EP1230409B1 - Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes - Google Patents
Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes Download PDFInfo
- Publication number
- EP1230409B1 EP1230409B1 EP00941865A EP00941865A EP1230409B1 EP 1230409 B1 EP1230409 B1 EP 1230409B1 EP 00941865 A EP00941865 A EP 00941865A EP 00941865 A EP00941865 A EP 00941865A EP 1230409 B1 EP1230409 B1 EP 1230409B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solid
- semi
- metal alloy
- liquid phase
- solid state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/12—Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Definitions
- the invention relates to a method for producing a metal alloy formed material according to the preamble of claim 1.
- thixotropic behavior of the material, whereby thixotropy is understood to mean a special rheological behavior in which a mechanical load caused by shear stresses leads to a considerable decrease in viscosity.
- thixotropy is understood to mean a special rheological behavior in which a mechanical load caused by shear stresses leads to a considerable decrease in viscosity.
- the viscosity changes by several orders of magnitude under load.
- its viscosity is approximately 10 6 to 10 9 Pas, which corresponds to the properties of a solid, whereas under shear stress the viscosity drops to values of 1 Pas, which is a viscosity between that of honey (10 Pas) and olive oil (10 -1 Pas).
- EP-A-0 554 808 A describes a generic method for the production of a metal alloy Material for a subsequent shaping of the Material in a semi-solid state. According to this teaching you bring the metal alloy to one located above the liquidus Starting temperature and then sets the so formed a grain refining agent. Subsequently the metal alloy is heated to any temperature cooled under solidus and the resulting material in the solid state during an essentially arbitrary one Time stored. Finally, the material by heating to a solidus and liquidus Holding temperature brought into the semi-solid state while holding for less than 15 Minutes. The shape of the material in semi-solid Condition must be within the less than 15 Minutes holding time can be made.
- a disadvantage of the known method is that the materials that can be produced on the basis of less than 15 minutes limited hold time for use in conventional molding plants are not suitable. Accordingly requires processing by means of thixo casting, Thixo forges or thixopresses with the known Process manufactured materials special manufacturing equipment, which ensure that the shaping limited to less than 15 minutes Processing window is performed.
- Another disadvantage of the known method results from the fact that the Material from the molten state to the solid Condition must be cooled and only then in the semi-solid Condition for subsequent shaping can. This intermittent freezing is especially for an automated manufacturing and Molding process highly undesirable.
- US Pat. No. 5,879,478, which in the following is the closest State of the art refers to a Process for thixoforming a thixotropic aluminum-silicon-copper alloy.
- This alloy belongs to the aluminum casting alloys, which is usually for thixoforming be used.
- This group of alloys restricted to those with one Silicon content of 5 to 7.5%, which causes “embrittlement” occurs.
- This "embrittlement” is due to the presence of Silicon crystals in polyhedral or polygonal form traced in larger quantities because these angular silicon crystals how inner notches work.
- the process has the goal for aluminum alloys with a silicon content of ⁇ 5% this embrittlement, which after the. Thixoforming to avoid occurring in the silicon crystal morphology refined, thereby reducing the internal notch effect becomes.
- the object of the invention is a generic method to improve, in particular the disadvantages mentioned to avoid.
- the metal alloy is brought to a liquidus the initial temperature and then adds an additional material to it is capable, after transfer of the metal alloy mixed with the additional material in the semi-solid.
- an interface energy between solid and to reduce the liquid phase is the amount of the additional material to be selected so that in the semi-solid material with a solid phase content of 25% up to 85% the grain size and the degree of skeletonization during a holding time of Remain essentially constant for more than 15 minutes to form a suspension maintain.
- components can be produced by the following shaping, which is a good combination of strength and toughness and also heat-treatable, are weldable, pressure-tight and relatively inexpensive.
- the process is for a wide variety of types of metal alloys applicable.
- the Metal alloy as the main component aluminum, and is used as an additional material Barium, wherein according to claim 3 the weight fraction of barium 0.1% to Is 0.8% of the material.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the metal alloy a dispersoid-forming element adds to the formation of grains to promote small grain size.
- the proportion by weight of the dispersoid-forming element is between 0.1% and 1% of the material.
- thixotropy becomes a special rheological Behavior understood in which a mechanical load due to shear stress leads to a significant decrease in viscosity.
- a thixotropic behavior can Materials in the semi-solid state, i.e. with one between the Solidus line and the liquidus line temperature should be expected when the semi-solid Material under shear load in a low-viscosity solid-liquid suspension is transferable. This formability of a suspension requires a special structure ahead in the semi-solid state where the solid components are not dendritic, but are globulitically trained.
- the structure formation can be described by four structural parameters, namely by the solid phase fraction f S , the form factor of the solid phase F, the grain size of the solid phase D and the degree of skeletonization, the latter being expressed by the measured variable C S or preferably by the contiguity volume f S C S becomes.
- the liquid phase component fL can also be specified, with the quantities f L and f S adding up to 1 under the permissible neglect of gaseous phase components.
- the solid phase component should be approximately 40% to 60%.
- the morphology and connectivity of the solid phase are the process-determining structural parameters.
- a quantitative description of the structure morphology can be made with the help of the form factor F and the grain size D.
- the form factor determines the viscosity of the solid-liquid suspension to a high degree, whereby an upper limit for the form factor must not be exceeded for the material to be sufficiently formable. This boundary condition is generally well met today by both CTC and NRC materials.
- a commercially available thixi alloy from Tap AlMgSi (hereinafter referred to as "aluminum alloy X ”)) with a composition similar to the alloy with the designation EN AW-6082 according to the European standard EN 573-3, namely with a chemical composition of 1.1% by weight silicon, 0.85% by weight Magnesium, 0.61% by weight manganese, 0.09% by weight iron, 0.08% by weight titanium, ⁇ 0.01 % Chromium, ⁇ 0.01% copper, ⁇ 0.01% nickel, ⁇ 0.01% lead and ⁇ 0.01 wt% zinc was heated to a desired temperature in an infrared oven heated in the solidus-liquidus interval at 100 ° C / min, homogenized isothermally and then quenched.
- aluminum alloy X A commercially available thixi alloy from Tap AlMgSi (hereinafter referred to as "aluminum alloy X ”)) with a composition similar to the alloy with the designation EN AW-6082 according to the European
- the infrared tube furnace was above a filled with ice water Boiler attached.
- the system is designed so that after reaching the desired one Temperature and homogenization of the sample by loosening the Bracket falls into the water bath.
- One in the center of gravity of the sample (15 mm x 15 mm x 15 mm) attached Pt / PtRh thermocouple ensures an exact temperature determination (+/- 0.1 ° C) and heating control. Before each attempt, the thermocouple checked for accuracy in a calibration oven.
- the measurements were limited on the microstructural structural developments in 5 selected Temperatures in the semi-solid range (613 ° C, 625 ° C, E33 ° C, 635 ° C and 638 ° C, corresponding to a liquid phase content of 10%, 20%, 30%, 35% or 40%) and with isothermal holding times of 1, 5, 10, 20 and 30 minutes.
- FIG. 1 shows the change in form factor F and grain size D (in micrometers) as a function of the isothermal holding time t (in minutes) in the semi-solid state at a constant temperature of 636 ° C., corresponding to a liquid phase fraction f L of 35%.
- t in minutes
- f L liquid phase fraction
- S SS is the grain boundary surface between the solid phase, ie the surface between the continuous grains that are not separated by melt, while S SL is the phase interface between the solid phase and the melt.
- the contiguity thus corresponds to the proportion that the interface to the same phase takes up in the entire interface of the solid phase.
- C S 0, the grains are isolated and completely surrounded by melt, while with increasing C S the grains have grown together and, accordingly, the skeleton formation is more pronounced. Very low values of C S are undesirable because the semi-solid material will then have no dimensional stability.
- C S ⁇ 1 the solid phase is fully agglomerated and cannot be converted into a suspension by applying shear stresses.
- FIG. 3 shows for the same material X the change in the contiguity C S and the contiguity volume f S C S after an isothermal hold time of 5 minutes as a function of the liquid phase fraction f L , with the fact that for F L ⁇ 1 corresponding to C S ⁇ 0 applies.
- the respective values of C S and f S C S are shown for a liquid phase fraction f L of 10%, 20%, 30% and 40%, corresponding to a temperature of 613 ° C, 625 ° C, 633 ° C and 638 ° C ,
- the contiguity volume f S C S increases with increasing holding time t and decreases with increasing liquid phase fraction f L , whereby, as expected, the skeleton formation increases with increasing holding time t.
- the properties required for successful shaping can, however, only be expected in a certain value range of the contiguity volume f S C S.
- the evaluation of the rheological properties set out below allows the appropriate interval for the volume of contiguity f S C S to be determined .
- FIG. 4 shows typical force-displacement curves of the aluminum alloy X after an isothermal holding time t of 5 minutes at different values of the liquid phase fraction f L , the force K being specified in kilonewtons and the displacement l in millimeters.
- the force-displacement diagram has the characteristic shape for elastic-plastic behavior.
- the forming forces are very low, and you are in the thixotropic range to be aimed for in the process.
- FIG. 4 shows that the thixotropic behavior observed according to FIG. 4 with a liquid phase fraction f L of 40% and 50% is transferred to FIG. 3 with a decrease in the contiguity volume f S C S to values below 0.3 accompanied.
- FIG. 5 shows that the loss of thixotropic properties that occurs in accordance with FIG. 5 after a holding time t of more than 5 minutes occurs in accordance with FIG. 2 with an increase in the volume of contiguity f S C S Expresses values of over 0.3.
- thixotropic behavior ie convertibility of the material present in the semi-solid state into a homogeneous solid-liquid suspension
- additional materials Z effective in the above sense are in the case of aluminum alloys the elements barium, which is particularly preferred, and Antimony, strontium or bismuth. It should be noted that for some These elements, in particular for silicon, are known to be added to a Aluminum alloy brings about a positive finish, for example through training of the aluminum-silicon eutectic. The quantitative proportions used for refinement however, these elements are in the range of a few ppm and are in any case much too low to phlegmatize the thixotropic properties to effect. In contrast, there are those to be used in the method according to the invention Quantities of the additional material Z clearly above that for the modification a quantity of finishing agent commonly used in a eutectic.
- a melt of an aluminum alloy with a composition similar to that Alloy with the designation EN AW-6082 according to the European standard EN 573-3 0.2 percent by weight of barium was added as additional material Z by the required The amount of barium is first packed in an aluminum foil and then was melted.
- Al alloy X + Ba The material thus formed (hereinafter referred to as "Aluminum alloy X + Ba”) with a chemical composition of 0.2% by weight barium, 0.8% by weight silicon, 0.41% by weight magnesium, 0.28% by weight Manganese, 0.2% by weight iron, 0.01% by weight titanium, 0.19% by weight chromium, 0.35% by weight Copper, ⁇ 0.01 wt% nickel, ⁇ 0.01 wt% lead and ⁇ 0.01 wt% zinc according to the characterization method described in section 2 in an infrared oven to a specified temperature in the solidus-liquidus interval at 100 ° C / min heated and then homogenized isothermally.
- microstructural structural developments were at 5 selected temperatures in the semi-solid range (618 ° C, 630 ° C, 637 ° C, 639 ° C and 642 ° C, corresponding to a liquid phase fraction of 10%, 20%, 30%, 35% or 40%) and with isothermal holding times t of 1, 5, 10, Measured 20 and 30 minutes.
- FIG. 6 shows the course of the contiguity volume f S C S as a function of the isothermal holding time t (in minutes) with a constant liquid phase fraction f L of 35% on the one hand for the material produced with the method according to the invention, ie the aluminum alloy X + Ba, and on the other hand for the corresponding barium-free alloy X according to the prior art.
- the structural change was significantly reduced.
- the critical value Y 0.3 for the contiguity volume f S C S was not reached in the material produced according to the invention even after a long holding time t of 30 minutes.
- inventive concept presented above using the example of an aluminum alloy can be applied in an analogous manner to other metal alloys X, for example magnesium alloys but also steels and heavy metal alloys. It is in the area of professional skill to first determine in preliminary tests which values of grain size D and the degree of skeletonization or the contiguity volume f S C S have to be observed in order to maintain the formability of a suspension in the semi-solid state and also a suitable additional material Z with surface energy-reducing properties.
- the aluminum alloys described in the previous embodiment with a composition similar to the alloy with the designation EN AW-6082 according to the European standard EN 573-3 contain an admixture Iron, which acts as a dispersoid-forming element, i.e. in a semi-solid state promotes the formation of grains of small grain size D.
- an admixture Iron acts as a dispersoid-forming element, i.e. in a semi-solid state promotes the formation of grains of small grain size D.
- X is in addition to said additional material Z if necessary add suitable dispersoid-forming element E.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
- Forging (AREA)
Description
- Figur 1
- Mittlere Korngrösse D und Formfaktor F für eine nach dem Stand der Technik hergestellte Aluminiumlegierung (EN AW-6082, nachfolgend: "Aluminiumlegierung X") bei einem konstanten Flüssigphasenanteil von 35% als Funktion der isothermen Haltezeit;
- Figur 2
- Kontiguität und Kontiguitätsvolumen der nach dem Stand der Technik hergestellten Aluminiumlegierung X bei einem konstanten Flüssiganteil von 35% als Funktion der isothermen Haltezeit;
- Figur 3
- Kontiguität und Kontiguitätsvolumen der nach dem Stand der Technik hergestellten Aluminiumlegierung X als Funktion des Flüssigphasenanteils nach einer konstanten isothermen Haltezeit von 5 Minuten;
- Figur 4
- Kraft-Weg Kurven der nach dem Stand der Technik hergestellten Aluminiumlegierung X als Funktion des Flüssigphasenanteils nach einer isothermen Haltezeit von 5 Minuten;
- Figur 5
- Kraft-Weg Kurven der nach dem Stand der Technik hergestellten Aluminiumlegierung X als Funktion der isothermen Haltezeit bei einem konstanten Flüssigphsenanteil von 35%;
- Figur 6
- das Kontiguitätsvolumen einer erfindungsgemäss hergestellten bariumhaltigen Aluminiumlegierung (X + Ba) im Vergleich zu der nach dem Stand der Technik hergestellten Aluminiumlegierung X als Funktion der isothermen Haltezeit bei einem konstanten Flüssigphasenanteil von 35%;
- Figur 7
- Kraft-Weg Kurven der erfindungsgemäss hergestellten bariumhaltigen Aluminiumlegierung (X + Ba) als Funktion der isothermen Haltezeit bei einem konstanten Flüssigphasenanteil von 35%.
- fS
- Festphasenanteil
- fL
- Flüssigphasenanteil
- F
- Formfaktor der Festphase
- D
- Korngrösse
- U
- Kornumfang
- A
- projizierte Kornfläche
- CS
- Kontiguität
- fSCS
- Kontiguitätsvolumen
- SSS
- Korngrenzenfläche zwischen der Festphase
- SSL
- Phasengrenzenfläche zwischen Festphase und Schmelze
- K
- Kraft
- ℓ
- Weg
- t
- Haltezeit
- Y
- kritischer Wert des Kontiguitätsvolumens
- Z
- Zusatzmaterial
- E
- dispersoidbildendes Element
Claims (4)
- Verfahren zur Herstellung eines aus einer Metall-Legierung gebildeten Werkstoffes für eine nachfolgende Formgebung des Werkstoffes im semi-soliden Zustand, wobei man die Metall-Legierung (X), die als Hauptbestandteil Aluminium enthält, auf eine über Liquidus befindliche Anfangstemperatur bringt und danach ein Zusatzmaterial (Z) zusetzt, dadurch gekennzeichnet, dass das Zusatzmaterial (Z) Barium ist, dessen Gewichtsanteil zwischen 0,1 bis 0,8% der Metall-Legierung beträgt und das dazu befähigt ist, nach Überführung der mit dem Zusatzmaterial versetzten Metall-Legierung (X + Z)in den semi-soliden Zustand eine Grenzflächenenergie zwischen fester und flüssiger Phase zu reduzieren, wobei man den Mengenanteil des Zusatzmaterials (Z) so wählt, dass im semi-soliden Werkstoff bei einem Flüssigphasenanteil (FL) von 15% bis 75% die Korngrösse (D) und der Skelettierungsgrad ( FSCS ) während einer Haltezeit (t) bis zu 30 Minuten einer wert von 0,3 nicht überschreitet, um die Bildbarkeit einer Suspension beizubehalten.
- Verfahren nach Anspruche 1, dadurch gekennzeichnet, dass man der Metall-Legierung (X) ein dispersoidbildendes Element (E) zusetzt, um die Bildung von Körnern kleiner Korngrösse (D) zu fördern.
- Verfahren nach Anspruch 1 oder ,2 dadurch gekennzeichnet, dass man als dispersoidbildendes Element (E) Eisen oder Chrom oder Chrom oder Titan oder Zirkon verwendet.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Gewichtsanteil des dispersoidbildenden Elementes (E) zwischen 0.1% und 1% des Werkstoffes beträgt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00941865A EP1230409B1 (de) | 1999-07-28 | 2000-07-19 | Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99810683 | 1999-07-28 | ||
EP99810683 | 1999-07-28 | ||
PCT/CH2000/000391 WO2001009401A1 (de) | 1999-07-28 | 2000-07-19 | Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes |
EP00941865A EP1230409B1 (de) | 1999-07-28 | 2000-07-19 | Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1230409A1 EP1230409A1 (de) | 2002-08-14 |
EP1230409B1 true EP1230409B1 (de) | 2004-01-21 |
Family
ID=8242949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00941865A Expired - Lifetime EP1230409B1 (de) | 1999-07-28 | 2000-07-19 | Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes |
Country Status (6)
Country | Link |
---|---|
US (1) | US6547896B2 (de) |
EP (1) | EP1230409B1 (de) |
AT (1) | ATE258233T1 (de) |
AU (1) | AU5669900A (de) |
DE (1) | DE50005101D1 (de) |
WO (1) | WO2001009401A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005022506A1 (de) * | 2005-05-11 | 2006-11-16 | Universität Stuttgart | Verfahren zum Schmieden eines Bauteils aus einer Titanlegierung |
CN107904449A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人连接体及其制备工艺 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2848129B1 (fr) * | 2002-12-05 | 2006-01-27 | Ascometal Sa | Procede de fabrication d'un piston pour moteur a explosion, et piston ainsi obtenu |
WO2004061140A1 (en) * | 2003-01-03 | 2004-07-22 | Singapore Institute Of Manufacturing Technology | Transformable and recyclable semi-solid metal processing |
CN100338248C (zh) * | 2003-11-20 | 2007-09-19 | 北京有色金属研究总院 | 一种Al-Mg-Si系合金半固态坯料的制备方法及其半固态坯料 |
US9993996B2 (en) * | 2015-06-17 | 2018-06-12 | Deborah Duen Ling Chung | Thixotropic liquid-metal-based fluid and its use in making metal-based structures with or without a mold |
CN112204239B (zh) * | 2018-05-31 | 2022-06-21 | 日本制铁株式会社 | 钢活塞 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4415374A (en) * | 1982-03-30 | 1983-11-15 | International Telephone And Telegraph Corporation | Fine grained metal composition |
US5133811A (en) * | 1986-05-12 | 1992-07-28 | University Of Sheffield | Thixotropic materials |
DE59306300D1 (de) * | 1992-01-30 | 1997-06-05 | Efu Ges Fuer Ur Umformtechnik | Verfahren zur Herstellung von Formteilen aus Metallegierungen |
DE59505226D1 (de) * | 1994-11-15 | 1999-04-08 | Rheinfelden Aluminium Gmbh | Aluminium-gusslegierung |
CA2177455C (en) | 1995-05-29 | 2007-07-03 | Mitsuru Adachi | Method and apparatus for shaping semisolid metals |
US5730198A (en) | 1995-06-06 | 1998-03-24 | Reynolds Metals Company | Method of forming product having globular microstructure |
DE69622664T2 (de) * | 1995-10-09 | 2002-11-14 | Honda Giken Kogyo K.K., Tokio/Tokyo | Thixogiessen |
FR2746414B1 (fr) * | 1996-03-20 | 1998-04-30 | Pechiney Aluminium | Alliage thixotrope aluminium-silicium-cuivre pour mise en forme a l'etat semi-solide |
-
2000
- 2000-07-19 AT AT00941865T patent/ATE258233T1/de not_active IP Right Cessation
- 2000-07-19 AU AU56699/00A patent/AU5669900A/en not_active Abandoned
- 2000-07-19 EP EP00941865A patent/EP1230409B1/de not_active Expired - Lifetime
- 2000-07-19 DE DE50005101T patent/DE50005101D1/de not_active Expired - Fee Related
- 2000-07-19 WO PCT/CH2000/000391 patent/WO2001009401A1/de active IP Right Grant
-
2001
- 2001-03-27 US US09/818,393 patent/US6547896B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005022506A1 (de) * | 2005-05-11 | 2006-11-16 | Universität Stuttgart | Verfahren zum Schmieden eines Bauteils aus einer Titanlegierung |
DE102005022506B4 (de) * | 2005-05-11 | 2007-04-12 | Universität Stuttgart | Verfahren zum Schmieden eines Bauteils aus einer Titanlegierung |
CN107904449A (zh) * | 2017-09-27 | 2018-04-13 | 宁波华源精特金属制品有限公司 | 一种机器人连接体及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
AU5669900A (en) | 2001-02-19 |
US6547896B2 (en) | 2003-04-15 |
US20010027833A1 (en) | 2001-10-11 |
WO2001009401A1 (de) | 2001-02-08 |
ATE258233T1 (de) | 2004-02-15 |
EP1230409A1 (de) | 2002-08-14 |
DE50005101D1 (de) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69305792T2 (de) | Verfahren zum Herstellen einer Flüssig-Fest-Mischung aus einer Magnesium-Legierung | |
DE3382585T2 (de) | Feinkoernige metallzusammensetzung. | |
DE69326838T3 (de) | Zähe aluminiumlegierung mit kupfer und magnesium | |
EP3365472B1 (de) | Aluminiumlegierung | |
DE69327195T2 (de) | Verfahren zum Giessen von Aluminiumlegierungen und Gusstücken | |
DE69921925T2 (de) | Hochfeste Aluminiumlegierungsschmiedestücke | |
DE2813986C2 (de) | ||
DE69324037T2 (de) | Hochverformbare, korrosionsbeständige al-mn-ti-typ-legierung und deren herstellung | |
DE69314222T2 (de) | Hochfeste Aluminiumlegierung mit hoher Zähigkeit | |
DE69423335T2 (de) | Plastisch-verformbarer Gusswerkstoff aus Magnesium-Legierung aus dieser Legierung hergestellte Werkstücke sowie Verfahren zur Herstellung | |
DE69700436T2 (de) | Thixotrope aluminium-silizium-kupfer legierung zur formgebung in halbfesten zustand | |
DE69131071T2 (de) | Bauteile aus duktiler ultra-hochfester aluminiumlegierung | |
DE69617265T2 (de) | Verfahren zur herstellung von dünnbändern aus aluminiumlegierungen mit hoher festigkeit und verformbarkeit | |
WO2017076801A1 (de) | Verfahren zum herstellen eines leichtmetallgussbauteils und leichtmetallgussbauteil | |
DE3884957T2 (de) | Extrem hochfeste, schweissbare aluminium-lithium-legierungen. | |
DE2606632A1 (de) | Kohlenstoffstahl von sehr hohem kohlenstoffgehalt und verfahren zur herstellung desselben | |
DE112008001968T5 (de) | Bilden von Magnesiumlegierungen mit verbesserter Duktilität | |
DE68913561T2 (de) | Aluminium-Lithium-Legierungen. | |
DE68915453T2 (de) | Thermomechanische behandlung von schnell erstarrten al-legierungen. | |
EP1230409B1 (de) | Verfahren zur herstellung eines aus einer metall-legierung gebildeten werkstoffes | |
DE10101960A1 (de) | Plastisch bearbeitetes Aluminiumlegierungsgußprodukt, ein Verfahren zur Herstellung davon und ein Verfahren zum Verbinden unter Verwendung plastischer Verformung | |
EP1017867A1 (de) | Legierung auf aluminiumbasis und verfahren zu ihrer wärmebehandlung | |
DE69224021T2 (de) | Verfahren zur Herstellung von einem Werkstoff aus einer amorphen Legierung mit hoher Festigkeit und guter Zähigkeit | |
DE69617872T2 (de) | Geschweisste Strukturen mit verbesserten mechanischen Eigenschaften aus AlMg-Legierungen | |
DE2242235C3 (de) | Superplastische Aluminiumlegierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20021111 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RUAG COMPONENTS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040121 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20040121 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040121 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040121 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040121 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50005101 Country of ref document: DE Date of ref document: 20040226 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PPS POLYVALENT PATENT SERVICE AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040421 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040421 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040502 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20040121 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040731 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041022 |
|
BERE | Be: lapsed |
Owner name: *RUAG COMPONENTS Effective date: 20040731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050621 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050713 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060720 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060726 Year of fee payment: 7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070330 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20070730 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: *RUAG COMPONENTS Effective date: 20040731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080201 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070719 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |