EP1233515A2 - Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils - Google Patents

Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils Download PDF

Info

Publication number
EP1233515A2
EP1233515A2 EP01128943A EP01128943A EP1233515A2 EP 1233515 A2 EP1233515 A2 EP 1233515A2 EP 01128943 A EP01128943 A EP 01128943A EP 01128943 A EP01128943 A EP 01128943A EP 1233515 A2 EP1233515 A2 EP 1233515A2
Authority
EP
European Patent Office
Prior art keywords
touch sensor
receiving
emission
area
emission surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01128943A
Other languages
English (en)
French (fr)
Other versions
EP1233515A3 (de
Inventor
Ulrich Kaczynski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Tencor MIE GmbH
Original Assignee
Leica Microsystems Wetzlar GmbH
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems Wetzlar GmbH, Leica Microsystems CMS GmbH filed Critical Leica Microsystems Wetzlar GmbH
Publication of EP1233515A2 publication Critical patent/EP1233515A2/de
Publication of EP1233515A3 publication Critical patent/EP1233515A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9627Optical touch switches
    • H03K17/9638Optical touch switches using a light guide
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9627Optical touch switches

Definitions

  • the invention relates to a touch sensor and a device for Protection of a protruding component.
  • the published patent application DE 37 00 009 A1 discloses an optoelectronic Protection zone device for securing moving or fixed objects from improper touch or collision.
  • a optoelectronic distance sensor used, which over a light beam swivels an adjustable angular range. By determining the spot size of the light beam on surrounding objects is based on the distance closed and a signal if the safety distance is undershot output.
  • the known devices have the disadvantage that they initially only can detect relative approximations from one direction. Only by Swiveling the arrangement or by using several for different Directions of aligned devices can be an approximation different directions.
  • Pushbutton switches can be designed such that they have short switching distances exhibit. However, they have the disadvantage already mentioned that they only Capture approximations from one direction. Also carry push buttons structurally very strong in this direction compared to the switching path. Especially when push buttons are used for all spatial directions the freedom of movement is or must be severely restricted additional space may be provided.
  • x / y measuring table made of Cerodur, which is an object whose structures are to be measured, with an accuracy of shifted a few nanometers.
  • the relative position of the x / y measuring table is measured interferometrically.
  • the object can microscopically examined both in reflected light and in transmitted light arrangement become.
  • a touch sensor with a spaced apart and movable relative to a stationary housing part arranged stop element, a detection system, the one Light source with one emission surface and one opposite the emission surface includes the receiving element arranged, the one Receiving area defined, the receiving area and the emission area have essentially the same size.
  • a device that is characterized by a stationary housing part with which the protruding component is connected, one opposite the stationary Housing part spaced apart and movably arranged stop element, a detection system that includes a light source with an emission surface and a arranged opposite the emission surface of the light source Includes receiving element that defines a receiving area, the Receiving area and the emission area essentially the same size exhibit.
  • the touch sensor according to the invention has the advantage that touches from different directions without great expenditure on equipment, such as Panning or duplicating the sensor can be detected.
  • the touch sensor is preferably designed such that already at very small displacements of the stop element between the light path the emission area and the receiving area is interrupted. For this are the emission area and the receiving area are made as small as possible.
  • the length of the switching path is then in the range of the diameter of Emission area or reception area.
  • the emission area through the end of at least one Optical fiber defined.
  • the optical fiber simultaneously transports the light from the Light source. It is also possible to use an optical fiber bundle then the exit surfaces of the individual optical fibers of the Define the optical fiber bundle the emission area.
  • an intensity sensor is assigned to the receiving surface. It can be for example a semiconductor detector, a photodiode or a Act photomultiplier. Between the reception area and the Intensity sensor can be another optical fiber or another Optical fiber bundles can be arranged.
  • the light source can be, for example Laser, a light emitting diode or an incandescent lamp. It is preferred used a semiconductor laser.
  • the reception area is one Reflecting surface that reflects the light emitted by the emitting surface aligns at least one additional emission area through the cross section an optical fiber is defined. This optical fiber transports the light the intensity sensor.
  • the stop element can be moved in various ways with the Housing part to be connected.
  • the connection preferably has one or several elastically bendable rods.
  • the rod is preferably over a base plate connected to the housing part, which the mountability of Touch sensor relieved.
  • the stop element, the base plate and their connection, for example the at least one rod and the receiving element can be put together be made in one piece.
  • the Light source attached to the base plate.
  • the receiving surface and the emission surface are preferably immediate arranged one above the other. Because the emerging from an optical fiber end Beam is very divergent, it is to avoid light loss advantageous to design the touch sensor so that the light path between receiving area and emission area smaller than the cross section of the Is emission area. Instead, however, you can also choose between reception area and emission surface an optic can be arranged, for example that of light emitted from the emission surface is focused on the reception surface.
  • the intensity sensor generates a power for the emission area electric signal proportional to the light.
  • This signal can be used Control the sequence of movements that serve the striking Stop element and thus caused the electrical signal. in the In the simplest case, the movement is stopped. It is also a reduction the speed of movement can be controlled, regulated or controlled.
  • the emission area and the receiving area are sufficiently large are designed, only a slight displacement of the stop element a partial interruption of the light path between the emission surface and the reception area, which results in a reduction in the Expresses amplitude of the electrical signal. From the change in amplitude be concluded on the route that moved the stop element has been.
  • the device for protecting a protruding component encloses the stop element protective component at least partially.
  • the device according to the invention can be very particularly advantageously shown in a high-precision measuring machine. Because the stop element space-saving design, no additional space is required, which last but not least the manufacturing costs and the manufacturing costs of Measuring machine significantly reduced.
  • the stop element encloses the Condenser of a high-precision measuring machine and protects by output of a signal stopping the movement process the condenser before Collision with the heavy x / y measuring table.
  • Stop element 3 is movable with four flexible steel rods 5, 7, 9, 11 a base plate 13 connected.
  • the base plate 13 has a first bore 15 and a second bore 17 for attachment to one in this figure is not shown housing part, such as a recess 19, which together with the stop element 3 encloses a space in which a protruding Component is introduced.
  • housing part such as a recess 19, which together with the stop element 3 encloses a space in which a protruding Component is introduced.
  • Through the base plate 13 is a Optical fiber bundle 21 out.
  • a first half of the optical fibers of the Optical fiber bundle 21 transports the light of one not shown here Light source to the emission surface 23 through the end surfaces of the first Half of the optical fibers of the optical fiber bundle is formed.
  • Receiving element 25 is another steel rod, the reflective End surface forms a first receiving surface 27.
  • the receiving surface is 27 arranged opposite the emission surface 23.
  • the end faces of the second Half of the optical fibers of the optical fiber bundle form another Receiving surface 29.
  • the light emitted by the emission surface 23 accordingly first reaches the first receiving surface 27 and becomes there another receiving surface 29 reflected.
  • the second half of the Optical fibers of the optical fiber bundle 21 the light does not become one here shown intensity sensor performed.
  • the course of the first and second half of the optical fibers of the optical fiber bundle 21 is shown in FIG. 5.
  • a holding block 31 is installed by the the optical fiber bundle 21 runs and in which it is glued.
  • FIG 3 shows the touch sensor 1 in a side view.
  • the receiving surface 27 is opposite Emission area 23.
  • FIG. 4 shows the touch sensor 1 in a side view during the collision with a component 33 that results from the arrow 35 indicated direction on the stop element 3 of the touch sensor 1 too moved.
  • the displacement of the stop element 3 also Receiving element 25 with the receiving surface 27 laterally from the Starting position shifted so that it is no longer opposite the Emission surface stands and therefore no more light is reflected. Accordingly, no light reaches the further receiving surface 29 and therefore not to the intensity sensor.
  • the change in the measured Intensity detects and guides over an electronic, not shown here Circuit for stopping the movement of component 33.
  • a first half of the optical fibers 37 of the Optical fiber bundle 21 transports the light from a light source 39 to the Emission area 23 through the end faces of the first half of the Optical fibers 37 of the optical fiber bundle 21 is formed.
  • the receiving element 25 serves the steel rod 25, the reflective end surface forms the first receiving surface 27.
  • the first receiving surface is 27 arranged opposite the emission surface 23.
  • the end faces of the second Half of the optical fibers 41 of the optical fiber bundle 21 form another Receiving surface 29.
  • the light emitted by the emission surface 23 accordingly first reaches the first receiving surface 27 and becomes there another receiving surface 29 reflected.
  • the second half of the Optical fibers 41 of the optical fiber bundle 21 the light becomes one Intensity sensor 43 out.
  • the glass fiber bundle 21 is in the range of Emission and reception area 23, 29 guided and divided in a bundle at some distance into the first and second halves 37, 41 of the Optical fiber bundle 21.
  • the intensity sensor is a photodiode running an electrical to the power of the incident light proportional signal generated, which is processed electronically.
  • the light source consists of a diode laser.
  • FIG. 6 shows a high-precision measuring machine 45 with a device for Protection of a condenser 47.
  • coordinate measuring machine 45 becomes a very heavy x / y measuring table sliding on an air bearing 49 which is made of Cerodur and which carries an object 51, the Structures to be measured with an accuracy of a few Nanometers shifted relative to microscope optics.
  • the relative position The x / y measuring table 49 is measured interferometrically.
  • Object 51 can be microscopic in both reflected light and transmitted light arrangements to be examined. In the incident light examination, the object 51 with the Light 53 from a first light source 55 through a microscope objective 57 illuminated.
  • a beam splitter 59 is arranged which detects that from the first light source 55 light 53 coming to the microscope objective is reflected and that from object 51 lets outgoing light 61 pass, so that this leads to a detector 63 arrives, which is designed as a photomultiplier.
  • a detector 63 arrives, which is designed as a photomultiplier.
  • the x / y measuring table 49 has a recess 69 in the interior, within which the condenser 47 is close to the object 51 lying on the edge can be performed.
  • the condenser is attached to a housing part 79.
  • the x / y measuring table is driven by an electric motor 71 and slides on an air bearing 83, which is between the x / y measuring table and a plane polished Granite table 81 is constructed. Because the travel range of the x / y measuring table is larger than the recess 69 in the interior, there could be collisions come between the condenser 47 and the x / y measuring table.
  • the Condenser 47 is provided, which includes a touch sensor 1.
  • the touch sensor corresponds in its Structure of the structure illustrated in FIGS. 1 to 5.
  • the device for Protection 73 of the condenser 47 which on a base plate 13 on the Housing part 79 is attached, includes a control unit 75, in which a Light source 39 and an intensity sensor are implemented.
  • the light of the As already described, the light source reaches the first half of the Optical fibers 37 of the optical fiber bundle 21 to the emission surface 23 the receiving surface 27, 29 outgoing light passes over the second half of the optical fibers 41 of the optical fiber bundle 21 to the control unit 75 and therein to the intensity sensor 43.
  • the intensity signal is reduced a signal for stopping is sent to the electric motor 71 via the line 77 directed.

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

Die Erfindung offenbart einen Berührungssensor (1) mit einem gegenüber einem ortsfesten Gehäuseteil (79) beabstandeten und beweglich angeordneten Anschlagelement (3) , einem Detektionssystem, das eine Lichtquelle (39) mit einer kleinen Emissionsfläche (23) und ein gegenüber der Emissionsfläche (23) der Lichtquelle (39) angeordnetes Empfangselement (25) beinhaltet, das eine Empfangsfläche (27) definiert, dadurch gekennzeichnet, dass die Empfangsfläche (27) und die Emissionsfläche (23) im Wesentlichen gleiche Größe aufweisen. <IMAGE>

Description

Die Erfindung betrifft einen Berührungssensor und eine Vorrichtung zum Schutz eines hervorstehenden Bauteils.
Vorrichtungen, die die Annäherung eines bewegten Bauteils an umgebende Bauteile detektieren, um eine bevorstehende Kollision, die die Bauteile beschädigen könnte, zu vermeiden sind weithin bekannt. Als aller einfachste Ausführung können Tastschalter verwendet werden, die in vielen Bauformen erhältlich sind.
Aus DE 42 34 375 ist eine Vorrichtung zur Personen- und Kollisionssicherung von fahrerlosen Gabelhubfahrzeugen bekannt, die zwischen den Zinkenspitzen der Hubgabel eine Lichtschranke aufweist.
Die Offenlegungsschrift DE 37 00 009 A1 offenbart eine optoelektronische Schutzzonenvorrichtung zur Sicherung von bewegten oder festen Objekten vor unsachgemäßer Berührung oder Kollision. Hierbei wird ein optoelektronischer Abstandssensor eingesetzt, der einen Lichtstrahl über einen einstellbaren Winkelbereich schwenkt. Durch Feststellen der Fleckgröße des Lichtstrahles auf umliegenden Objekten, wird auf den Abstand geschlossen und bei Unterschreiten eines Sicherheitsabstandes ein Signal ausgegeben.
Die Bekannten Vorrichtungen haben den Nachteil, dass sie zunächst nur relative Annäherungen aus einer Richtung erfassen können. Erst durch Schwenken der Anordnung oder durch den Einsatz mehrerer für verschiedene Richtungen ausgerichteter Vorrichtungen kann eine Annäherung aus verschiedenen Richtungen erfasst werden.
Insbesondere, wenn ein zusätzliches schwenken oder eine aufwendige Erfassung und Auswertung von Messwerten, wie beispielsweise die Bestimmung einer Lichtfleckgröße, erforderlich ist, kommt es zu Schaltverzögerungen, während denen sich die unerwünschte Annäherung fortsetzt.
Tastschalter können derart ausgestaltet sein, dass sie kurze Schaltwege aufweisen. Sie haben jedoch den bereits erwähnten Nachteil, dass sie nur Annäherungen aus einer Richtung erfassen. Ferner tragen Tastschalter baulich im Vergleich zum Schaltweg genau in dieser Richtung sehr stark auf. Insbesondere wenn für alle Raumrichtungen Tastschalter eingesetzt werden müssen, ist der Bewegungsfreiraum stark eingeschränkt oder muss zusätzlicher Raum vorgesehen sein.
In einer höchstgenauen Koordinaten-Messmaschine wird ein sehr schwerer, auf einem Luftlager gleitender, x/y-Messtisch aus Cerodur, der ein Objekt trägt, dessen Strukturen vermessen werden sollen, mit einer Genauigkeit von wenigen Nanometern verschoben. Mit einer solchen Messmaschine können zum Beispiel Strukturbreiten oder Strukturabstände einer Maske zur Waferbelichtung bestimmt werden. Die relative Position des x/y-Messtisches wird dabei interferometrisch gemessen. Oberhalb des Objektes ist ein Objektiv und unterhalb des Objektes ein Kondensor angeordnet. Das Objekt kann sowohl in Auflicht-, als auch in Durchlichtanordnung mikroskopisch untersucht werden. Zum Schutz von hervorstehenden Bauteilen insbesondere vor der Kollision mit dem schweren x/y-Messtisch, müssen Berührungssensoren implementiert werden.
Die Komponenten einer solchen höchstgenauen Koordinaten-Messmaschine sind aus sehr teurem und schwer zu bearbeitendem Material hergestellt. Die Komponenten, insbesondere der Messtisch, sollen daher nicht größer als nötig ausfallen. Auch mit Hinblick auf den teuren Reinraumplatz, auf dem solche Messmaschinen installiert werden, muss eine platzsparende Ausgestaltung gewählt werden. Der Einsatz von viel Bauraum in Anspruch nehmenden Berührungssensoren oder Tastschaltern ist vor diesem Hintergrund nachteilig.
Es ist daher Aufgabe der vorliegenden Erfindung, einen Berührungssensor anzugeben, bei dem die aufgezeigten Probleme zumindest weitgehend vermieden sind.
Obige Aufgabe wird gelöst durch einen Berührungssensor mit einem gegenüber einem ortsfesten Gehäuseteil beabstandeten und beweglich angeordneten Anschlagelement, einem Detektionssystem, das eine Lichtquelle mit einer Emissionsfläche und ein gegenüber der Emissionsfläche der Lichtquelle angeordnetes Empfangselement beinhaltet, das eine Empfangsfläche definiert, wobei die Empfangsfläche und die Emissionsfläche im Wesentlichen gleiche Größe aufweisen.
Es ist außerdem Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Schutz eines hervorstehenden Bauteils zu schaffen, die die beschriebenen Probleme vermeidet bzw. löst und darüber hinaus schnell arbeitet und zuverlässig ist.
Vorstehende Aufgabe wird gelöst durch eine Vorrichtung, die gekennzeichnet ist durch ein ortsfestes Gehäuseteil mit dem das hervorstehende Bauteil verbunden ist, ein gegenüber dem ortsfesten Gehäuseteil beabstandeten und beweglich angeordneten Anschlagelement, ein Detektionssystem, das eine Lichtquelle mit einer Emissionsfläche und ein gegenüber der Emissionsfläche der Lichtquelle angeordnetes Empfangselement beinhaltet, das eine Empfangsfläche definiert, wobei die Empfangsfläche und die Emissionsfläche im Wesentlichen gleiche Größe aufweisen.
Der erfindungsgemäße Berührungssensor hat den Vorteil, dass Berührungen aus verschiedenen Richtungen ohne großen apparativen Aufwand, wie Schwenken oder duplizieren des Sensors, detektiert werden.
Der Berührungssensor ist vorzugsweise derart ausgestaltet, dass schon bei sehr kleinen Verschiebungen des Anschlagelements der Lichtweg zwischen der Emissionsfläche und der Empfangsfläche unterbrochen wird. Hierzu sind die Emissionsfläche und die Empfangsfläche möglichst klein ausgeführt. Die Länge des Schaltweges liegt dann im Bereich des Durchmessers von Emissionsfläche bzw. Empfangsfläche. In einer ganz besonders bevorzugten Ausgestaltungsform ist die Emissionsfläche durch das Ende mindestens einer Lichtleitfaser definiert. Die Lichtleitfaser transportiert gleichzeitig das Licht der Lichtquelle. Auch die Verwendung eines Lichtleitfaserbündels ist möglich, wobei dann die Austrittsflächen der einzelnen Lichtleitfasern des Lichtleitfaserbündels die Emissionsfläche definieren.
In einer einfachen Ausführung des erfindungsgemäßen Berührungssensors ist der Empfangsfläche ein Intensitätssensor zugeordnet. Hierbei kann es sich beispielsweise um einen Halbleiterdetektor, eine Photodiode oder einen Photomultiplier handeln. Zwischen der Empfangsfläche und dem Intensitätssensor kann eine weitere Lichtleitfaser oder ein weiteres Lichtleitfaserbündel angeordnet sein. Die Lichtquelle kann beispielsweise ein Laser, eine Leuchtdiode oder eine Glühlampe sein. Bevorzugter Weise wird ein Halbleiterlaser verwendet.
In einer besonderen Ausgestaltungsform ist die Empfangsfläche eine Reflexionsfläche, die das von der Emissionsfläche ausgesendete Licht auf mindestens eine weitere Emissionsfläche richtet, die durch den Querschnitt einer Lichtleitfaser definiert ist. Diese Lichtleitfaser transportiert das Licht zu dem Intensitätssensor.
Das Anschlagelement kann auf verschiedene Arten beweglich mit dem Gehäuseteil verbunden sein. Vorzugsweise weist die Verbindung einen oder mehrere elastisch biegbare Stäbe auf. Der Stab ist bevorzugter Weise über eine Grundplatte mit dem Gehäuseteil verbunden, was die Montierbarkeit des Berührungssensors erleichtert.
Das Anschlagelement, die Grundplatte und deren Verbindung, beispielsweise der mindestens eine Stab, sowie das Empfangselement können zusammen einstückig gefertigt sein. In einer weiter bevorzugten Ausführungsform ist die Lichtquelle an der Grundplatte befestigt.
Vorzugsweise sind die Empfangsfläche und die Emissionsfläche unmittelbar übereinander angeordnet. Da das aus einem Lichtleitfaserende austretende Lichtbündel sehr divergent ist, ist es zur Vermeidung von Lichtverlusten vorteilhaft, den Berührungssensor so auszugestalten, dass der Lichtweg zwischen Empfangsfläche und Emissionsfläche kleiner als der Querschnitt der Emissionsfläche ist. Stattdessen kann jedoch auch zwischen Empfangsfläche und Emissionsfläche eine Optik angeordnet sein, die beispielsweise das von der Emissionsfläche ausgehende Licht auf die Empfangsfläche fokussiert.
Der Intensitätssensor erzeugt ein zur Leistung des auf die Emissionsfläche treffenden Lichtes proportionales elektrisches Signal. Dieses Signal kann zur Steuerung des Bewegungsablaufs dienen, der das Anschlagen am Anschlagelement und somit das elektrische Signal verursacht hat. Im einfachsten Fall wird die Bewegung gestoppt. Es ist auch eine Reduzierung der Bewegungsgeschwindigkeit steuer-, regel-, oder kontrollierbar.
Wenn die Emissionsfläche und die Empfangsfläche hinreichend groß ausgestaltet sind, kann eine geringe Verschiebung des Anschlagelements nur eine Teilweise Unterbrechung der Lichtweges zwischen der Emissionsfläche und der Empfangsfläche bewirken, was sich in einer Verringerung der Amplitude des elektrischen Signals äußert. Aus der Amplitudenänderung kann auf die Strecke geschlossen werden, die das Anschlagelement verschoben wurde.
In einer besonderen Ausführung der Vorrichtung zum Schutz eines hervorstehenden Bauteils umschließt das Anschlagelement das zu schützende Bauteil zumindest teilweise.
Ganz besonders vorteilhaft lässt sich die erfindungsgemäße Vorrichtung in einer hochpräzisen Messmaschine einsetzen. Da sich das Anschlagelement sehr platzsparend ausgestalten lässt, wird kein zusätzlicher Raum benötigt, was nicht zuletzt den Herstellungsaufwand und die Herstellungskosten der Messmaschine erheblich reduziert.
In einer speziellen Ausführung umschließt das Anschlagelement den Kondensor einer hochpräzisen Messmaschine und schützt durch Ausgabe eines den Bewegungsvorgang stoppenden Signals den Kondensor vor der Kollision mit dem schweren x/y-Messtisch.
In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben. Dabei zeigen:
Fig. 1:
eine Ausführungsform des Berührungssensors in einer dreidimensionalen, perspektivischen Ansicht,
Fig. 2:
den Berührungssensor aus Fig. 1 in der Draufsicht,
Fig. 3:
den Berührungssensor aus Fig. 1 in der Seitenansicht,
Fig. 4:
den Berührungssensor aus Fig. 1 in der Seitenansicht bei der Kollision mit einem Bauteil,
Fig. 5:
das Detektionssystem des Berührungssensors und
Fig. 6:
eine hochpräzise Messmaschine mit einer Vorrichtung zum Schutz des Kondensors.
Fig. 1 zeigt einen erfindungsgemäßen Berührungssensor 1. Das Anschlagelement 3 ist über vier biegsame Stahlstäbe 5, 7, 9, 11 beweglich mit einer Grundplatte 13 verbunden. Die Grundplatte 13 weist eine erste Bohrung 15 und eine zweite Bohrung 17 zur Befestigung auf einem in dieser Figur nicht gezeigten Gehäuseteil, so wie eine Aussparung 19 auf, die gemeinsam mit dem Anschlagelement 3 einen Raum umschließt in den ein hervorstehendes Bauteil eingebracht wird. Durch die Grundplatte 13 hindurch ist ein Lichtleitfaserbündel 21 geführt. Eine erste Hälfte der Lichtleitfasern des Lichtleitfaserbündels 21 transportiert das Licht einer hier nicht gezeigten Lichtquelle zu der Emissionsfläche 23, die durch die Endflächen der ersten Hälfte der Lichtleitfasern des Lichtleitfaserbündels gebildet ist. Als Empfangselement 25 dient ein weiterer Stahlstab, dessen reflektierende Endfläche eine erste Empfangsfläche 27 bildet. Die Empfangsfläche 27 ist gegenüber der Emissionsfläche 23 angeordnet. Die Endflächen der zweiten Hälfte der Lichtleitfasern des Lichtleitfaserbündels bildet eine weitere Empfangsfläche 29. Das von der Emissionsfläche 23 ausgehende Licht gelangt demnach zunächst zur ersten Empfangsfläche 27 und wird dort zur weiteren Empfangsfläche 29 reflektiert. Durch die zweite Hälfte der Lichtleitfasern des Lichtleitfaserbündels 21 wird das Licht zu einem hier nicht gezeigten Intensitätssensor geführt. Der Verlauf der ersten und zweiten Hälfte der Lichtleitfasern des Lichtleitfaserbündels 21 ist in Fig. 5 dargestellt. Zur Fixierung des Lichtfaserbündels 21 ist ein Halteblock 31 installiert durch den das Lichtfaserbündel 21 verläuft und in dem es verklebt ist.
Fig. 2 zeigt den Berührungssensor 1 in der Draufsicht. Die Stahlstäbe 5, 7, 9, 11 und das Empfangselement 25 sind in das Anschlagelement 3 eingelötet.
Fig. 3 zeigt den Berührungssensor 1 in einer Seitenansicht. Im Ausgangszustand Steht die Empfangsfläche 27 gegenüber der Emissionsfläche 23.
Fig. 4 zeigt den Berührungssensor 1 in einer Seitenansicht bei der Kollision mit einem Bauteil 33, das sich aus der mit dem Richtungspfeil 35 angedeuteten Richtung auf das Anschlagelement 3 des Berührungssensors 1 zu bewegt. Durch die Verschiebung des Anschlagelements 3 wird auch das Empfangselement 25 mit der Empfangsfläche 27 seitlich aus der Ausgangsposition verschoben, so dass es nicht mehr gegenüber der Emissionsfläche steht und somit kein Licht mehr reflektiert wird. Dementsprechend gelangt kein Licht zu der weiteren Empfangsfläche 29 und somit auch nicht zum Intensitätssensor. Die Veränderung der gemessenen Intensität detektiert und führt über eine hier nicht gezeigte elektronische Schaltung zum Stoppen des Bewegungsvorganges des Bauteils 33.
Fig. 5 zeigt das Detektionssystem des erfindungsgemäßen Berührungssensors. Eine erste Hälfte der Lichtleitfasern 37 des Lichtleitfaserbündels 21 transportiert das Licht einer Lichtquelle 39 zu der Emissionsfläche 23, die durch die Endflächen der ersten Hälfte der Lichtleitfasern 37 des Lichtleitfaserbündels 21 gebildet wird. Als Empfangselement 25 dient der Stahlstab 25, dessen reflektierende Endfläche die erste Empfangsfläche 27 bildet. Die erste Empfangsfläche 27 ist gegenüber der Emissionsfläche 23 angeordnet. Die Endflächen der zweiten Hälfte der Lichtleitfasern 41 des Lichtleitfaserbündels 21 bilden eine weitere Empfangsfläche 29. Das von der Emissionsfläche 23 ausgehende Licht gelangt demnach zunächst zur ersten Empfangsfläche 27 und wird dort zur weiteren Empfangsfläche 29 reflektiert. Durch die zweite Hälfte der Lichtleitfasern 41 des Lichtleitfaserbündels 21 wird das Licht zu einem Intensitätssensor 43 geführt. Das Glasfaserbündel 21 ist im Bereich der Emissions- und Empfangsfläche 23, 29 in einem Bündel geführt und teilt sich in einigem Abstand in die ersten und zweite Hälfte 37, 41 des Lichtleitfaserbündels 21 auf. Der Intensitätssensor ist als Photodiode ausgeführt, die ein elektrisches zur Leistung des auftreffenden Lichtes proportionales Signal erzeugt, das elektronisch weiterverarbeitet wird. Die Lichtquelle besteht in diesem Ausführungsbeispiel aus einem Diodenlaser.
Fig. 6 zeigt eine hochpräzise Messmaschine 45 mit einer Vorrichtung zum Schutz eines Kondensors 47. In der höchstgenauen Koordinaten-Messmaschine 45 wird ein sehr schwerer, auf einem Luftlager gleitender, x/y-Messtisch 49 der aus Cerodur gefertigt ist und der ein Objekt 51 trägt, dessen Strukturen vermessen werden soll, mit einer Genauigkeit von wenigen Nanometern relativ zu einer Mikroskopoptik verschoben. Die relative Position des x/y-Messtisches 49 wird dabei interferometrisch gemessen. Das Objekt 51 kann sowohl in Auflicht-, als auch in Durchlichtanordnung mikroskopisch untersucht werden. Bei der Auflichtuntersuchung wird das Objekt 51 mit dem Licht 53 einer ersten Lichtquelle 55 durch ein Mikroskopobjektiv 57 hindurch beleuchtet. Zwischen der ersten Lichtquelle 55 und dem Mikroskopobjektiv 57 ist ein Strahlteiler 59 angeordnet, der das von der ersten Lichtquelle 55 kommende Licht 53 zum Mikroskopobjektiv reflektiert und das vom Objekt 51 ausgehende Licht 61 passieren lässt, so dass dieses zu einem Detektor 63 gelangt, der als Photomultiplier ausgeführt ist. Durch Verschieben des x/y-Messtisches wird das Objekt 51 abgerastert. In Durchlichtanordnung wird das Objekt 51 von einer zweiten Lichtquelle 65 durch den Kondensor 47 hindurch von unten beleuchtet. Das Durchlicht 67 wird im Detektor 63 detektiert.
Der x/y-Messtisch 49 weist im Innenbereich eine Aussparung 69 auf, innerhalb der der Kondensor 47 nahe an das am Rand aufliegende Objekt 51 geführt werden kann. Der Kondensor ist auf einem Gehäuseteil 79 befestigt. Der x/y-Messtisch wird von einem Elektromotor 71 angetrieben und gleitet auf einem Luftlager 83, das zwischen dem x/y-Messtisch und einem planpolierten Granittisch 81 aufgebaut ist. Da der Verfahrbereich des x/y-Messtisches größer ist, als die Aussparung 69 im Innenbereich, könnte es zu Kollisionen zwischen dem Kondensor 47 und dem x/y-Messtisch kommen. Zur Vermeidung einer Kollision ist eine Vorrichtung zum Schutz 73 des Kondensors 47 vorgesehen, die einen Berührungssensor 1 beinhaltet. Durch die Kompakte Bauweise des Berührungssensors 1, insbesondere des Anschlagelements 3 wird die Bewegungsfreiheit des x/y-Messtisches allenfalls unwesentlich eingeschränkt. Der Berührungssensor entspricht in seinem Aufbau dem in Fig. 1 bis Fig. 5 illustrierten Aufbau. Die Vorrichtung zum Schutz 73 des Kondensors 47, die über eine Grundplatte 13 an dem Gehäuseteil 79 befestigt ist, beinhaltet eine Steuereinheit 75, in der eine Lichtquelle 39 und ein Intensitätssensor implementiert sind. Das Licht der Lichtquelle gelangt wie bereits beschrieben über die erste Hälfte der Lichtleitfasern 37 des Lichtleitfaserbündels 21zur Emissionsfläche 23. Das von der Empfangsfläche 27, 29 ausgehende Licht gelangt über die zweite Hälfte der Lichtleitfasern 41 der Lichtleitfaserbündels 21 zur Steuereinheit 75 und darin zum Intensitätssensor 43. Bei einer Verringerung des Intensitätssignals wird über die Leitung 77 ein Signal zum Stoppen an den Elektromotor 71 geleitet.
Die Erfindung wurde in Bezug auf eine besondere Ausführungsform beschrieben. Es ist jedoch selbstverständlich, dass Änderungen und Abwandlungen durchgeführt werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
Bezugszeichenliste:
1
Berührungssensor
3
Anschlagelement
5
Stahlstab
7
Stahlstab
9
Stahlstab
11
Stahlstab
13
Grundplatte
15
erste Bohrung
17
zweite Bohrung
19
Aussparung
21
Lichtleitfaserbündel
23
Emissionsfläche
24
Abstand
25
Empfangselement
27
Empfangsfläche
29
weitere Empfangsfläche
31
Halteblock
33
Bauteil
35
Richtungspfeil
37
erste Hälfte der Lichtleitfasern
39
Lichtquelle
41
zweite Hälfte der Lichtleitfasern
43
Intensitätssensor
45
Messmaschine
47
Kondensor
49
x/y-Messtisch
51
Objekt
53
Licht der ersten Lichtquelle
55
erste Lichtquelle
57
Mikroskopobjektiv
59
Strahlteiler
61
ausgehendes Licht
63
Detektor
65
zweite Lichtquelle
67
Durchlicht
69
Aussparung
71
Elektromotor
73
Vorrichtung zum Schutz
75
Steuereinheit
77
Leitung
79
Gehäuseteil
81
Granittisch
83
Luftlager

Claims (15)

  1. Berührungssensor (1) mit einem gegenüber einem ortsfesten Gehäuseteil (79) beabstandeten und beweglich angeordneten Anschlagelement (3), einem Detektionssystem, das eine Lichtquelle (39) mit einer Emissionsfläche (23) und ein gegenüber der Emissionsfläche (23) der Lichtquelle (39) angeordnetes Empfangselement (25) beinhaltet, das eine Empfangsfläche (27) definiert, wobei die Empfangsfläche (27) und die Emissionsfläche (23) im Wesentlichen gleiche Größe aufweisen.
  2. Berührungssensor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Emissionsfläche (23) durch das Ende mindestens einer Lichtleitfaser definiert ist.
  3. Berührungssensor (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Empfangsfläche (27) ein Intensitätssensor (43) zugeordnet ist.
  4. Berührungssensor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Empfangsfläche (27) eine Reflexionsfläche ist, die das von der Emissionsfläche (23) ausgesendete Licht auf mindestens eine weitere, mit einem Intensitätssensor (43) verbundene, Lichtleitfaser richtet, deren Ende eine weitere Empfangsfläche (29) definiert.
  5. Berührungssensor (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Anschlagelement (3) über mindestens einen elastisch biegbaren Stab (5, 7, 9, 11) beweglich mit dem Gehäuseteil (79) verbunden ist.
  6. Berührungssensor (1) nach Anspruch 5, dadurch gekennzeichnet, dass das Anschlagelement (3), die Grundplatte (13), der mindestens eine Stab (5, 7, 9, 11) und das Empfangselement (25) zusammen einstückig gefertigt sind.
  7. Berührungssensor (1) nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der Intensitätssensor (43) ein zur Leistung des auf die Emissionsfläche (23) treffenden Lichtes proportionales elektrisches Signal erzeugt.
  8. Berührungssensor (1) nach Anspruch 12, dadurch gekennzeichnet, dass das elektrische Signal zur Steuerung eines Bewegungsvorganges dient.
  9. Vorrichtung zum Schutz eines hervorstehenden Bauteils, gekennzeichnet durch ein ortsfestes Gehäuseteil (79) mit dem das hervorstehende Bauteil verbunden ist, ein gegenüber dem ortsfesten Gehäuseteil (79) beabstandeten und beweglich angeordneten Anschlagelement (3), ein Detektionssystem, das eine Lichtquelle (39) mit einer kleinen Emissionsfläche (23) und ein gegenüber der Emissionsfläche (23) der Lichtquelle (39) angeordnetes Empfangselement (25) beinhaltet, das eine Empfangsfläche (27) definiert, dadurch gekennzeichnet, dass die Empfangsfläche (27) und die Emissionsfläche (23) im Wesentlichen gleiche Größe aufweisen.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Anschlagelement (3) das zu schützende Bauteil zumindest teilweise umschließt.
  11. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Emissionsfläche (23) durch das Ende mindestens einer Lichtleitfaser definiert ist.
  12. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass der Empfangsfläche (27) ein Intensitätssensor (43) zugeordnet ist.
  13. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Empfangsfläche (27) eine Reflexionsfläche ist, die das von der Emissionsfläche (23) ausgesendete Licht auf mindestens eine weitere, mit einem Intensitätssensor (43) verbundene, Lichtleitfaser richtet, deren Ende eine weitere Empfangsfläche (29) definiert.
  14. Vorrichtung nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass der Intensitätssensor (43) ein zur Leistung des auf die Emissionsfläche (23) treffenden Lichtes proportionales elektrisches Signal erzeugt, das zur Steuerung, Kontrolle oder Regelung eines Bewegungsvorganges dient.
  15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass das Gehäuseteil (79) Bestandteil einer hochpräzisen Meßmaschine (45) ist.
EP01128943A 2001-02-14 2001-12-06 Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils Withdrawn EP1233515A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10106699A DE10106699C2 (de) 2001-02-14 2001-02-14 Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils
DE10106699 2001-02-14

Publications (2)

Publication Number Publication Date
EP1233515A2 true EP1233515A2 (de) 2002-08-21
EP1233515A3 EP1233515A3 (de) 2006-07-05

Family

ID=7673922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01128943A Withdrawn EP1233515A3 (de) 2001-02-14 2001-12-06 Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils

Country Status (4)

Country Link
US (1) US6960755B2 (de)
EP (1) EP1233515A3 (de)
JP (1) JP2002257515A (de)
DE (1) DE10106699C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174718A (zh) * 2020-01-09 2020-05-19 徐工消防安全装备有限公司 一种偏摆量的测量装置、测量方法及剪叉车

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045900B2 (ja) 2002-09-03 2008-02-13 日産自動車株式会社 車両用エンジンの吸気取入れ構造およびその製造方法
DE102007049133A1 (de) * 2007-02-13 2008-08-21 Vistec Semiconductor Systems Gmbh Vorrichtung zur Bestimmung der Position mindestens einer Struktur auf einem Objekt, Verwendung einer Beleuchtungseinrichtung für die Vorrichtung und Verwendung von Schutzgas für die Vorrichtung
US8582113B2 (en) 2007-02-13 2013-11-12 Kla-Tencor Mie Gmbh Device for determining the position of at least one structure on an object, use of an illumination apparatus with the device and use of protective gas with the device
DE102007035519B4 (de) * 2007-07-26 2011-12-08 Vistec Semiconductor Systems Gmbh Verfahren zur Korrektur der aufgrund der Durchbiegung eines Substrats bedingten Messwerte
DE102007036815B4 (de) 2007-08-03 2010-03-04 Vistec Semiconductor Systems Gmbh Verfahren zur Bestimmung des durch die Substrattopologie und eine Koordinaten-Messmaschine bedingten systematischen Fehlers bei der Vermesung von Positionen von Kanten von Strukturen eines Substrats
DE102007042272B4 (de) 2007-09-06 2009-09-24 Vistec Semiconductor Systems Gmbh Verfahren zur Korrektur der durch die Verzeichnung eines Objektivs verursachten Messfehler
DE102007049098A1 (de) 2007-10-11 2009-04-16 Vistec Semiconductor Systems Gmbh Verfahren und Einrichtung zum lagerichtigen Ablegen eines Substrat in einer Koordinaten-Messmaschine
DE102007051390B4 (de) 2007-10-25 2010-06-10 Vistec Semiconductor Systems Gmbh Verfahren zur Bestimmung der durch Relaxationsprozesse bedingten Drift eines Substrats
DE102007051391B3 (de) 2007-10-25 2008-12-18 Vistec Semiconductor Systems Gmbh Einrichtung zum Bestimmen von Positionen von Strukturen auf einem Substrat
DE102008002755B4 (de) 2008-01-24 2014-03-06 Vistec Semiconductor Systems Gmbh Verfahren zur Bestimmung eines Korrekturwerts für die Vermessung von Positionen von Strukturen auf einem Substrat
DE102008002770A1 (de) 2008-02-14 2009-08-20 Vistec Semiconductor Systems Gmbh Verfahren zur Positionsbestimmung periodischer Strukturen auf einem Substrat
DE102008002779B4 (de) 2008-02-21 2010-10-07 Vistec Semiconductor Systems Gmbh Verfahren zum Bestimmen des Verfahrbereichs für die Fokussierung auf ein Substrat
DE102008002778B4 (de) 2008-02-21 2012-12-20 Vistec Semiconductor Systems Gmbh Verfahren zur Positionsbestimmung mindestens einer Struktur auf einem Substrat
DE102008002780A1 (de) 2008-02-22 2009-09-10 Vistec Semiconductor Systems Gmbh Verfahren und Vorrichtung zum Bestimmen der zu erwartenden Lage von Strukturen auf Masken während deren Herstellung
DE102008002873A1 (de) 2008-05-30 2009-12-17 Vistec Semiconductor Systems Gmbh Verfahren zum Auffinden eines Gebiets minimaler Lensdistortion eines Objektivs und Verwendung des Verfahrens bei einer Koordinaten-Messmaschine
DE102009003551A1 (de) 2009-02-28 2010-09-02 Vistec Semiconductor Systems Gmbh Verfahren Positionsbestimmung von Strukturen auf einer Maske
DE102009044294A1 (de) 2009-10-20 2011-05-05 Kla-Tencor Mie Gmbh Koordinatenmessmaschine zur Bestimmung der Lage von Strukturen auf einer Maske
DE102010000550A1 (de) 2010-02-25 2011-08-25 KLA-Tencor MIE GmbH, 35781 Verfahren zum Fokussieren einer Objektebene und optische Anordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700009A1 (de) * 1987-01-02 1988-07-14 Mel Mikroelektronik Gmbh Optoelektronische schutzzonenvorrichtung
DE4234375A1 (de) * 1992-10-12 1994-04-14 Schoeller Transportautomation Vorrichtung zur Personen- und Kollisionssicherung von fahrerlosen Gabelhubfahrzeugen

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842257A (en) * 1972-05-05 1974-10-15 Lingl H Anlagenau Und Verfahre Alternating light barrier
US3967135A (en) * 1974-04-11 1976-06-29 Eaton Corporation Acceleration change sensor
US4293188A (en) * 1980-03-24 1981-10-06 Sperry Corporation Fiber optic small displacement sensor
US4378144A (en) * 1980-12-22 1983-03-29 Northern Telecom Limited Optical switch
GB2090968B (en) * 1981-01-13 1985-03-13 Smiths Industries Ltd Optical displacement transducers
US4596925A (en) * 1982-10-27 1986-06-24 The Foxboro Company Fiber optic displacement sensor with built-in reference
GB2144547B (en) * 1983-08-04 1986-10-01 Gen Electric Plc A strain sensor
US4896935A (en) * 1985-10-07 1990-01-30 Lee Ho Shang Fiber optic switch
US4690001A (en) * 1985-11-13 1987-09-01 Mts Systems Corporation Optical displacement transducer usable as an extensometer
GB2185359B (en) * 1986-01-10 1990-01-17 Rosemount Ltd Optical displacement transducer
US5038618A (en) * 1986-11-11 1991-08-13 British Aerospace Public Limited Company Measurement of distortion
US4806016A (en) * 1987-05-15 1989-02-21 Rosemount Inc. Optical displacement sensor
US4792206A (en) * 1987-06-01 1988-12-20 The Babcock & Wilcox Company Method and apparatus for aligning fiber optic cables
DE3807339A1 (de) * 1988-02-01 1989-08-10 Duerrwaechter E Dr Doduco Kipp- und beschleunigungssensor
CA1321089C (en) * 1988-05-06 1993-08-10 Adc Telecommunications, Inc. Optical switch
GB8902034D0 (en) * 1989-01-31 1989-03-22 Kent Scient Ind Projects Optical displacement sensor
EP0473100B1 (de) * 1990-08-27 1995-11-08 Canon Kabushiki Kaisha Optisches Kommunikationsnetz
DE9106217U1 (de) * 1991-05-21 1991-09-26 Nokia Unterhaltungselektronik (Deutschland) GmbH, 7530 Pforzheim Kugelschalter zur signalmäßigen Kennzeichnung von auswählbaren Neigungsrichtungen einer Basisebene
US5414785A (en) * 1993-09-13 1995-05-09 At&T Corp. Optical data bus having collision detection capability
US5502301A (en) * 1994-05-23 1996-03-26 Thomas & Betts Corporation Fiber optic sensors and control systems for automobile occupant protection apparatus
DE4441222C2 (de) * 1994-11-19 2003-02-06 Karlheinz Beckhausen Sicherheitseinrichtung mit Lichtwellenleiter
US5604313A (en) * 1994-11-23 1997-02-18 Tokyo Gas Co., Ltd. Varying apparent mass accelerometer
US5664034A (en) * 1996-05-21 1997-09-02 Lucent Technologies Inc. Lightwave communication monitoring switch
US5917180A (en) * 1997-07-16 1999-06-29 Canadian Space Agency Pressure sensor based on illumination of a deformable integrating cavity
US6075239A (en) * 1997-09-10 2000-06-13 Lucent Technologies, Inc. Article comprising a light-actuated micromechanical photonic switch
DE19748131C2 (de) * 1997-10-31 1999-10-14 Kostal Leopold Gmbh & Co Kg Vorrichtung zum Erfassen von Schaltstellungen eines mechanisch betätigbaren Schaltmittels sowie Verfahren zum Erfassen von Schaltstellungen eines mechanisch betätigbaren Schaltmittels
DE29817668U1 (de) * 1997-10-31 1999-01-07 Leopold Kostal GmbH & Co. KG, 58507 Lüdenscheid Vorrichtung zum Erfassen von Schaltstellungen eines mechanisch betätigbaren Schaltmittels
DE19808072A1 (de) * 1998-02-26 1999-09-02 Kazakow Optoelektronischer Neigungsschalter
EP0984254A1 (de) * 1998-09-04 2000-03-08 Talltec Technologies Holdings S.A. Faseroptischer Temperatursensor
CA2254535C (en) * 1998-11-26 2003-10-28 Canpolar East Inc. Sensor for detection of acceleration and attitude within a vehicle
CA2254538C (en) * 1998-11-26 2006-02-07 Canpolar East Inc. Collision deformation sensor for use in the crush zone of a vehicle
DE19927402B4 (de) * 1999-06-16 2005-06-09 Daimlerchrysler Ag Fahrzeugaufprallerkennungssensorik
AU2001282938A1 (en) * 2000-07-21 2002-02-05 Elan Pharmaceuticals, Inc. Alpha amino acid derivatives--inhibitors of leukocyte adhesion mediated by vla-4
KR100846305B1 (ko) * 2000-08-31 2008-07-16 가부시키가이샤 도쿄다이가쿠 티엘오 광학식 촉각센서
US6473170B2 (en) * 2001-01-19 2002-10-29 White Cap, Inc. Linear optical sensor for a closure
US6693796B2 (en) * 2001-09-08 2004-02-17 Hewlett-Packard Development Company, L.P. Disk drive support apparatus and methods
US20040129868A1 (en) * 2003-01-08 2004-07-08 Siemens Vdo Automotive Corporation. Deflection sensor
US7183765B2 (en) * 2003-06-26 2007-02-27 The Regents Of The University Of California Micro-position sensor using faraday effect
WO2005047814A1 (en) * 2003-10-17 2005-05-26 Bed-Check Corporation Displacement sensor apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3700009A1 (de) * 1987-01-02 1988-07-14 Mel Mikroelektronik Gmbh Optoelektronische schutzzonenvorrichtung
DE4234375A1 (de) * 1992-10-12 1994-04-14 Schoeller Transportautomation Vorrichtung zur Personen- und Kollisionssicherung von fahrerlosen Gabelhubfahrzeugen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174718A (zh) * 2020-01-09 2020-05-19 徐工消防安全装备有限公司 一种偏摆量的测量装置、测量方法及剪叉车
CN111174718B (zh) * 2020-01-09 2021-10-01 徐工消防安全装备有限公司 一种偏摆量的测量装置、测量方法及剪叉车

Also Published As

Publication number Publication date
DE10106699A1 (de) 2002-08-29
US6960755B2 (en) 2005-11-01
EP1233515A3 (de) 2006-07-05
JP2002257515A (ja) 2002-09-11
DE10106699C2 (de) 2003-11-27
US20020109077A1 (en) 2002-08-15

Similar Documents

Publication Publication Date Title
DE10106699C2 (de) Berührungssensor und Vorrichtung zum Schutz eines hervorstehenden Bauteils
DE2852203C3 (de) Lichtleiteinrichtung für eine mit Auflicht betriebene Abbildungsvorrichtung
EP1977850B1 (de) Bearbeitungseinrichtung zur die Bearbeitung von Werkstücken
DE69826406T2 (de) Rastersondenmikroskop mit Feinstellungsvorrichtung
EP1393116B1 (de) Autofokussiereinrichtung für ein optisches gerät
EP2847540B1 (de) Verbessertes beleuchtungsmodul für ein koordinatenmessgerät
DE10105391B4 (de) Scanmikroskop und Modul für ein Scanmikroskop
WO2008138501A1 (de) Positionsmesseinrichtung
DE202005007089U1 (de) Sensoranordnung zur optischen Kantendetektierung einer Ware
EP2381222A1 (de) Führungssystem mit relativ zueinander bewegbaren Körpern und Vorrichtung zur Bestimmung einer Position mittels optischem Abtasten einer Massskala.
DE10004233A1 (de) Mikroskop-Aufbau
EP1408273A2 (de) Schutzvorrichtung zur Überwachung eines mit einem Bauteil zu bewegenden Schutzbereichs
EP1031026B1 (de) Vorrichtung zur lageerfassung von bauelementen , lichtumlenkkörper und bestückkopf mit einer vorrichtung zur lageerfassung von bauelementen
EP0115267B1 (de) Abbildungssystem
DE102021111949A1 (de) Vorrichtung zur scannenden Messung des Abstands zu einem Objekt
DE2536923A1 (de) Optische steuer- oder ueberwachungsvorrichtung
DE202019103527U1 (de) Optische Messvorrichtung mit konfokal-chromatischem, optischem Sensor
EP1477274B1 (de) Werkzeugmaschine
DE3446354C2 (de)
DE10320991B4 (de) Optische Positionsmesseinrichtung
WO2003009042A2 (de) Mikroskopobjektiv und verwendung eines solchen mikroskopobjektivs bei einem mikroskop
DE102022124438B3 (de) Optoelektronischer sensor
EP0146701A1 (de) Anordnung zur Abstandsdetektion zwischen einem Objekt und einem Ultraschall-Objektiv
DE102016107337B3 (de) Koordinatenmessgerät
EP0092504A2 (de) Faseroptische Messanordnung mit einem Geber und einer Messelektronik zur Lagemessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEICA MICROSYSTEMS SEMICONDUCTOR GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060701