the form of a film or transferred to the support (by bonding, by molecular adhesion) in the case of a thin layer of thickness greater than a few ⁇ m.
- Various tests have been carried out to demonstrate the effectiveness of the invention. The tests covered several devices:
- the thin layer of which is made of silicon nitride
- the thin layer of which is made of annealed silicon nitride (the annealing carried out under nitrogen makes it possible to densify the nitride layer).
- the fluorescence reading was carried out by means of an epifluorescence microscope equipped for the Cy5 marker and by means of a cooled digital CCD camera. Two measurements were made per device: a measurement on the front panel and a measurement on the rear panel.
- the front panel measurement is carried out by placing the surface sample in front of the measuring instrument, the fluorescence signal therefore not passing through the support or the device.
- the measurements performed show a 1.6-fold increase in fluorescence for a thin-film Si 3 N 4 device compared to a simple glass support, and a 2.4-fold increase in fluorescence for a coated device. thin in Si 3 N having undergone annealing compared to the simple glass support.
- the device of the invention can be used in a biochip comprising a plurality of molecular recognition zones.
- biochip is meant a chip or a support having on its surface one or more zones, called recognition zones, equipped with molecules having recognition properties.
- Recognition molecules can be, for example, oligonucleotides, polynucleotides, proteins such as antibodies or peptides, lectins or any other ligand-receptor type system.
- the recognition molecules can contain fragments of DNA or RNA.
- the recognition molecules are capable of interacting, for example by complexation or by hybridization with molecules called "target molecules" of the sample.
- target molecules molecules of the sample.
- the complexes formed on the biochip can be identified by means of fluorescent labeling applied to the target molecules of the sample.
- the support of the biochip is the support of the device of the invention coated with the thin layer and the recognition zones of the biochip are the surface samples.
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR9915193A FR2801977B1 (fr) | 1999-12-02 | 1999-12-02 | Amplification d'un signal de fluorescence emis par un echantillon surfacique |
| FR9915193 | 1999-12-02 | ||
| PCT/FR2000/003359 WO2001040778A1 (fr) | 1999-12-02 | 2000-12-01 | Amplification d'un signal de fluorescence emis par un echantillon surfacique |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1234170A1 true EP1234170A1 (fr) | 2002-08-28 |
Family
ID=9552796
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP00985381A Withdrawn EP1234170A1 (fr) | 1999-12-02 | 2000-12-01 | Amplification d'un signal de fluorescence emis par un echantillon surfacique |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6893876B2 (enExample) |
| EP (1) | EP1234170A1 (enExample) |
| JP (1) | JP5281222B2 (enExample) |
| AU (1) | AU2181701A (enExample) |
| FR (1) | FR2801977B1 (enExample) |
| WO (1) | WO2001040778A1 (enExample) |
Families Citing this family (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6818185B1 (en) | 1999-05-28 | 2004-11-16 | Cepheid | Cartridge for conducting a chemical reaction |
| US7167615B1 (en) | 1999-11-05 | 2007-01-23 | Board Of Regents, The University Of Texas System | Resonant waveguide-grating filters and sensors and methods for making and using same |
| US8111401B2 (en) | 1999-11-05 | 2012-02-07 | Robert Magnusson | Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats |
| US7070987B2 (en) | 2000-10-30 | 2006-07-04 | Sru Biosystems, Inc. | Guided mode resonant filter biosensor using a linear grating surface structure |
| US7875434B2 (en) | 2000-10-30 | 2011-01-25 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
| US7142296B2 (en) | 2000-10-30 | 2006-11-28 | Sru Biosystems, Inc. | Method and apparatus for detecting biomolecular interactions |
| US7175980B2 (en) | 2000-10-30 | 2007-02-13 | Sru Biosystems, Inc. | Method of making a plastic colorimetric resonant biosensor device with liquid handling capabilities |
| US6951715B2 (en) | 2000-10-30 | 2005-10-04 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
| US7094595B2 (en) | 2000-10-30 | 2006-08-22 | Sru Biosystems, Inc. | Label-free high-throughput optical technique for detecting biomolecular interactions |
| US7371562B2 (en) | 2000-10-30 | 2008-05-13 | Sru Biosystems, Inc. | Guided mode resonant filter biosensor using a linear grating surface structure |
| US7300803B2 (en) | 2000-10-30 | 2007-11-27 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
| US7023544B2 (en) | 2000-10-30 | 2006-04-04 | Sru Biosystems, Inc. | Method and instrument for detecting biomolecular interactions |
| US7101660B2 (en) | 2000-10-30 | 2006-09-05 | Sru Biosystems, Inc. | Method for producing a colorimetric resonant reflection biosensor on rigid surfaces |
| US7217574B2 (en) | 2000-10-30 | 2007-05-15 | Sru Biosystems, Inc. | Method and apparatus for biosensor spectral shift detection |
| US7615339B2 (en) | 2000-10-30 | 2009-11-10 | Sru Biosystems, Inc. | Method for producing a colorimetric resonant reflection biosensor on rigid surfaces |
| US7202076B2 (en) | 2000-10-30 | 2007-04-10 | Sru Biosystems, Inc. | Label-free high-throughput optical technique for detecting biomolecular interactions |
| US7575939B2 (en) | 2000-10-30 | 2009-08-18 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
| US7306827B2 (en) | 2000-10-30 | 2007-12-11 | Sru Biosystems, Inc. | Method and machine for replicating holographic gratings on a substrate |
| US7264973B2 (en) | 2000-10-30 | 2007-09-04 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant optical biosensor |
| US7153702B2 (en) | 2000-10-30 | 2006-12-26 | Sru Biosystems, Inc. | Label-free methods for performing assays using a colorimetric resonant reflectance optical biosensor |
| FR2818382B1 (fr) * | 2000-12-20 | 2003-02-21 | Commissariat Energie Atomique | Support pour determiner un analyte tel qu'une cible adn ou arn, comportant un filtre spectral selectif |
| FR2829580B1 (fr) | 2001-09-07 | 2004-02-13 | Bio Merieux | Procede de lecture, de detection ou de quantification, hybrides ou complexes utilises dans ce procede et biopuce mettant en oeuvre ledit procede |
| FR2831275B1 (fr) * | 2001-10-18 | 2004-01-30 | Commissariat Energie Atomique | Substrat revetu d'un film organique transparent et procede de fabrication |
| FR2832506B1 (fr) | 2001-11-22 | 2004-02-13 | Centre Nat Rech Scient | Dispositif perfectionne de type bio-puce |
| US7927822B2 (en) | 2002-09-09 | 2011-04-19 | Sru Biosystems, Inc. | Methods for screening cells and antibodies |
| US7429492B2 (en) | 2002-09-09 | 2008-09-30 | Sru Biosystems, Inc. | Multiwell plates with integrated biosensors and membranes |
| US7285789B2 (en) * | 2003-06-06 | 2007-10-23 | Oc Oerlikon Balzers Ag | Optical device for surface-generated fluorescence |
| US8298780B2 (en) | 2003-09-22 | 2012-10-30 | X-Body, Inc. | Methods of detection of changes in cells |
| US7185753B2 (en) * | 2004-09-28 | 2007-03-06 | Hartness International, Inc. | Shuttle conveyor |
| US7796251B2 (en) * | 2006-03-22 | 2010-09-14 | Itt Manufacturing Enterprises, Inc. | Method, apparatus and system for rapid and sensitive standoff detection of surface contaminants |
| US7511809B2 (en) * | 2006-07-07 | 2009-03-31 | Itt Manufacturing Enterprises, Inc. | Air sampler module for enhancing the detection capabilities of a chemical detection device or system |
| WO2008055080A2 (en) * | 2006-10-31 | 2008-05-08 | Sru Biosystems, Inc. | Method for blocking non-specific protein binding on a functionalized surface |
| US7636154B1 (en) | 2006-12-21 | 2009-12-22 | Itt Manufacturing Enterprises, Inc. | Modular optical detection system for point airborne and area surface substance detection |
| US9134307B2 (en) | 2007-07-11 | 2015-09-15 | X-Body, Inc. | Method for determining ion channel modulating properties of a test reagent |
| WO2009009718A1 (en) | 2007-07-11 | 2009-01-15 | Sru Biosystems, Inc. | Methods of identifying modulators of ion channels |
| US8257936B2 (en) | 2008-04-09 | 2012-09-04 | X-Body Inc. | High resolution label free analysis of cellular properties |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000046590A1 (en) * | 1999-02-05 | 2000-08-10 | Biometric Imaging, Inc. | Optical autofocus for use with microtiter plates |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4649280A (en) * | 1985-05-10 | 1987-03-10 | The University Of Rochester | Method and system for the enhancement of fluorescence |
| GB8827853D0 (en) * | 1988-11-29 | 1988-12-29 | Ares Serono Res & Dev Ltd | Sensor for optical assay |
| US5082629A (en) * | 1989-12-29 | 1992-01-21 | The Board Of The University Of Washington | Thin-film spectroscopic sensor |
| US5552272A (en) * | 1993-06-10 | 1996-09-03 | Biostar, Inc. | Detection of an analyte by fluorescence using a thin film optical device |
| PL317379A1 (en) * | 1994-05-27 | 1997-04-01 | Ciba Geigy Ag | Supercritically excited luminescence detecting process |
| JP3236199B2 (ja) * | 1995-08-25 | 2001-12-10 | 日本電気株式会社 | 平面光導波路型バイオケミカルセンサ |
| AU2924399A (en) * | 1998-02-05 | 1999-08-23 | Novartis Ag | Method and device for measuring luminescence |
-
1999
- 1999-12-02 FR FR9915193A patent/FR2801977B1/fr not_active Expired - Fee Related
-
2000
- 2000-12-01 EP EP00985381A patent/EP1234170A1/fr not_active Withdrawn
- 2000-12-01 US US10/129,948 patent/US6893876B2/en not_active Expired - Fee Related
- 2000-12-01 AU AU21817/01A patent/AU2181701A/en not_active Abandoned
- 2000-12-01 WO PCT/FR2000/003359 patent/WO2001040778A1/fr not_active Ceased
- 2000-12-01 JP JP2001542193A patent/JP5281222B2/ja not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000046590A1 (en) * | 1999-02-05 | 2000-08-10 | Biometric Imaging, Inc. | Optical autofocus for use with microtiter plates |
| EP1942333A1 (en) * | 1999-02-05 | 2008-07-09 | BD Biosciences, Systems and Reagents, Inc. | Optical autofocus for use with microtiter plates |
Non-Patent Citations (1)
| Title |
|---|
| See also references of WO0140778A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2003515740A (ja) | 2003-05-07 |
| US20020171045A1 (en) | 2002-11-21 |
| JP5281222B2 (ja) | 2013-09-04 |
| FR2801977A1 (fr) | 2001-06-08 |
| FR2801977B1 (fr) | 2002-05-17 |
| WO2001040778A1 (fr) | 2001-06-07 |
| AU2181701A (en) | 2001-06-12 |
| US6893876B2 (en) | 2005-05-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1234170A1 (fr) | Amplification d'un signal de fluorescence emis par un echantillon surfacique | |
| Dostálek et al. | Biosensors based on surface plasmon-enhanced fluorescence spectroscopy | |
| CA2213694C (en) | Composite waveguide for solid phase binding assays | |
| JP4745220B2 (ja) | 蛍光の検出能を向上させるための光学基板 | |
| KR20030047567A (ko) | 표면 플라즈몬 공명 센서 시스템 | |
| US7492978B2 (en) | Waveguide structure | |
| JP2004061211A (ja) | 蛍光検出方法及び装置 | |
| FR2818378A1 (fr) | Dispositif de renforcement de fluorescence large bande a faibles pertes et capteur optique biologique ou chimique l'utilisant | |
| US7285789B2 (en) | Optical device for surface-generated fluorescence | |
| JP4987737B2 (ja) | 蛍光検出デバイス | |
| WO2002050540A1 (fr) | Support pour determiner un analyte comportant un filtre spectral selectif | |
| EP1946076B1 (fr) | Système d'imagerie de biopuce | |
| EP1554565B1 (fr) | Dispositif de lecture de luminescence integre | |
| Yih et al. | A compact surface plasmon resonance and surface-enhanced Raman scattering sensing device | |
| Neumann | Strategies for detecting DNA hybridisation using surface plasmon fluorescence spectroscopy | |
| Barritault et al. | Optical thin films serving biotechnology: fluorescence enhancement of DNA chip | |
| US20050054084A1 (en) | Substrate with at least one pore | |
| KR20060083112A (ko) | 유전성 입자층을 구비한 바이오칩 플랫폼 및 이를 구비한광 분석장치 | |
| FR2818263A1 (fr) | Substrat pour materiau a insoler | |
| US20040135996A1 (en) | Biosensor with an arbitrary substrate that can be characterised in photothermal deflection | |
| Steiner et al. | Applications of surface-enhanced spectroscopic techniques to biosystems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20020510 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Owner name: BIOMERIEUX SAA |
|
| 17Q | First examination report despatched |
Effective date: 20080514 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BIOMERIEUX SA Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20170701 |