EP1231613A1 - Widerstandselemente mit PTC-Verhalten - Google Patents

Widerstandselemente mit PTC-Verhalten Download PDF

Info

Publication number
EP1231613A1
EP1231613A1 EP01810131A EP01810131A EP1231613A1 EP 1231613 A1 EP1231613 A1 EP 1231613A1 EP 01810131 A EP01810131 A EP 01810131A EP 01810131 A EP01810131 A EP 01810131A EP 1231613 A1 EP1231613 A1 EP 1231613A1
Authority
EP
European Patent Office
Prior art keywords
composite
resistance
resistance element
filler
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01810131A
Other languages
English (en)
French (fr)
Inventor
Joachim Glatz-Reichenbach
Ruzica Loitzl-Jelenic
Ralf Strümpler
Timo Jokiniemi
Erkki Rajala
Jarkko Alanen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP01810131A priority Critical patent/EP1231613A1/de
Publication of EP1231613A1 publication Critical patent/EP1231613A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • H01C17/283Precursor compositions therefor, e.g. pastes, inks, glass frits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Definitions

  • the invention is based on resistance elements according to the Preambles of claims 1, 3 and 6.
  • Such resistance elements each contain a resistance body from a PTC behavior comprising composite based on a filler-filled polymer and two electrodes electrically contacting the resistance body.
  • Such Resistance elements are preferred as self-regulating heating resistors Sensors or as an overcurrent limiter, especially in the low-voltage range, used.
  • the composite is based on mixing filler an electrically conductive powder is formed in a polymer matrix. Is considered If a polymer uses a thermoplastic, the composite becomes at temperatures formed, in which the thermoplastic is flowable. It can then still from the flowable composite by thermoforming, such as extrusion or spray or Extrusion, resistance body generated and subsequent or during the formation with formation of the resistance elements with the two electrodes be provided.
  • PTC resistance elements are the electrodes as plates, foils or reticulated metal parts executed, which by means of an intermediate layer of a liquid metal or an electrically conductive polymer on the Resistor body applied or molded directly into the resistance body are.
  • a liquid metal makes it difficult to manufacture one Resistance element quite considerably.
  • the resistance element Although easy to manufacture, it is then undesirable mechanical Exposed to tension, which may affect its functionality can significantly affect. These mechanical tensions can because of the different thermal expansion coefficients of composite and electrode when cooling a resistance element during the Manufacturing process or also occur during operation and can be particularly disadvantageous with a large-sized resistance element impact, such as this for current limitation in plants and Apparatus with large operating currents and / or voltages is used.
  • the invention as defined in the claims solves the problem Specify resistance elements of the type mentioned, which is simple are to be produced, and their functionality even after multiple Current limitation in large currents and / or voltages exposed Device or system is still guaranteed with certainty.
  • At least one of the two electrodes contains each of the Resistance elements a flexible metal foam or is at least one of the formed both electrodes as a rigid metal body and has this Metal body filled with composite recesses and / or passages on or is at least one of the two electrodes formed by a composite with a polymer matrix and a powdery filler embedded in the matrix.
  • Electrodes designed in this way can be used to manufacture the electrodes according to the invention Resistance elements in a simple manner in the resistance body be melted down. Through the training of the Electrodes is achieved when the temperature of the PTC resistance elements occurring between electrode and resistance body mechanical stresses cause no damage and so the Functionality of the resistance elements is not reduced.
  • the build-up of voltages occurs in the embodiment of the PTC resistance element with flexible metal foam avoided that when heating or cooling the resistance element, the composite expands or contracts considerably more than the metal foam, which itself however, because of its high flexibility through practically force-free deformation can adapt stress-free to the changed geometry of the composite. It It is recommended that at least a part of the metal foam with composite has filled, open pores. Then it is a particularly good mechanical one Installation of the metal foam in the resistance body ensures and it will at the same time the contact resistance between the electrode and the resistance body reduced.
  • the electrode as a rigid metal body with depressions and / or passages executed, the composite material of the resistance body in the recesses and / or passages.
  • the through the different Coefficient of thermal expansion of metal and composite Mechanical stresses arising from thermal stress can thus be used Formation of a high contact force between metal body and composite and so that a desirable low contact resistance can be exploited.
  • Particularly good adhesion of the composite to the metal body is achieved if at least some of the recesses are blind holes, and / or if the depressions are formed by a roughened Surface with a surface roughness that is greater than the middle one Grain size of the filler contained in the polymer.
  • a particularly good liability is achieved when the roughness is greater than the dimensions of the largest particle provided in the filler.
  • the electrode is formed from a composite material with a Polymer matrix and a powdery filler embedded in the matrix a ductile and high electrical conductivity material or Made of a composite with a polymer matrix that has a higher melting point has as the polymer matrix of the resistance body, and one in the matrix embedded powdered filler made of an electrically conductive ceramic or a low ductility metal, such as nickel, have electrode and Resistor body of the PTC resistance element according to the invention practically have the same coefficients of thermal expansion. Mechanical stresses in the PTC resistance elements are thus avoided when exposed to temperature and it will also have a good long-term behavior of the resistance element repeated execution of a current-limiting PTC transition reached.
  • the 1 shows a PTC resistance element only partially shown Resistor body 1 made of a composite based on a filler Polymers.
  • a composite can, for example, be a Titanium diboride powder filled polyethylene.
  • the powder shows here typically 20 to 60 percent by volume of the composite and can Have grain sizes from a few to 100 and more microns.
  • Composition and The structure of the composite can vary depending on the area of application of the PTC resistance element can be changed within wide limits.
  • the resistance body 1 is electrically conductively connected to two electrodes, from which one can be seen from Fig.1.
  • This electrode has the reference symbol 2 marked.
  • the electrode 2 contains metal foam made of a metal, for example based on nickel.
  • the metal foam is preferably after Formed like a sponge and then has open composite filled with composite Pores on.
  • the electrode 2 is in an electrically conductive manner with a metallic Power connector 3 connected, which is special in manufacturing technology can advantageously be formed by pressing metal foam.
  • the to the power connection 3 pressed metal foam and the one filled with composite and metal foam forming electrode 2 were before filling the open ones Pores with composite part of a flexible body made of metal foam.
  • the PTC resistance element was integrated into the electrode 2 Part of this body and possibly a corresponding part of another one Body for the second electrode, not shown, inserted into a mold and this mold filled with liquid composite under pressure and temperature. in this connection liquid composite could enter the open pores of the metal foam body penetration. That by cooling - when using a thermoset or Elastomer as a polymer by curing - formed PTC resistance element was removed from the mold and the part of the Metal foam body deformed by pressing to the power connection 3.
  • the PTC resistance element described above heats up during of a PTC transition and then cools down again.
  • the different coefficients of thermal expansion of metal and composite Mechanical stresses caused are avoided by the fact that the Metal foam is deformed practically without force due to its high flexibility accordingly, stress-free to the changed geometry of the composite adapts. Detachment of the electrode 2 and thus an increase in the Transition resistance in the area of the electrode is certain avoided.
  • By filling part of the open pores of the metal foam with Composite is a particularly good mechanical installation of the metal foam in ensures the resistance body and at the same time becomes the contact resistance reduced between electrode 2 and resistance body 1.
  • a PTC resistance element with two nickel foam electrodes was produced from nickel foam and a polyethylene filled with 50 percent by volume titanium diboride.
  • the contact resistance Ro was measured on this PTC resistance element at room temperature (23 ° C.) immediately after production.
  • the contact resistance Ro ' was measured on the same resistance element after ten treatment cycles, each comprising 24-hour storage at 60 ° C. and cooling to room temperature.
  • the measured values of Ro and Ro ', the quotient Ro' / Ro describing the increase in the contact resistance of the PTC resistance element and the relative contact resistance in percent, based on a test resistance of 1 cm length and 0.8 cm 2 diameter, are at the end of the Description entered in a table as example 1.
  • the electrode 2 is of a rigid, predominantly plate-shaped metal body, for example made of aluminum, brass or a with nickel-coated copper body.
  • plate 6 formed part of the metal body are passages 4 filled with composite and / or depressions 5 are formed.
  • the wells 5 can at least Part be designed as blind holes, but can also be formed by a roughened surface with a surface roughness that is greater than the average grain size of the filler contained in the polymer.
  • the metal body is generally designed as a plate. He can hit the plate molded legs 7, which an additional improvement in Anchor the resistance body 1 serve. One of the legs can also be provided for carrying the power connection 3.
  • Two PTC resistance elements designed in accordance with FIGS. 2 and 3 were produced from two aluminum or brass bodies and a polyethylene filled with 50 percent by volume titanium diboride.
  • the contact resistance Ro was measured on these resistance elements at room temperature (23 ° C.) immediately after production.
  • the contact resistance Ro ' was measured on the same resistance elements after ten treatment cycles, each comprising 24-hour storage at 60 ° C. and cooling to room temperature.
  • the measured values of Ro and Ro ', the quotient Ro' / Ro describing the increase in the contact resistance of the PTC resistance element and the relative contact resistance in percent, based on a test resistance of 1 cm length and 0.8 cm 2 diameter, are in the am At the end of the description table provided as examples 2 and 3.
  • one of the PTC resistance elements according to the Invention is formed from a composite with an electrode Polymer matrix and a powdery filler embedded in the matrix a ductile and high electrical conductivity material. Electrode 2 and resistance body 1 of the PTC resistance element according to the invention have practically the same in this embodiment Coefficients of thermal expansion. Mechanical stresses in the PTC resistance element are thus avoided under temperature loads and it will good long-term behavior of the resistance element even after repeated Execution of a current-limiting PTC transition reached.
  • a suitable one Composite is one with a powder based on silver, gold and / or copper filled polymer, which is advantageously the same polymer as that in the composite the resistance body provided, for example polyethylene. On this electrically excellent conductive composite can then easily be used as a Pressure contact trained metallic power connector can be attached.
  • a PTC resistance element with a resistance body made of a titanium-containing polyethylene and two silver-polyethylene composite electrodes was produced from a polyethylene filled with 50 volume percent silver powder and a polyethylene filled with 50 volume percent titanium diboride powder.
  • This PTC resistance element was provided with two pressure contacts and the contact resistance Ro was measured immediately after manufacture at room temperature (23 ° C.). The contact resistance Ro 'was measured on the same resistance element after ten treatment cycles, each comprising 24-hour storage at 60 ° C. and cooling to room temperature, and after the pressure contacts had been applied.
  • the measured values of Ro and Ro ', the quotient Ro' / Ro describing the increase in the contact resistance of the PTC resistance element and the relative contact resistance in percent, based on a test resistance of 1 cm in length and 0.8 cm 2 in diameter, are as follows Table entered as example 4.
  • a comparative example I in which the pressure contacts were pressed directly onto the titanium diboride-containing resistor body and a comparative example II in which two nickel foils used as electrodes were embedded in the resistor body are also entered in the table.
  • the electrode can also be formed from a composite, which contains a polymer matrix that has a higher melting point than the polymer matrix of the resistance body, and one embedded in the matrix powdered filler made of an electrically conductive ceramic or a metal low ductility.
  • This electrode leads at a higher temperature than that Resistor body from a PTC transition. Will a place of Resistor body locally overheats when limiting the current and the current can over this local point continues to flow, the overheating is triggered with a time delay in the Electrode a second PTC transition, which limits the current and so prevents failure of the PTC resistance element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Das PTC-Widerstandselement enthält einen Widerstandskörper (1) aus einem PTC-Verhalten aufweisenden Verbundstoff auf der Basis eines füllstoffenthaltenden Polymers sowie zwei den Widerstandskörper elektrisch kontaktierende Elektroden (2). Mindestens eine der beiden Elektroden (2) weist einen flexiblen Metallschaum auf oder ist als starrer Metallkörper ausgebildet mit verbundstoffgefüllten Vertiefungen (5) und/oder Durchlässen (4) oder ist von einem Verbundstoff gebildet mit einer Polymermatrix und einem in die Matrix eingebetteten pulverförmigen Füllstoff. Durch diese unterschiedlichen Ausbildungen der Elektroden wird erreicht, dass durch Temperaturbelastungen, so wie sie bei Betrieb des PTC-Widerstandselementes oder bei dessen Herstellung auftreten, verursachte mechanische Spannungen zwischen Elektrode (2) und Widerstandskörper (1) vermieden werden und die Funktionsfähigkeit des Widerstandselements nicht herabgesetzt wird. <IMAGE>

Description

TECHNISCHES GEBIET
Bei der Erfindung wird ausgegangen von Widerstandselementen nach den Oberbegriffen der Patentansprüche 1, 3 und 6. Solche Widerstandselemente enthalten jeweils einen Widerstandskörper aus einem PTC-Verhalten aufweisenden Verbundstoff auf der Basis eines füllstoffgefüllten Polymers sowie zwei den Widerstandskörper elektrisch kontaktierende Elektroden. Derartige Widerstandselemente werden bevorzugt als selbstregelnde Heizwiderstände, als Sensoren oder als Überstrombegrenzer, insbesondere im Niederspannugsbereich, verwendet. Der Verbundstoff wird durch Einmischen von Füllstoff auf der Basis eines elektrisch leitfähigen Pulvers in eine Polymermatrix gebildet. Wird als Polymer ein Thermoplast verwendet, so wird der Verbundstoff bei Temperaturen gebildet, bei denen der Thermoplast fliessfähig ist. Es können dann aus dem noch fliessfähigen Verbundstoff durch Warmformen, wie etwa Extrudieren oder Spritzoder Strangpressen, Widerstandskörper erzeugt und nachfolgend oder während der Formung unter Bildung der Widerstandselemente mit den beiden Elektroden versehen werden.
STAND DER TECHNIK
Mit den Oberbegriffen der Patentansprüche 1, 3 und 6 nimmt die Erfindung auf einen Stand der Technik von PTC-Widerstandselementen Bezug, wie er etwa in in DE 198 42 124 A1, EP 0 758 131 A2 oder WO 97/06660 A2 angegeben ist. Bei diesen PTC-Widerstandselementen sind die Elektroden als platten-, folien- oder netzförmige Metallteile ausgeführt, welche mittels einer Zwischenschicht aus einem flüssigen Metall oder aus einem elektrisch leitenden Polymer auf den Widerstandskörper aufgebracht oder direkt in den Widerstandskörper eingeformt sind. Die Verwendung eines flüssigen Metalls erschwert die Herstellung eines Widerstandselementes ganz erheblich. Werden die Elektroden ohne flüssiges Metall direkt oder mittels eines polymeren Klebers auf den Widerstandskörper aufgebracht oder in den Widerstandskörper eingeformt, so kann das Widerstandselement zwar leicht gefertigt werden, ist dann aber unerwünschten mechanischen Spannungen ausgesetzt, welche dessen Funktionsfähigkeit gegebenenfalls wesentlich beinträchtigen können. Diese mechanischen Spannungen können wegen der unterschiedlichen Wärmeausdehnungskoeffizienten von Verbundstoff und Elektrode beim Abkühlen eines Widerstandselements während des Herstellungsprozesses oder aber auch während des Betriebseinsatzes auftreten und können sich besonders nachteilig bei einem gross bemessenen Widerstandselement auswirken, so wie dies etwa zur Strombegrenzung in Anlagen und Apparaten mit grossen Betriebsströmen und/oder -spannungen eingesetzt wird.
DARSTELLUNG DER ERFINDUNG
Die Erfindung, wie sie in den Patentansprüchen definiert ist, löst die Aufgabe, Widerstandselemente der eingangs genannten Art anzugeben, welche einfach herzustellen sind, und deren Funktionsfähigkeit auch nach mehrfacher Strombegrenzung in einer grossen Strömen und/oder Spannungen ausgesetzten Vorrichtung oder Anlage noch mit Sicherheit gewährleistet ist.
Bei der Erfindung enthält mindestens eine der beiden Elektroden jedes der Widerstandselemente einen flexiblen Metallschaum oder ist mindestens eine der beiden Elektroden als starrer Metallkörper ausgebildet und weist dieser Metallkörper mit Verbundstoff gefüllte Vertiefungen und/oder Durchlässe auf oder ist mindestens eine der beiden Elektroden von einem Verbundstoff gebildet mit einer Polymermatrix und einem in die Matrix eingebetteten pulverförmigen Füllstoff. Derartig ausgebildete Elektroden können beim Herstellen der erfindungsgemässen Widerstandselemente in einfacher Weise in den Widerstandskörper eingeschmolzen werden. Durch die vorstehend beschriebenen Ausbildungen der Elektroden wird erreicht, dass bei Temperaturbelastung der PTC-Widerstandselemente zwischen Elektrode und Widerstandskörper auftretende mechanische Spannungen keine Schäden verursachen und so die Funktionsfähigkeit der Widerstandselemente nicht herabgesetzt wird.
Sich aufbauende Spannungen werden bei der Ausführungsform des PTC-Widerstandselements mit flexiblem Metallschaum dadurch vermieden, dass sich beim Erwärmen oder Abkühlen des Widerstandselements zwar der Verbundstoff erheblich stärker ausdehnt oder zusammenzieht als der Metallschaum, dieser sich jedoch wegen seiner hohen Flexibilität durch praktisch kräftefreies Verformen spannungsfrei an die veränderte Geometrie des Verbundstoffs anpassen kann. Es empfiehlt sich, dass zumindest ein Teil des Metallschaums mit Verbundstoff gefüllte, offene Poren aufweist. Es ist dann ein besonders guter mechanischer Einbau des Metallschaums in den Widerstandskörper gewährleistet und es wird zugleich der Übergangswiderstand zwischen Elektrode und Widerstandskörper reduziert.
Ist die Elektrode als starrer Metallkörper mit Vertiefungen und/oder Durchlässen ausgeführt, so wird der Verbundstoff des Widerstandskörpers in den Vertiefungen und/oder Durchlässen festgesetzt. Die durch die unterschiedlichen Wärmeausdehnungskoeffizienten von Metall und Verbundstoff bei Temperaturbelastung entstehenden mechanischen Spannungen können so zur Bildung einer hohen Kontaktkraft zwischen Metallkörper und Verbundstoff und damit eines wünschenswert kleinen Übergangswiderstands ausgenutzt werden. Eine besonders gute Haftung des Verbundstoffs am Metallkörper wird erreicht, wenn zumindest ein Teil der Vertiefungen als Blindbohrungen ausgeführt ist, und/oder wenn die Vertiefungen gebildet werden durch eine aufgerauhte Oberfläche mit einer Oberflächenrauhigkeit, welche grösser ist als die mittlere Korngrösse des im Polymer enthaltenen Füllstoffs. Eine besonders gute Haftung wird erreicht, wenn die Rauhigkeit grösser ist als die Abmessungen des grössten im Füllstoff vorgesehenen Teilchens.
Ist hingegen die Elektrode von einem Verbundstoff gebildet mit einer Polymermatrix und einem in die Matrix eingebetteten pulverförmigen Füllstoff aus einem duktilen und eine hohe elektrische Leitfähigkeit aufweisenden Material oder aus einem Verbundstoff mit einer Polymermatrix, die einen höheren Schmelzpunkt aufweist als die Polymermatrix des Widerstandskörpers, und einem in die Matrix eingebetteten pulverförmigen Füllstoff aus einer elektrische leitfähigen Keramik oder einem Metall geringer Duktilität, wie etwa Nickel, so weisen Elektrode und Widerstandskörper des erfindungsgemässen PTC-Widerstandselementes praktisch die gleichen Wärmeausdehnungskoeffizenten auf. Mechanische Spannungen im PTC-Widerstandselement werden so bei Temperaturbelastung vermieden und es wird ein gutes Langzeitverhalten des Widerstandselementes auch nach wiederholtem Ausführen eines strombegrenzenden PTC-Überganges erreicht.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen erläutert. Es zeigt:
Fig. 1
eine Ansicht einer ersten Ausführungsform des Widerstandselements nach der Erfindung im Bereich eines seiner beiden Stromanschlüsse,
Fig. 2
eine Aufsicht auf eine zweite Ausführungsform des Widerstandselements nach der Erfindung, und
Fig.3
eine von von links geführte Seitenansicht des Widerstandselements gemäss Fig.2 im Bereich eines seiner beiden Stromanschlüsse.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
In den Figuren sind gleiche Teile mit gleichen Bezugszeichen gekennzeichnet. Das in Fig. 1 nur teilweise dargestellte PTC-Widerstandselement weist einen Widerstandskörper 1 aus einem Verbundstoff auf der Basis eines füllstoffgefüllten Polymers auf. Ein solcher Verbundstoff kann beispielsweise ein mit Titandiboridpulver gefülltes Polyäthylen sein. Das Pulver weist hierbei typischerweise 20 bis 60 Volumenprozent Anteil am Verbundstoff auf und kann Körngrössen von einigen bis 100 und mehr µm aufweisen. Zusammensetzung und Struktur des Verbundstoffs können je nach Anwendungsbereich des PTC-Widerstandselementes in weiten Grenzen geändert werden.
Der Widerstandskörper 1 ist mit zwei Elektroden elektrisch leitend verbunden, von denen eine aus der Fig.1 ersichtlich ist. Diese Elektrode ist mit dem Bezugszeichen 2 gekennzeichnet. Die Elektrode 2 enthält Metallschaum aus einem Metall, beispielsweise auf der Basis von Nickel. Der Metallschaum ist vorzugsweise nach Art eines Schwammes ausgebildet und weist dann mit Verbundstoff gefüllte, offene Poren auf. Die Elektrode 2 ist in elektrisch leitender Weise mit einem metallischen Stromanschluss 3 verbunden, welcher in fertigungstechnisch besonders vorteilhafter Weise durch Verpressen von Metallschaum gebildet werden kann. Der zum Stromanschluss 3 verpresste Metallschaum und der mit Verbundstoff gefüllte und die Elektrode 2 bildende Metallschaum waren vor dem Füllen der offenen Poren mit Verbundstoff Teil eines flexiblen Körpers aus dem Metallschaum. Beim Herstellen des PTC-Widerstandselements wurden der in die Elektrode 2 integrierte Teil dieses Körper und gegebenfalls ein entsprechender Teil eines weiterer solchen Körpers für die nicht dargestellte zweite Elektrode in eine Form eingeführt und diese Form unter Druck und Temperatur mit flüssigem Verbundstoff gefüllt. Hierbei konnte flüssiger Verbundstoff in die offenen Poren des Metallschaumkörpers eindringen. Das durch Abkühlen - bei Verwendung eines Duroplasts oder Elastomers als Polymer durch Aushärten - gebildete PTC-Widerstandselement wurde aus der Form entfernt und der nicht mit Verbundstoff gefüllte Teil des Metallschaumkörpers durch Verpressen zum Stromanschluss 3 verformt.
Das vorstehend beschriebene PTC-Widerstandselement erwärmt sich während eines PTC-Überganges stark und kühlt sich danach wieder ab. Durch die unterschiedlichen Wärmeausdehnungskoeffizienten von Metall und Verbundstoff verursachte mechanische Spannungen werden dadurch vermieden, dass sich der Metallschaum wegen seiner hohen Flexibilität praktisch kräftefrei verformt und sich dementsprechend spannungsfrei an die veränderte Geometrie des Verbundstoffs anpasst. Ein Ablösen der Elektrode 2 und damit eine Erhöhung des Übergangswiderstandes im Bereich der Elektrode werden so mit Sicherheit vermieden. Durch Auffüllen eines Teils der offenen Poren des Metallschaums mit Verbundstoff ist ein besonders guter mechanischer Einbau des Metallschaums in den Widerstandskörper gewährleistet und wird zugleich der Übergangswiderstand zwischen Elektrode 2 und Widerstandskörper 1 reduziert.
Aus Nickelschaum und einem mit 50 Volumenprozent Titandiborid gefüllten Polyäthylen wurde gemäss Fig.1 ein PTC-Widerstandselement mit zwei Nickelschaumelektroden gefertigt. An diesem PTC-Widerstandselement wurde bei Raumtemperatur (23°C) der Kontaktwiderstand Ro unmittelbar nach der Fertigung gemessen. Am gleichen Widerstandselement wurde der Kontaktwiderstand Ro' nach zehn Behandlungszyklen, welche jeweils eine 24-stündige Einlagerung bei 60°C und Abkühlung auf Raumtemperatur umfassen, gemessen. Die Messwerte von Ro und Ro', der die Zunahme des Kontaktwiderstands des PTC-Widerstandselements beschreibenden Quotient Ro'/Ro und der relative Kontaktwiderstand in Prozent, bezogen auf einen Probewiderstand von 1 cm Länge und 0,8 cm2 Durchmesser, sind am Schluss der Beschreibung in einer Tabelle als Beispiel 1 eingetragen.
Bei dem in den Figuren 2 und 3 ebenfalls nur teilweise dargestellten PTC-Widerstandselement ist die Elektrode 2 von einem starren, überwiegend plattenförmigen Metallkörper, beispielsweise aus Aluminium, Messing oder einem mit Nickel beschichteten Kupferkörper, gebildet. Im einem als Platte 6 ausgebildeten Teil des Metallkörpers sind mit Verbundstoff gefüllte Durchlässe 4 und/oder Vertiefungen 5 eingeformt. Die Vertiefungen 5 können zumindest zum Teil als Blindbohrungen ausgeführt sein, können aber auch gebildet werden durch eine aufgerauhte Oberfläche mit einer Oberflächenrauhigkeit, welche grösser ist als die mittlere Korngrösse des im Polymer enthaltenen Füllstoffs. Durch die Durchlässe 4 und Vertiefungen 5 wird eine gute Haftung und Verankerung des beispielsweise in einem Spritzpressverfahren angeformten Widerstandskörpers 1 am Metallkörper und somit ein geringer Übergangswiderstand zwischen Elektrode 2 und Widerstandskörper 1 erreicht. Die durch die unterschiedlichen Wärmeausdehnungskoeffizienten von Metall und Verbundstoff bei Temperaturbelastung entstehenden mechanischen Spannungen begünstigen eine feste Verankerung von Metall und Verbundstoff und tragen so zusätzlich zu einer Erhöhung der Kontaktkraft bzw. einer Reduktion des Übergangswiderstands bei. Der Metallkörper ist im allgemeinen als Platte ausgebildet. Er kann an die Platte angeformte Schenkel 7 aufweisen, welche einer zusätzlichen Verbesserung der Verankerung des Widerstandskörpers 1 dienen. Einer der Schenkel kann zudem zum Tragen des Stromanschlusses 3 vorgesehen sein.
Sind die Vertiefungen auf eine geeignet bemessene Oberflächenrauhigkeit zurückzuführen, so wird eine besonders gute Haftung dann erreicht, wenn die Rauhigkeit grösser ist als die Abmessungen des grössten Füllstoffteilchens. Liegen die Korngrössen beispielsweise zwischen 10 und 40 µm, so empfiehlt es sich, die Oberflächenrauhigkeit dann grösser 40 bis 50 um zu wählen.
Aus zwei Aluminium- bzw. Messingkörpern und einem mit 50 Volumenprozent Titandiborid gefüllten Polyäthylen wurden zwei entsprechend den Figuren 2 und 3 ausgeführte PTC-Widerstandselemente gefertigt. An diesen Widerstandselementen wurde bei Raumtemperatur (23°C) der Kontaktwiderstand Ro unmittelbar nach der Fertigung gemessen. An den gleichen Widerstandselementen wurde der Kontaktwiderstand Ro' nach zehn Behandlungszyklen, welche jeweils eine 24-stündige Einlagerung bei 60°C und Abkühlung auf Raumtemperatur umfassen, gemessen. Die Messwerte von Ro und Ro', der die Zunahme des Kontaktwiderstands des PTC-Widerstandselements beschreibenden Quotient Ro'/Ro und der relative Kontaktwiderstand in Prozent, bezogen auf einen Probewiderstand von 1 cm Länge und 0,8 cm2 Durchmesser, sind in der am Schluss der Beschreibung vorgesehenen Tabelle als Beispiele 2 und 3 eingetragen.
In einer weiteren Ausführungsform eines der PTC-Widerstandselemente nach der Erfindung wird die Elektrode von einem Verbundstoff gebildet mit einer Polymermatrix und einem in die Matrix eingebetteten pulverförmigen Füllstoff aus einem duktilen und eine hohe elektrische Leitfähigkeit aufweisenden Material. Elektrode 2 und Widerstandskörper 1 des erfindungsgemässen PTC-Widerstandselementes weisen bei dieser Ausführungsform praktisch die gleichen Wärmeausdehnungskoeffizenten auf. Mechanische Spannungen im PTC-Widerstandselement werden so bei Temperaturbelastung vermieden und es wird ein gutes Langzeitverhalten des Widerstandselementes auch nach wiederholtem Ausführen eines strombegrenzenden PTC-Überganges erreicht. Ein geeigneter Verbundstoff ist ein mit einem Pulver auf der Basis Silber, Gold und/oder Kupfer gefülltes Polymer, welches mit Vorteil das gleiche Polymer wie das im Verbundstoff des Widerstandskörpers vorgesehene, beispielsweise Polyäthylen, ist. An diesen elektrisch hervorragend leitenden Verbundstoff kann dann problemlos ein etwa als Druckkontakt ausgebildeter metallischer Stromanschluss angebracht werden.
Aus einem mit 50 Volumenprozent Silberpulver gefüllten Polyäthylen und einem mit 50 Volumenprozent Titandiboridpulver gefüllten Polyäthylen wurde ein PTC-Widerstandselement mit einem Widerstandskörper aus einem titandiboridhalten Polyäthylen und zwei Silber-Polyäthylen-Verbundstoffelektroden gefertigt. Dieses PTC-Widerstandselement wurde mit zwei Druckkontakten versehen und es wurde bei Raumtemperatur (23°C) der Kontaktwiderstand Ro unmittelbar nach der Fertigung gemessen. Am gleichen Widerstandselement wurde der Kontaktwiderstand Ro' nach zehn Behandlungszyklen, welche jeweils eine 24-stündige Einlagerung bei 60°C und Abkühlung auf Raumtemperatur umfassen, und nach dem Anlegen der Druckkontakte gemessen. Die Messwerte von Ro und Ro', der die Zunahme des Kontaktwiderstands des PTC-Widerstandselements beschreibenden Quotient Ro'/Ro und der relative Kontaktwiderstand in Prozent, bezogen auf einen Probewiderstand von 1 cm Länge und 0,8 cm2 Durchmesser, sind in der nachfolgenden Tabelle als Beispiel 4 eingetragen. Zugleich sind in der Tabelle auch ein Vergleichsbeispiel I eingetragen, bei dem die Druckkontakte unmittelbar auf den titandiboridhaltigen Widerstandskörper gepresst wurden, und ein Vergleichsbeispiel II, bei dem als zwei jeweils als Elektrode verwendete Nickelfolien in den Widerstandskörper eingebettet wurden.
Beispiel Ro [mΩ] Ro' [mΩ] Ro'/Ro Relativer Wert des Kontaktwiderstands in %
1 (Nickelschaum) 337 394 1.17 10
2 (Aluminiumelektrode) 425 475 1.12 10
3 (Messingelektrode) 148 168 1.14 10
4(Ag-PE-Elektrode) 15 17 1.12 6
Vergleichsprobe I (Druckkontakt) 285 354 1.24 20
Vergleichsprobe II (Ni-Folie) 307 427 1.39 5
Aus dieser Tabelle ist ersichtlich, dass sich bei allen erfindungsgemäss ausgeführten PTC-Widerstandselementen der Kontaktwiderstand Ro' auch nach zehn (einem längeren Betriebseinsatz entsprechenden) Behandlungszyklen gegenüber dem Kontaktwiderstand Ro vor dem Betriebseinsatz nicht nennenswert erhöht hat, so dass diese Widerstandselemente auch nach längerem Betriebseinsatz praktisch noch vollumfänglich funktionstüchtig sind.
Anstelle einer Elektrode aus einem Verbundstoff auf der Basis duktiles Metall und Polyäthylen kann die Elektrode auch von einem Verbundstoff gebildet werden, welcher eine Polymermatrix enthält, die einen höheren Schmelzpunkt aufweist als die Polymermatrix des Widerstandskörpers, und einen in die Matrix eingebetteten pulverförmigen Füllstoff aus einer elektrisch leitfähigen Keramik oder einem Metall geringer Duktilität. Diese Elektrode führt bei einer höheren Temperatur als der Widerstandskörper einen PTC-Übergang aus. Wird eine Stelle des Widerstandskörper beim Strombegrenzen lokal überhitzt und kann der Strom über diese lokale Stelle weiterhin fliessen, so löst die Überhitzung zeitverzögert in der Elektrode einen zweiten PTC-Übergang aus, welcher den Strom begrenzt und so ein Versagen des PTC-Widerstandselements verhindert.
BEZUGSZEICHENLISTE
1
Widerstandskörper
2
Elektrode
3
Stromanschluss
4
Durchlässe
5
Vertiefungen
6
Platte
7
Schenkel

Claims (8)

  1. Widerstandselement mit einem Widerstandskörper (1) aus einem PTC-Verhalten aufweisenden Verbundstoff auf der Basis eines füllstoffenthaltenden Polymers und mit zwei den Widerstandskörper elektrisch kontaktierenden Elektroden (2), dadurch gekennzeichnet, dass mindestens eine der Elektroden (2) einen flexiblen Metallschaum enthält.
  2. Widerstandselement nach Anspruch 1, dadurch gekennzeichnet, dass zumindest ein Teil des Metallschaums mit Verbundstoff gefüllte, offene Poren aufweist.
  3. Widerstandselement mit einem Widerstandskörper aus einem PTC-Verhalten aufweisenden Verbundstoff auf der Basis eines füllstoffenthaltenden Polymers und mit zwei den Widerstandskörper elektrisch kontaktierenden Elektroden, von denen mindestens eine (2) als starrer Metallkörper ausgebildet ist, dadurch gekennzeichnet, dass der Metallkörper mit Verbundstoff gefüllte Vertiefungen (5) und/oder Durchlässe (4) aufweist.
  4. Widerstandselement nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil der Vertiefungen (5) als Blindbohrungen ausgebildet ist.
  5. Widerstandselement nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Vertiefungen von einer aufgerauhten Oberfläche gebildet werden mit einer Oberflächenrauhigkeit, welcher grösser ist als die mittlere Korngrösse des im Polymer enthaltenen Füllstoffs.
  6. Widerstandselement nach Anspruch 5, dadurch gekennzeichnet, dass die Oberflächenrauhigkeit grösser ist als Korngrösse des grössten Füllstoffteilchens.
  7. Widerstandselement mit einem Widerstandskörper aus einem PTC-Verhalten aufweisenden Verbundstoff auf der Basis eines füllstoffenthaltenden Polymers und mit zwei den Widerstandskörper elektrisch kontaktierenden Elektroden, dadurch gekennzeichnet, dass mindestens eine der beiden Elektroden von einem Verbundstoff gebildet ist mit einer Polymermatrix und einem in die Matrix eingebetteten pulverförmigen Füllstoff aus einem duktilen, elektrisch leitfähigen Material oder aus einem Verbundstoff mit einer Polymermatrix, die einen höheren Schmelzpunkt aufweist als die Polymermatrix des Verbundstoffs, und einem in die Matrix eingebetteten pulverförmigen Füllstoff aus einer elektrisch leitfähigen Keramik oder einem Metall geringer Duktilität.
  8. Widerstandselement nach Anspruch 7, dadurch gekennzeichnet, dass das duktile Material des Füllstoffs Silber, Gold und/oder Kupfer enthält.
EP01810131A 2001-02-08 2001-02-08 Widerstandselemente mit PTC-Verhalten Withdrawn EP1231613A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01810131A EP1231613A1 (de) 2001-02-08 2001-02-08 Widerstandselemente mit PTC-Verhalten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810131A EP1231613A1 (de) 2001-02-08 2001-02-08 Widerstandselemente mit PTC-Verhalten

Publications (1)

Publication Number Publication Date
EP1231613A1 true EP1231613A1 (de) 2002-08-14

Family

ID=8183718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810131A Withdrawn EP1231613A1 (de) 2001-02-08 2001-02-08 Widerstandselemente mit PTC-Verhalten

Country Status (1)

Country Link
EP (1) EP1231613A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103261A1 (de) * 2008-02-19 2009-08-27 Epcos Ag Verbundwerkstoff zur temperaturmessung, temperatursensor aufweisend den verbundwerkstoff und verfahren zur herstellung des verbundwerkstoffs und des temperatursensors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270215A (ja) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp 限流器
JPH10302937A (ja) * 1997-04-22 1998-11-13 Nichias Corp Ptcヒーター及びその製造方法
JPH10312911A (ja) * 1997-05-12 1998-11-24 Mitsubishi Electric Corp 限流器
US5886324A (en) * 1996-12-19 1999-03-23 Eaton Corporation Electrode attachment for high power current limiting polymer devices
DE19752586A1 (de) * 1997-11-27 1999-06-02 Wickmann Werke Gmbh Verfahren zum Anbringen und/oder Befestigen mindestens einer metallischen Fläche
US5955936A (en) * 1995-05-10 1999-09-21 Littlefuse, Inc. PTC circuit protection device and manufacturing process for same
DE19842006A1 (de) * 1998-09-15 2000-03-16 Moeller Gmbh Kontaktanordnung elektrisch leitfähiger Polymere
JP2000195704A (ja) * 1998-10-21 2000-07-14 Mitsubishi Electric Corp Ptc限流器およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955936A (en) * 1995-05-10 1999-09-21 Littlefuse, Inc. PTC circuit protection device and manufacturing process for same
US5886324A (en) * 1996-12-19 1999-03-23 Eaton Corporation Electrode attachment for high power current limiting polymer devices
JPH10270215A (ja) * 1997-03-27 1998-10-09 Mitsubishi Electric Corp 限流器
JPH10302937A (ja) * 1997-04-22 1998-11-13 Nichias Corp Ptcヒーター及びその製造方法
JPH10312911A (ja) * 1997-05-12 1998-11-24 Mitsubishi Electric Corp 限流器
DE19752586A1 (de) * 1997-11-27 1999-06-02 Wickmann Werke Gmbh Verfahren zum Anbringen und/oder Befestigen mindestens einer metallischen Fläche
DE19842006A1 (de) * 1998-09-15 2000-03-16 Moeller Gmbh Kontaktanordnung elektrisch leitfähiger Polymere
JP2000195704A (ja) * 1998-10-21 2000-07-14 Mitsubishi Electric Corp Ptc限流器およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 10 17 November 2000 (2000-11-17) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103261A1 (de) * 2008-02-19 2009-08-27 Epcos Ag Verbundwerkstoff zur temperaturmessung, temperatursensor aufweisend den verbundwerkstoff und verfahren zur herstellung des verbundwerkstoffs und des temperatursensors
US9341521B2 (en) 2008-02-19 2016-05-17 Epcos Ag Composite material for temperature measurement, temperature sensor comprising the composite material, and method for producing the composite material and the temperature sensor
CN101952701B (zh) * 2008-02-19 2016-12-07 埃普科斯股份有限公司 用于测量温度的复合材料、具有该复合材料的温度传感器以及用于制造该复合材料和该温度传感器的方法

Similar Documents

Publication Publication Date Title
DE69528897T2 (de) Elektrische bauelemente
DE2543314C2 (de) Selbstregelnde elektrische Vorrichtung
DE69028347T2 (de) Verfahren zur Herstellung eines PTC Thermistors
DE69834231T2 (de) PTC-Element, Schutzvorrichtung und elektrische Leiterplatte
DE69734323T2 (de) Ptc thermistor und verfahren zur herstellung
DE102009042600B4 (de) Herstellungsverfahren für ein Leistungshalbleitermodul
DE69434557T2 (de) Schaltungsschutzvorrichtung, elektrische Anordnung und Herstellungsverfahren
DE2854080A1 (de) Druckempfindliches widerstandselement
DE2116935B2 (de) Elektrische druckabhängige Schalteinrichtung sowie Verfahren zu ihrer Herstellung
DE20007462U1 (de) Oberflächenmontierte elektrische Vorrichtung
EP3631318A1 (de) Heizgerät und verfahren zur herstellung desselben
EP1774603B1 (de) Vielschichtbauelement und verfahren zu dessen herstellung
DE112007001364T5 (de) Wärmewiderstand sowie Halbleitereinrichtung und elektrische Einrichtung mit einem derartigen Wärmewiderstand
DE69432562T2 (de) Elektrische anordnung
DE102005021959A1 (de) Batteriestromsensor für ein Kraftfahrzeug
DE4139155A1 (de) Leiterplatte mit einem funktionsgradienten
WO2017186527A1 (de) Elektronisches bauelement zur einschaltstrombegrenzung und verwendung eines elektronischen bauelements
DE19646441A1 (de) Elektrischer Widerstand und Verfahren zu seiner Herstellung
EP1355327B1 (de) Überspannungsableiter und Verfahren zur Herstellung eines solchen Überspannungsableiters
DE102020215523B4 (de) Elektrodenanordnung, Ionisationsvorrichtung und Verfahren zur Herstellung einer Elektrodenanordnung
DE10225408B4 (de) Piezoaktor, Verfahren zu dessen Herstellung und dessen Verwendung
EP0057172B1 (de) Selbstregelndes Heizelement
DE69509774T2 (de) Überstromschutzvorrichtung für elektrische schaltungen
DE69703286T2 (de) Verfahren zur herstellung von ptc-materialien
EP1231613A1 (de) Widerstandselemente mit PTC-Verhalten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030124

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701