EP1229141A1 - Aluminiumgusslegierung - Google Patents

Aluminiumgusslegierung Download PDF

Info

Publication number
EP1229141A1
EP1229141A1 EP01810109A EP01810109A EP1229141A1 EP 1229141 A1 EP1229141 A1 EP 1229141A1 EP 01810109 A EP01810109 A EP 01810109A EP 01810109 A EP01810109 A EP 01810109A EP 1229141 A1 EP1229141 A1 EP 1229141A1
Authority
EP
European Patent Office
Prior art keywords
max
weight
cast alloy
alloy according
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01810109A
Other languages
English (en)
French (fr)
Inventor
Hubert Koch
Horst Schramm
Peter Krug
Thomas Gebhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aluminium Rheinfelden GmbH
Original Assignee
Aluminium Rheinfelden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Rheinfelden GmbH filed Critical Aluminium Rheinfelden GmbH
Priority to EP01810109A priority Critical patent/EP1229141A1/de
Publication of EP1229141A1 publication Critical patent/EP1229141A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the invention relates to a cast alloy based on aluminum and their use.
  • AISi cast alloys also have the disadvantage that with this type of alloy, due to the eutectic silicon, which is especially for safety-relevant Components in vehicle construction often require high ductility cannot be reached.
  • the alloys of the AlSi group must therefore to improve the castability and the mechanical properties Sodium or strontium can be refined.
  • These finishing elements work but are disadvantageous in that, on the one hand, they burn quickly (especially Sodium) and on the other hand the tendency of the melt to absorb hydrogen increase strongly (especially strontium). In practice, this leads to increased Gas porosity and thus to reduce ductility and fatigue strength.
  • the invention has for its object to an aluminum casting alloy create the required properties after casting without one Heat treatment already by aging at room temperature at least 14 days or only with limited heat treatment T5, i.e. achieved without solution annealing.
  • the casting alloy should above all suitable for die casting and sand casting.
  • the alloy should also be used in particular for safety-relevant components in vehicle construction, ie the castings made from the alloy must have high strength combined with high ductility.
  • the mechanical properties sought in the casting are defined as follows: yield strength Rp0.2> 170 MPa tensile strenght Rm> 230 MPa elongation A5> 6%
  • the corrosion tendency of the cast alloy should depend on the applications be kept as deep as possible and the alloy must also have a corresponding have good fatigue strength.
  • the castability of the alloy should be comparable be with the currently used AISi casting alloys, and the Alloy must not show any tendency to crack hot.
  • a cast alloy based on aluminum is used to achieve the object according to the invention silicon Max. 0.25 Wt .-% iron Max. 0.2 Wt .-% copper Max. 0.3 Wt .-% manganese 0.05 to 0.5 Wt .-% magnesium 0.2 to 1.0 Wt .-% zinc 4 to 7 Wt .-% titanium Max. 0.2 Wt .-% chrome 0.15 to 0.45 Wt .-% boron Max. 0.0065 Wt .-% nickel Max. 0.25 Wt .-% tin Max. 0.25 Wt .-% silver Max. 0.25 Wt .-% cerium Max. 0.25 Wt .-% zirconium Max. 0.25 Wt .-% scandium Max. 0.25 Wt .-% as well as aluminum as the rest with other elements and manufacturing-related impurities individually max. 0.05% by weight, max. 0.15% by weight.
  • the following content ranges are preferred for the individual alloy elements: silicon Max. 0.15% by weight, in particular max. 0.10% by weight iron Max. 0.15% by weight, in particular max. 0.10% by weight copper Max. 0.1% by weight, in particular max. 0.07% by weight manganese 0.1 to 0.3% by weight, in particular 0.15 to 0.25% by weight magnesium 0.4 to 0.8% by weight zinc 4.5 to 6% by weight, in particular 4.7 to 5.8% by weight titanium 0.03 to 0.15% by weight, in particular 0.05 to 0.10% by weight chrome 0.20 to 0.30% by weight boron 0.0005 to 0.005% by weight
  • the alloy can contain 0.10 to 0.25% by weight Nickel, in particular 0.10 to 0.15 wt .-% nickel.
  • the cast alloy according to the invention has, because of the cold hardening Main alloy element zinc. This type of alloy has next to none Eutectic on the grain boundaries and therefore leads to good ductility but known to be problematic in terms of casting technology because of the pronounced Tendency to heat crack, see e.g. John E. Hatsch, Properties and Physical Metallurgy page 347.
  • a tendency to stress corrosion cracking with a high zinc content and to counteract intergranular corrosion is preferred ensured that the zinc content remains below 6% by weight.
  • Chromium also improves the mechanical properties, especially in Direction of higher ductility, since it is the morphology of the Fe / Mn-containing phases changed from a more angular to a round shape.
  • a certain amount of titanium combined with boron is required for grain refinement. Good grain refinement significantly improves the casting properties at.
  • a preferred area of application of the cast alloy according to the invention is the production of safety-related components in vehicle construction, in particular Handlebars, brackets, frame parts and wheels. Also for roasting and cooking dishes, especially for frying pans, the alloy according to the invention is excellent suitable.
  • Alloys with a composition according to Table 1 based on aluminum with other manufacturing-related impurities individually max. 0.05% by weight, max. 0.15% by weight was cast in a die rod test die according to Diez to give round bars 16 mm in diameter.
  • Alloys Nos. 1 and 2 are compositions according to the invention, and Alloys 3 to 9 are comparative examples.
  • the mechanical properties of the yield strength (Rp0.2), tensile strength (Rm) and elongation at break (A5) in the as-cast state were determined on test bars.
  • the hot crack number as a measure of the hot crack tendency was determined on the basis of a visual assessment of a cast part produced specifically for this determination.
  • This special cast part has a central area, from which 6 arms of different lengths of the same diameter extend in a star shape, with a spherical end piece being formed at the end of each arm.
  • the number of torn arms and the tears that occurred were assessed.
  • the evaluation is carried out using an evaluation scheme with levels 0 to 6.
  • the hot crack number means: 0 no cracks 1 to 5 Increase in cracks, from cracks that can only be seen with a magnifying glass to several torn arms 6 all arms torn off

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

Eine Gusslegierung auf der Basis von Aluminium ist gekennzeichnet durch Silizium, max. 0,25, Gew.-%; Eisen, max. 0,2, Gew.-%; Kupfer, max. 0,3, Gew.-%; Mangan, 0,05 bis 0,5, Gew.-%; Magnesium, 0,2 bis 1,0, Gew.-%; Zink, 4 bis 7, Gew.-%; Titan, max. 0,2, Gew.-%; Chrom, 0,15 bis 0,45, Gew.-%; Bor, max. 0,0065, Gew.-%; Nickel, max. 0,25, Gew.-%; Zinn, max. 0,25, Gew.-%; Silber, max. 0,25, Gew.-%; Cer, max. 0,25, Gew.-%; Zirkonium, max. 0,25, Gew.-%; Scandium, max. 0,25, Gew.-% sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-%. Aus der Gusslegierung hergestellte Gussteile weisen eine hohe Festigkeit in Verbindung mit hoher Duktilität sowie eine hohes Wärmeleitvermögen und eine hohe Kriechfestigkeit auf und eignen sich demzufolge für sicherheitsrelevante Komponenten im Fahrzeugbau, insbesondere für Lenker, Träger, Rahmenteile und Räder, sowie für Brat- und Kochgeschirr.

Description

Die Erfindung betrifft eine Gusslegierung auf der Basis von Aluminium sowie deren Verwendung.
Für sicherheitsrelevante Anwendungen z.B. im Fahrzeugbau werden derzeit u.a. die Legierungen AISi7Mg (AA 356, EN AC 42000 - 42200) und die Legierungen der Gruppe AISi10 Mg (AA 360, EN AC 43000 - 43300) in Kokille oder im Sandguss vergossen. Die Legierungen sind in der Regel mit Strontium oder Natrium veredelt und müssen einer T6 oder T64 Wärmebehandlung unterzogen werden, um die geforderten mechanischen Eigenschaften zu erreichen, vgl. Europäische Norm EN 1706 "Gussstücke, chemische Zusammensetzung und mechanische Eigenschaften". Diese Wärmebehandlung beinhaltet auch eine Lösungsglühung. Beim Lösungsglühen wird das Gussstück für eine bestimmte Zeit auf eine Temperatur nahe der Solidustemperatur erwärmt, mit dem Ziel, hier die für die anschliessende Aushärtung relevanten Elemente in Lösung zu bringen und die verbleibenden Gussphasen einzuformen. Das Gussstück ist bei diesen Temperaturen relativ weich, was bereits im Lösungsglühofen bei unsachgemässer Lagerung bzw. nach dem anschliessenden Abschrecken zu einem Verzug führt. Auch die Norm EN 1706 (1998) erwähnt in Punkt 4.3 "Bezeichnung der Werkstoffzustände" als Anmerkung: "Bei Aluminiumgusslegierungen, die nach dem Lösungsglühen abgeschreckt werden, können Verformungen auftreten". Das Abschrecken ist jedoch notwendig, um einen nachfolgenden Aushärteprozess in gang zu setzen, da sonst die geforderten mechanischen Eigenschaften nicht erreicht werden. Dieser Wärmebehandlungsprozess ist daher nicht wünschenswert, weil sowohl durch den Prozess an sich als auch durch erhöhten Ausschuss bzw. Richtarbeit erhebliche Kosten anfallen.
AISi-Gusslegierungen haben zudem den Nachteil, dass bei diesem Legierungstyp, bedingt durch das eutektische Silizium, die insbesondere für sicherheitsrelevante Komponenten im Fahrzeugbau geforderte hohe Duktilität oftmals nicht erreicht werden kann. Die Legierungen der AlSi-Gruppe müssen deshalb zur Verbesserung der Giessbarkeit und der mechanischen Eigenschaften mit Natrium oder Strontium veredelt werden. Diese Veredelungselemente wirken sich aber nachteilig aus, indem sie einerseits schnell abbrennen (besonders Natrium) und andererseits die Tendenz der Schmelze zur Wasserstoffaufnahme stark erhöhen (besonders Strontium). Dies führt in der Praxis zur erhöhter Gasporosität und damit zur Verringerung der Duktilität und der Dauerfestigkeit.
Der Erfindung liegt die Aufgabe zugrunde, eine Aluminiumgusslegierung zu schaffen, welche die geforderten Eigenschaften nach dem Abguss ohne eine Wärmebehandlung bereits durch eine Auslagerung bei Raumtemperatur von mindestens 14 Tagen bzw. nur mit einer eingeschränkten Wärmebehandlung T5, d.h. ohne Lösungsglühung, erreicht. Die Gusslegierung soll sich vor allem für den Kokillenguss und den Sandguss eignen.
Die Legierung soll insbesondere auch für sicherheitsrelevante Komponenten im Fahrzeugbau Anwendung finden, d.h. die aus der Legierung hergestellten Gussstücke müssen eine hohe Festigkeit in Verbindung mit hoher Duktilität aufweisen. Die im Gussstück angestrebten mechanischen Eigenschaften sind wie folgt definiert:
Dehngrenze Rp0.2 > 170 MPa
Zugfestigkeit Rm > 230 MPa
Bruchdehnung A5 > 6%
Bedingt durch die Anwendungen soll die Korrosionsneigung der Gusslegierung möglichst tief gehalten werden und die Legierung muss auch eine entsprechend gute Dauerfestigkeit aufweisen. Die Giessbarkeit der Legierung sollte vergleichbar sein mit den derzeit angewendeten AISi-Gusslegierungen, und die Legierung darf keine Tendenz zu Warmrissen zeigen.
Zur erfindungsgemässen Lösung der Aufgabe führt eine Gusslegierung auf der Basis von Aluminium mit
Silizium max. 0,25 Gew.-%
Eisen max. 0,2 Gew.-%
Kupfer max. 0,3 Gew.-%
Mangan 0,05 bis 0,5 Gew.-%
Magnesium 0,2 bis 1,0 Gew.-%
Zink 4 bis 7 Gew.-%
Titan max. 0,2 Gew.-%
Chrom 0,15 bis 0,45 Gew.-%
Bor max. 0,0065 Gew.-%
Nickel max. 0,25 Gew.-%
Zinn max. 0,25 Gew.-%
Silber max. 0,25 Gew.-%
Cer max. 0,25 Gew.-%
Zirkonium max. 0,25 Gew.-%
Scandium max. 0,25 Gew.-%
sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-%.
Für die einzelnen Legierungselemente werden die folgenden Gehaltsbereiche bevorzugt:
Silizium max. 0,15 Gew.-%, insbesondere max. 0,10 Gew.-%
Eisen max. 0,15 Gew.-%, insbesondere max. 0,10 Gew.-%
Kupfer max. 0,1 Gew.-%, insbesondere max. 0,07 Gew.-%
Mangan 0,1 bis 0,3 Gew.-%, insbesondere 0,15 bis 0,25 Gew.-%
Magnesium 0,4 bis 0,8 Gew.-%
Zink 4,5 bis 6 Gew.-%, insbesondere 4,7 bis 5,8 Gew.-%
Titan 0,03 bis 0,15 Gew.-%, insbesondere 0,05 bis 0,10 Gew.-%
Chrom 0,20 bis 0,30 Gew.-%
Bor 0,0005 bis 0,005 Gew.-%
Anstelle von oder zusätzlich zu Chrom kann die Legierung 0,10 bis 0,25 Gew.-% Nickel, insbesondere 0,10 bis 0,15 Gew.-% Nickel enthalten.
Die erfindungsgemässe Gusslegierung weist wegen der Kaltaushärtung als Hauptlegierungselement Zink auf. Dieser Legierungstyp hat so gut wie kein Eutektikum auf den Korngrenzen und führt daher zu einer guten Duktilität, ist aber bekanntermassen giesstechnisch problematisch wegen der ausgeprägten Tendenz zur Warmrissneigung, siehe z.B. John E. Hatsch, Properties and Physical Metallurgy Seite 347.
Im Verlauf der Legierungsentwicklung hat sich nun überraschend gezeigt, dass die erfindungsgemässe Gusslegierung sowohl die geforderten mechanischen Eigenschaften nach einer Kaltauslagerung erreicht, als auch giesstechnisch unproblematisch ist und keine Tendenz zur gefürchteten Warmrissneigung besteht, dies sowohl im Kokillen- als auch im Sandguss.
Die Wirkung der Legierungselemente kann etwa wie folgt charakterisiert werden:
Zink in Verbindung mit Magnesium führt zu einer entsprechenden Aushärtung bei Raumtemperatur, wobei die Lagerdauer üblicherweise mehr als 14 Tage betragen sollte. Ist eine schnellere Aushärtung notwendig, kann auch eine T5 Wärmebehandlung durchgeführt werden, also z.B. eine Glühung bei 180°C während 6 Stunden mit anschliessender Luftabkühlung.
Um einer mit hohem Zinkgehalt auftretenden Tendenz zu Spannungsrisskorrosion und zu interkristalliner Korrosion entgegenzutreten, wird bevorzugt darauf geachtet, dass der Zinkgehalt unter 6 Gew.-% bleibt.
Silizium sollte möglichst tief gehalten werden, da sich sonst die Giessbarkeit der Legierung verschlechtert, was sich in einer zunehmenden Warmrissneigung zeigt.
In bezug auf die Giessbarkeit wurde gefunden, dass geringe Mengen von Mangan hier äusserst hilfreich sind. Ohne Mangan tendiert die Legierung stark zu Warmrissen. Eine Zugabe von Mangan vermindert auch die Tendenz zur Korrosion, insbesondere zu Spannungsrisskorrosion.
Chrom verbessert zusätzlich die mechanischen Eigenschaften, insbesondere in Richtung höherer Duktilität, da es die Morphologie der Fe/Mn-haltigen Phasen von einer mehr kantigen zu einer runden Form hin verändert.
Eine gewisse Menge an Titan in Verbindung mit Bor wird zur Kornfeinung benötigt. Eine gute Kornfeinung trägt wesentlich zur Verbesserung der Giesseigenschaften bei.
Ein bevorzugter Anwendungsbereich der erfindungsgemässen Gusslegierung ist die Herstellung sicherheitsrelevanter Komponenten im Fahrzeugbau, insbesondere Lenker, Träger, Rahmenteile und Räder. Auch für Brat- und Kochgeschirr, insbesondere für Bratpfannen, ist die erfindungsgemässe Legierung hervorragend geeignet.
Zur Verarbeitung der erfindungsgemässen Legierung sind grundsätzlich alle Giessverfahren geeignet. Hierzu gehören u.a. Sandguss, Lost Form-Guss, Schwerkraft-Kokillenguss, Niederdruck-Kokillenguss, Differenzdruck-Kokillenguss, Squeeze Casting und Thixocasting, in besonders gelagerten Fällen auch Druckguss.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Betrachtung bevorzugter Ausführungsbeispiele.
Legierungen mit einer Zusammensetzung gemäss Tabelle 1 auf der Basis von Aluminium mit weiteren herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-% wurden in einer Probestabkokille nach Diez zu Rundstäben von 16 mm Durchmesser vergossen. Die Legierungen Nr. 1 und 2 sind erfindungsgemässe Zusammensetzungen, die Legierungen 3 - 9 sind Vergleichsbeispiele. An Probestäben wurden die mechanischen Eigenschaften Dehngrenze (Rp0.2), Zugfestigkeit (Rm) und Bruchdehnung (A5) im Gusszustand bestimmt. Die Warmrisszahl als Mass für die Warmrissneigung wurde aufgrund einer visuellen Beurteilung eines speziell für diese Bestimmung hergestellten Gussteiles bestimmt. Dieses spezielle Gussteil weist einen Zentrumsbereich auf, von dem 6 verschieden lange Arme gleichen Durchmessers sternförmig ausgehen, wobei am Ende jedes Armes ein kugelförmiges Endstück angeformt ist. Beurteilt wird die Anzahl der abgerissenen Arme und der aufgetretenen Risse. Die Auswertung erfolgt über eine Bewertungsschema mit den Stufen 0 bis 6. Die Warmrisszahl bedeutet:
0 keine Risse
1 bis 5 Zunahme von Rissen, angefangen von Rissen, die nur mit der Lupe zu sehen sind bis hin zu mehreren abgerissenen Armen
6 alle Arme abgerissen
Figure 00070001

Claims (14)

  1. Gusslegierung auf der Basis von Aluminium, gekennzeichnet durch Silizium max. 0,25 Gew.-% Eisen max. 0,2 Gew.-% Kupfer max. 0,3 Gew.-% Mangan 0,05 bis 0,5 Gew.-% Magnesium 0,2 bis 1,0 Gew.-% Zink 4 bis 7 Gew.-% Titan max. 0,2 Gew.-% Chrom 0,15 bis 0,45 Gew.-% Bor max. 0,0065 Gew.-% Nickel max. 0,25 Gew.-% Zinn max. 0,25 Gew.-% Silber max. 0,25 Gew.-% Cer max. 0,25 Gew.-% Zirkonium max. 0,25 Gew.-% Scandium max. 0,25 Gew.-%
    sowie Aluminium als Rest mit weiteren Elementen und herstellungsbedingten Verunreinigungen einzeln max. 0,05 Gew.-%, insgesamt max. 0,15 Gew.-%.
  2. Gusslegierung nach Anspruch 1, gekennzeichnet durch max. 0,15 Gew.-% Si, insbesondere max. 0,10 Gew.-% Si.
  3. Gusslegierung nach Anspruch 1 oder 2, gekennzeichnet durch max. 0,15 Gew.-% Fe, insbesondere max. 0,10 Gew.-% Fe.
  4. Gusslegierung nach einem der Ansprüche 1 bis 3, gekennzeichnet durch max. 0,1 Gew.-% Cu, insbesondere max. 0,07 Gew.-% Cu.
  5. Gusslegierung nach einem der Ansprüche 1 bis 4, gekennzeichnet durch 0,1 bis 0,3 Gew.-% Mn, insbesondere 0,15 bis 0,25 Gew.-% Mn.
  6. Gusslegierung nach einem der Ansprüche 1 bis 5, gekennzeichnet, durch 0,4 bis 0,8 Gew.-% Mg.
  7. Gusslegierung nach einem der Ansprüche 1 bis 6, gekennzeichnet, durch 4,5 bis 6 Gew.-% Zn, insbesondere 4,7 bis 5,8 Gew.-% Zn.
  8. Gusslegierung nach einem der Ansprüche 1 bis 7, gekennzeichnet, durch 0,03 bis 0,15 Gew.-% Ti, insbesondere 0,05 bis 0,10 Gew.-% Ti.
  9. Gusslegierung nach einem der Ansprüche 1 bis 8, gekennzeichnet, durch 0,20 bis 0,30 Gew.-% Cr.
  10. Gusslegierung nach einem der Ansprüche 1 bis 9, gekennzeichnet, durch 0,0005 bis 0,0055 Gew.-% B.
  11. Gusslegierung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie zusätzlich oder anstelle von Cr 0,10 bis 0,25 Gew.-% Ni, insbesondere 0,10 bis 0,15 Gew.-% Ni enthält.
  12. Verwendung einer Gusslegierung nach einem der Ansprüche 1 bis 11 zur Herstellung von Gussteilen mit hoher Festigkeit in Verbindung mit hoher Duktilität und/oder mit hohem Wärmeleitvermögen und hoher Kriechfestigkeit.
  13. Verwendung nach Anspruch 13 für sicherheitsrelevante Komponenten im Fahrzeugbau, insbesondere für Lenker, Träger, Rahmenteile und Räder.
  14. Verwendung nach Anspruch 15 für Brat- und Kochgeschirr, insbesondere für Bratpfannen.
EP01810109A 2001-02-05 2001-02-05 Aluminiumgusslegierung Withdrawn EP1229141A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01810109A EP1229141A1 (de) 2001-02-05 2001-02-05 Aluminiumgusslegierung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810109A EP1229141A1 (de) 2001-02-05 2001-02-05 Aluminiumgusslegierung

Publications (1)

Publication Number Publication Date
EP1229141A1 true EP1229141A1 (de) 2002-08-07

Family

ID=8183712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810109A Withdrawn EP1229141A1 (de) 2001-02-05 2001-02-05 Aluminiumgusslegierung

Country Status (1)

Country Link
EP (1) EP1229141A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079029A1 (de) * 2003-03-07 2004-09-16 Ae Group Ag Druckgussbauteil und verfahren zu seiner herstellung
EP1475449A1 (de) * 2003-03-14 2004-11-10 Miba Gleitlager GmbH Aluminiumknetlegierung
DE10352932A1 (de) * 2003-11-11 2005-06-16 Eads Deutschland Gmbh Aluminium-Gusslegierung
WO2005106057A3 (en) * 2004-04-22 2006-01-26 Alcoa Inc Heat treatable al-zn-mg alloy for aerospace and automotive castings
WO2005106058A3 (en) * 2004-04-22 2006-09-14 Alcoa Inc Heat treatable al-zn-mg-cu alloy for aerospace and automotive castings
EP1768797A2 (de) * 2004-07-01 2007-04-04 Alcoa Inc. Geschmiedetes aluminiumfahrzeugrad und zugeordnetes herstellungsverfahren und legierung
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
JP2018178246A (ja) * 2017-04-13 2018-11-15 コリア インスティテュート オブ マシーナリー アンド マテリアルズKorea Institute Of Machinery & Materials アルミニウム−亜鉛−銅(Al−Zn−Cu)合金及びその製造方法
CN115449676A (zh) * 2022-10-28 2022-12-09 江苏亚太轻合金科技股份有限公司 一种压铸Al-Zn-Mg-Mn铝合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1218516A (en) * 1968-12-27 1971-01-06 Aluminum Co Of America Clad aluminum base alloy
JPS59113164A (ja) * 1982-12-18 1984-06-29 Aisin Seiki Co Ltd 自動車用バンパ−の製造方法
US4490189A (en) * 1982-04-13 1984-12-25 Aluminium Pechiney Method of manufacturing stamped-out or forged parts made of aluminum alloys
JPS6263641A (ja) * 1985-09-14 1987-03-20 Showa Alum Corp 低サイクル疲労特性に優れた高強度アルミニウム合金押出材
JPH07310156A (ja) * 1994-05-12 1995-11-28 Mitsubishi Alum Co Ltd 自動車のフレーム構造およびその製造方法
EP0709274A1 (de) * 1994-10-26 1996-05-01 Alusuisse-Lonza Services AG Sicherheitslenksäule
JPH09279284A (ja) * 1995-06-14 1997-10-28 Furukawa Electric Co Ltd:The 耐応力腐食割れ性に優れた溶接用高力アルミニウム合金

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1218516A (en) * 1968-12-27 1971-01-06 Aluminum Co Of America Clad aluminum base alloy
US4490189A (en) * 1982-04-13 1984-12-25 Aluminium Pechiney Method of manufacturing stamped-out or forged parts made of aluminum alloys
JPS59113164A (ja) * 1982-12-18 1984-06-29 Aisin Seiki Co Ltd 自動車用バンパ−の製造方法
JPS6263641A (ja) * 1985-09-14 1987-03-20 Showa Alum Corp 低サイクル疲労特性に優れた高強度アルミニウム合金押出材
JPH07310156A (ja) * 1994-05-12 1995-11-28 Mitsubishi Alum Co Ltd 自動車のフレーム構造およびその製造方法
EP0709274A1 (de) * 1994-10-26 1996-05-01 Alusuisse-Lonza Services AG Sicherheitslenksäule
JPH09279284A (ja) * 1995-06-14 1997-10-28 Furukawa Electric Co Ltd:The 耐応力腐食割れ性に優れた溶接用高力アルミニウム合金

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GRAND L. ET AL: "Etude sur l'alliage léger de fonderie A-Z5G, influence d'additions de chrome et de cuivre sur les propriétés mécaniques et de la résistance à la corrosion", REVUE DE METALLURGIE, vol. LII, no. 10, 1955, pages 821 - 829, XP002970979
HUFNAGEL W: "Key to Aluminium Alloys, 4th Edition", ALUMINIUM-SCHLUESSEL = KEY TO ALUMINIUM ALLOYS, SEITEN 202-204, XP002172555 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 232 (C - 248) 25 October 1984 (1984-10-25) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 262 (C - 442) 25 August 1987 (1987-08-25) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 03 29 March 1996 (1996-03-29) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079029A1 (de) * 2003-03-07 2004-09-16 Ae Group Ag Druckgussbauteil und verfahren zu seiner herstellung
EP1475449A1 (de) * 2003-03-14 2004-11-10 Miba Gleitlager GmbH Aluminiumknetlegierung
DE10352932A1 (de) * 2003-11-11 2005-06-16 Eads Deutschland Gmbh Aluminium-Gusslegierung
DE10352932B4 (de) * 2003-11-11 2007-05-24 Eads Deutschland Gmbh Aluminium-Gusslegierung
WO2005106058A3 (en) * 2004-04-22 2006-09-14 Alcoa Inc Heat treatable al-zn-mg-cu alloy for aerospace and automotive castings
EP1759027A2 (de) * 2004-04-22 2007-03-07 Alcoa Inc. Wärmebehandelbare al-zn-mg-cu-legierung für gussteile für luft- und raumfahrt und kraftfahrzeuge
EP1759028A2 (de) * 2004-04-22 2007-03-07 Alcoa Inc. Wärmebehandelbare al-zn-mg-legierung für gussteile für luft- und raumfahrt und kraftfahrzeuge
WO2005106057A3 (en) * 2004-04-22 2006-01-26 Alcoa Inc Heat treatable al-zn-mg alloy for aerospace and automotive castings
EP1759027A4 (de) * 2004-04-22 2007-10-03 Alcoa Inc Wärmebehandelbare al-zn-mg-cu-legierung für gussteile für luft- und raumfahrt und kraftfahrzeuge
EP1759028A4 (de) * 2004-04-22 2007-10-03 Alcoa Inc Wärmebehandelbare al-zn-mg-legierung für gussteile für luft- und raumfahrt und kraftfahrzeuge
EP1768797A2 (de) * 2004-07-01 2007-04-04 Alcoa Inc. Geschmiedetes aluminiumfahrzeugrad und zugeordnetes herstellungsverfahren und legierung
EP1768797A4 (de) * 2004-07-01 2010-03-17 Alcoa Inc Geschmiedetes aluminiumfahrzeugrad und zugeordnetes herstellungsverfahren und legierung
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
US8721811B2 (en) 2005-10-28 2014-05-13 Automotive Casting Technology, Inc. Method of creating a cast automotive product having an improved critical fracture strain
US9353430B2 (en) 2005-10-28 2016-05-31 Shipston Aluminum Technologies (Michigan), Inc. Lightweight, crash-sensitive automotive component
JP2018178246A (ja) * 2017-04-13 2018-11-15 コリア インスティテュート オブ マシーナリー アンド マテリアルズKorea Institute Of Machinery & Materials アルミニウム−亜鉛−銅(Al−Zn−Cu)合金及びその製造方法
CN115449676A (zh) * 2022-10-28 2022-12-09 江苏亚太轻合金科技股份有限公司 一种压铸Al-Zn-Mg-Mn铝合金及其制备方法

Similar Documents

Publication Publication Date Title
DE60123065T2 (de) Titanlegierung und wärmebehandlungsverfahren für grossdimensionale, halbfertige materialien aus dieser legierung
EP1718778B1 (de) Werkstoff auf der basis einer aluminium-legierung, verfahren zu seiner herstellung sowie verwendung hierfür
EP1564308B1 (de) Gussbauteil aus einer Aluminiumlegierung
DE112004000596T5 (de) Hochfeste Al-Zn-Legierung und Verfahren zum Herstellen eines solchen Legierungsprodukts
DE102007033827A1 (de) Aluminium-Gusslegierung und deren Verwendung
DE102016219711B4 (de) Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung
DE10393072T5 (de) Al-Cu-Legierung mit hoher Zähigkeit
DE112018005321T5 (de) Druckguss-aluminiumlegierung und funktionsbauteil unter verwendung dieser
DE69614788T2 (de) Aluminium-Kupfer-Magnesium-Legierung mit hoher Kriechbeständigkeit
DE102019205267B3 (de) Aluminium-Druckgusslegierung
DE102013002632B4 (de) Aluminium-Silizium-Druckgusslegierung und Verfahren zur Herstellung eines Druckgussbauteils
EP1229141A1 (de) Aluminiumgusslegierung
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
DE1483228B2 (de) Aluminiumlegierung mit hoher zeitstandfestigkeit
DE69017448T2 (de) Legierung auf der basis von nickel-aluminium für konstruktive anwendung bei hoher temperatur.
DE2641924C2 (de) Austenitische Ni-Cv-Legierung hoher Korrosionsbeständigkeit und Warmverformbarkeit
AT14019U1 (de) Gusslegierung
DE102019202676B4 (de) Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung
DE10324453B4 (de) Gewalztes wärmebehandelbares Al-Mg-Si-Legierungsprodukt
DE757956C (de) Die Verwendung von Kupfer-Aluminium-Legierungen fuer Gegenstaende hoher Warmdauerstandfestigkeit
DE1758778B1 (de) Verwendung einer aushaertbaren titanlegierung fuer gegen staende mit hoher festigkeit und guter verformbarkeit bei raumtemperatur und erhoehten temperaturen sowie hoher dauerstandfestigkeit
EP0302255B1 (de) Verwendung einer Kupferlegierung als Werkstoff für Stranggiesskokillen
DE3240041C2 (de) Verwendung einer Aluminium-Gußlegierung
EP2450463B1 (de) Aluminiumlegierung
DE900499C (de) Verguetbare korrosionsbestaendige Aluminium-Zink-Magnesium-Knetlegierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030120

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071206