EP1224607A1 - Verfahren zum auslesen und beschreiben von rfid-transpondern - Google Patents

Verfahren zum auslesen und beschreiben von rfid-transpondern

Info

Publication number
EP1224607A1
EP1224607A1 EP00967877A EP00967877A EP1224607A1 EP 1224607 A1 EP1224607 A1 EP 1224607A1 EP 00967877 A EP00967877 A EP 00967877A EP 00967877 A EP00967877 A EP 00967877A EP 1224607 A1 EP1224607 A1 EP 1224607A1
Authority
EP
European Patent Office
Prior art keywords
frequency
mhz
resonance frequency
transponders
transponder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00967877A
Other languages
English (en)
French (fr)
Other versions
EP1224607B1 (de
Inventor
Philipp Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lucatron AG
Original Assignee
Lucatron AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucatron AG filed Critical Lucatron AG
Publication of EP1224607A1 publication Critical patent/EP1224607A1/de
Application granted granted Critical
Publication of EP1224607B1 publication Critical patent/EP1224607B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07796Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements on the record carrier to allow stacking of a plurality of similar record carriers, e.g. to avoid interference between the non-contact communication of the plurality of record carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10019Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers.

Definitions

  • the present invention relates to a method for reading and writing RFID transponders with inductive coupling using a read / write unit, the transponders working at a resonant frequency.
  • the invention further relates to a system for reading and writing RFID transponders, the system comprising a transponder arranged on a carrier with a resonant circuit with resonant frequency, a receiver device and a read / write unit with transmitter / receiver.
  • RFID systems are increasingly being used for contactless, automatic identification.
  • Around 90% of all RFID systems sold today are inductively coupled systems with inductive coupling between the reader and transponder.
  • Such systems so-called remote coupling systems, generally work with ranges of up to 1 m in read / write mode.
  • RFID labels can now be used to identify goods and other objects, since these can now be made practically as thin as conventional adhesive labels and are therefore generally not recognizable to the user as RFID labels. For example, RFID labels can be glued or laminated in books, magazines or similar documents.
  • RFID systems operating in the radio frequency range work with LC resonant circuits with a resonance frequency f R. If an alternating magnetic field with a frequency f s acts on the transponder of an RFID label, the resonant circuit of the transponder begins to settle and is excited to resonate. It absorbs energy from the alternating magnetic field, which can be detected, for example, by increasing the coil current or the voltage drop across the internal resistance in the transmitter circuit. The operating voltage for the transponder chip is also generated in this way.
  • EAS systems i.e. electronic article surveillance
  • the transmitter frequency continuously scans a frequency range. Due to the energy absorption occurring at an unknown resonance frequency of a transponder, this can be recognized.
  • Such an EAS system with a broadband preamplifier is described in DE 195 14 601 AI, which, for example in two transponder types, passes through their frequency ranges in succession.
  • the occurrence of a voltage drop in the transmitter circuit as a result of vibration excitation of the receiver transponder is used in load modulation, in which voltage changes on the antenna of the transmitter and thus amplitude modulation of the antenna voltage are effected by switching the load resistance of the transponder on and off.
  • the resonance frequency of an RFID label always shifts downwards when a second RFID label gets into the coupling area of the first.
  • the resonance frequency of the two RFID tags then being f R / 4 ⁇ 2 ⁇ .
  • Even with the use of high field strengths, ie high transmitter power, communication at the transmission frequency f s is not always possible.
  • zeros can lie above the downward shifted resonance frequency. If such a zero is currently at the transmission frequency f s , the chip no longer works.
  • FIG. 4 This is shown in FIG. 4 using equivalent circuit diagrams.
  • a demodulator 6 and a bandpass filter 8 or other filter are in the receiving branch, which begins directly at the antenna socket.
  • a coil 10 is the antenna with inductance L s .
  • the equivalent circuit diagrams of two RFID labels a, b are also illustrated. These each include a coil 12 with inductance L- L or L 2 and a capacitance 14 parallel to the transponder chip 16.
  • RFID systems with transmission frequencies in the microwave range have been used, in which the transmission signal with a signal of e.g. 1 kHz is modulated and, in addition to the resonance frequency, the second harmonic of the transponder is also detected. After demodulating and passing through a 1 kHz detector, the received transponder signals can then be reliably distinguished from interference signals and false alarms can thus be avoided.
  • the effects of reusable and runtime effects are problematic with these RFID systems.
  • the invention has for its object to provide a method that reliable operation, especially commu nication and supply, even if there are several transponders in close proximity.
  • the transponders thus work with a fixed resonance frequency.
  • the transmission frequency is reduced from a basic transmission frequency corresponding to this resonance frequency for operating conditions with a long range to a specified alternative value of the transmission frequency for operating conditions with a high detection rate, so that secure communication between the transponder and the read / write unit is ensured.
  • the method according to the invention is suitable for use in the range from approximately 10 kHz to approximately 30 MHz. It is preferably used in the radio frequency range.
  • the manufacturing tolerances allow the transponder resonance frequency to vary by approximately ⁇ 2%.
  • the provision of two operating frequencies makes it possible, on the one hand, to switch off or at least largely reduce interference caused by other transponders in the vicinity, and on the other hand to work with the required range.
  • the resonant circuits of the transponders are advantageously adjusted so that they work individually optimally on the basic transmission frequency and also have the greatest range there. If it can be assumed that there are other transponders in the vicinity of a transponder, the signals of which could interfere with the communication, the operating frequency, ie the transmission frequency of the transmitter / reader unit, will be approximately from 13.56 MHz to (or one) lower Reduced value 6.78 MHz, which is further away from the resonance frequency 13.56 MHz of the transponder.
  • the method according to the invention therefore provides for operating the same transponders with different transmitting devices depending on the conditions on site.
  • a lock system can send at the exit of a library, a warehouse or a retail store with the basic frequency (e.g. 13.56 MHz), because there is little interference from other transponders at this location. Rather, it depends on a larger transmission range.
  • the read / write units of the warehouse and sales management will work with a lower alternative transmission frequency (e.g. 6.78 MHz), since the range is not so important here, but rather a high level of interference immunity is important.
  • the system according to the invention for reading and writing RFID transponders which is particularly suitable for carrying out the method according to the invention, comprises a transponder arranged on a carrier with a resonant circuit with a resonant frequency, a receiver device and a read / write unit with transmitter / receiver , wherein the resonant circuit has a fixed resonant frequency, and the transmitter / receiver of the read / write unit has a basic transmission alternative lower transmission frequency (transmission frequencies) corresponding to the resonance frequencies of the transponder.
  • Transmitters with several adjustable transmission frequencies for example 13.56 MHz and 6.78 MHz, can be used in many ways.
  • the system according to the invention is preferably used for very thin labels which are embedded in a wide variety of goods.
  • the method and system according to the invention for reading out and writing to RFID transponders can be used as a replacement for optical barcode systems (retail, logistics, warehouse management); as a replacement for SmartCards (payment cards, guarantee cards, discount cards); as a means of identification (books, documents, passports, tickets, certificates); to ensure copyright protection (pictures, clothes, sound carriers).
  • optical barcode systems tail, logistics, warehouse management
  • SmartCards payments cards, guarantee cards, discount cards
  • identification books, documents, passports, tickets, certificates
  • copyright protection pictures, clothes, sound carriers
  • This response is sent synchronously to the carrier signal, but in an integer ratio to it, the clock in the transponder chip being obtained by division from the transmitter signal.
  • FIG. 1 is a block diagram of a read-write circuit according to the invention
  • Fig. 5 is an illustration of the simulation of the process of unwanted coupling between two adjacent RFID tags with the same resonance frequency
  • Fig. 6 is an illustration of the simulation of the process of unwanted coupling between two adjacent RFID tags with unequal resonance frequency.
  • a voltage supply 42 can be connected to the supply network or alternatively can take place via battery or accumulator.
  • the voltage supply 42 is connected to the 230 V supply network and the supply voltage can be tapped at the output 44.
  • the transmitter branch of the read-write circuit comprises an oscillator (quartz oscillator) 22 with four outputs f (l), f (2), f (3), f (4) for four transmission frequencies.
  • a selection switch controlled by a microcontroller 30 is connected on the input side to a selected one of the four outputs, here the output f (1) of the oscillator 22, and on the output side to a modulator 26.
  • the oscillator 22 given carrier signals modulated with the send commands and data.
  • a power amplifier 28 is connected to the output of the modulator 26 and is connected to the microcontroller 30 which controls its output power.
  • the transmission signal amplified in the power amplifier 28 is passed via a line (coaxial line with 50 ⁇ impedance) 50 to an antenna matching circuit which comprises two variable capacitors 51, 52.
  • the capacitors 51, 52 may have to be re-tuned according to the transmission frequency in order to be able to carry out the required impedance transformation, the dimensioning of the capacitance values preferably being controlled via the microcontroller 30.
  • the transmission signal is then emitted via an antenna 54.
  • the reception branch begins at node 31 and here the voltage variation induced in antenna 54 is tapped.
  • a demodulator comprises a peak value rectifier 32 and a threshold switch 34 and is connected to the microcontroller 30, which processes the demodulated signals.
  • An optointerface 40 is connected to the output of the microcontroller 30.
  • a data transfer to a control computer can also be provided, commands and data also being able to be entered into the microcontroller 30 via the same line, as indicated by the double arrow (DATA).
  • the part of the transponder circuit is further shown at (b).
  • This comprises an antenna 60 with a capacitor 62.
  • a full-wave rectifier 64 rectifies the voltage induced by the read / write unit, ie the alternating magnetic field emitted by the antenna 54.
  • the signals it outputs are fed to the transponder chip 66.
  • the transponder 66 outputs a message to the read / write unit, the associated data are digitally encoded via a subcarrier via a series circuit of field effect transistor 68 and resistor 70 connected in parallel, by switching resistor 70 on and off via field effect transistor 68 ,
  • a circuit according to FIG. 1 (a) can be provided, for example, for use in a lock as well as in a warehouse or sales room.
  • the frequency f (1) (namely in the present case 13.56 MHz) is used to achieve a greater range of the transmission signal.
  • the circuit for a device is operated in a sales room with a lower frequency f (2) (namely in the present case at 6.78 MHz), in which the fields near transponders do not interfere.
  • RFID labels 72 with a resonance frequency of 13.56 MHz are glued into, for example, the inside of the cover of books 70, which stand on a shelf (not shown).
  • the RFID labels 72 are more or less aligned due to the uniform manner of attachment, so that their coils essentially coincide and act like a common coil.
  • the course of the magnetic field and the flooding of the transmitting and transponder antennas is illustrated at H.
  • At a transmission frequency of 13.56 MHz there would be considerable interference until the transponder signals failed.
  • the transponder signals can be received safely.
  • the case of a document filing is similar in an example shown in FIG. 3.
  • the RFID tags 70 with a resonance frequency of 13.56 MHz are each attached to a corner area of a document 74 and also come to coincide, so that considerable interference would result at a transmission frequency of 13.56 MHz (see also magnetic field H).
  • a 6.78 MHz transmission frequency is advantageously used.

Description

VERFAHREN ZUM AUSLESEN UND BESCHREIBEN VON RFID-TRANSPONDERN
Die vorliegende Erfindung betrifft ein Verfahren zum Auslesen und Beschreiben von RFID-Transpondern, mit induktiver Kopplung unter Verwendung einer Schreib-/Lese-Einheit, wobei die Transponder mit Resonanzfrequenz arbeiten. Weiter betrifft die Erfindung ein System zum Auslesen und Beschreiben von RFID-Transpondern, wobei das System einen auf einem Träger angeordneten Transponder mit einem Resonanzschwingkreis mit Resonanzfrequenz, eine Empfängereinrichtung und eine Schreib-/Lese-Einheit mit Sender/Empfänger umfaßt .
RFID-Systeme werden zunehmend häufiger zur berührungsfreien, automatischen Identifikation eingesetzt. Etwa 90 % aller verkauften RFID-Systeme sind heute induktiv gekoppelte Systeme mit induktiver Kopplung zwischen Lesegerät und Transponder. Derartige Systeme, sogenannte Remote-coupling-Systeme, arbeiten in der Regel mit Reichweiten von bis zu 1 m im Schreib-/Lesebetrieb.
Als Sendefrequenzen werden Frequenzen unter 135 kHz oder die Frequenzen 6,78 MHz, 13,56 MHz und 27,125 MHz verwendet, d.h. es werden die speziell für industrielle, wissenschaftliche oder medizinische Anwendungen freigehaltenen ISM-Frequenzbereiche benutzt. Je nach den verwendeten Frequenzen ergeben sich Unterschiede in den Datenübertragungsraten, Taktfrequenzen, Leistung, etc. Zur Kennzeichnung von Waren und anderen Gegenständen können heute RFID-Etiketten verwendet werden, da diese inzwischen praktisch so dünn wie herkönmliche Klebeetiketten hergestellt werden können und so für den Benutzer in der Regel nicht als RFID-Etiketten zu erkennen sind. Beispielsweise können RFID- Etiketten in Bücher, Zeitschriften oder ähnliche Dokumente geklebt oder laminiert werden.
Im Radiofrequenzbereich (3 MHz bis 30 MHz) arbeitende RFID-Systeme arbeiten mit LC-Schwingkreisen mit einer Resonanzfrequenz fR. Wirkt ein magnetisches Wechselfeld mit einer Frequenz fs auf den Transponder eines RFID-Etiketts, beginnt der Schwingkreis des Transponders, sich einzuschwingen, und wird zur Resonanzschwingung angeregt. Er nimmt dabei Energie aus dem magnetischen Wechselfeld auf, was beispielsweise durch Ansteigen des Spulenstroms oder den Spannungsabfall am Innenwiderstand im Senderkreis erfaßt werden kann. Auf diese Weise wird auch die Betriebsspannung für den Transponderchip erzeugt.
Bei EAS-Systemen, d.h. elektronischen Artikelsicherungen, wird mit gewobbelter Frequenz gearbeitet . Die Senderfrequenz überstreicht fortlaufend einen Frequenzbereich. Durch die bei einer nicht bekannten Resonanzfrequenz eines Transponders auftretende Energieabsorption kann dieser erkannt werden. In der DE 195 14 601 AI ist ein solches EAS-System mit breitbandigem Vorverstärker beschrieben, das beispielsweise bei zwei Transpondertypen deren Frequenzbereiche nacheinander durchläuft.
Das Auftreten eines Spannungsabfalls im Senderkreis als Folge einer Schwingungsanregung des Empfängertransponders wird bei der Lastmodulation ausgenutzt, bei der mittels An- und Ausschalten des Lastwiderstandes des Transponders Spannungsände- rungen an der Antenne des Senders und somit eine Amplitudenmodulation der Antennenspannung bewirkt wird.
Befinden sich zwei RFID-Etiketten in großer Nähe, etwa übereinander gestapelt in einer Dokumentenablage oder nebeneinander in einem Bücherregal, so beeinflussen sich diese gegenseitig beim Empfang, d.h. sie empfangen etwa mit gleicher Stärke ein gleichphasiges Signal vom Sender und es treten Kopplungseffekte auf. Liegen sie genau übereinander, liegt praktisch eine gemeinsame Spule vor, wobei die beiden Kondensatoren parallel geschaltet sind. Es kommt so zu einer FrequenzverSchiebung, d.h. Änderung der Resonanzfrequenz. Dies führt dazu, daß das betreffende Lesegerät die Daten nur noch in eingeschränktem Umfang oder gar nicht mehr erfassen kann.
Versuche haben gezeigt, daß sich die Resonanzfrequenz eines RFID-Etiketts immer nach unten verschiebt, wenn ein zweites RFID-Etikett in den Kopplungsbereich des ersten gerät. Im Extremfall kann es zu einer starren Kopplung kommen, wobei die Resonanzfrequenz der beiden RFID-Etiketten dann fR/4~2~ beträgt . Auch durch Einsatz hoher Feldstärken, d.h. hoher Senderleistung, ist nicht immer eine Kommunikation bei der Sendefrequenz fs möglich. Je nach Kopplungsgrad und Eigenfrequenz der Trans- ponderkreise können oberhalb der nach unten verschobenen Resonanzfrequenz Nullstellen liegen. Liegt eine solche Nullstelle gerade bei der Sendefrequenz fs, funktioniert der Chip nicht mehr.
Dies ist anhand von Ersatzschaltbildern in Fig. 4 dargestellt. Im Senderzweig des Senders/Empfängers A befindet sich ein Oszillator 2 mit Frequenz fs, dessen Ausgangssignal ggf. nach Modulation in eine Leistungsendstufe 4 gegeben wird. Im Empfangszweig, der unmittelbar bei der Antennenbuchse beginnt, sind ein Demodulator 6 und ein Bandpaßfilter 8 oder anderes Filter. Eine Spule 10 ist die Antenne mit Induktivität Ls. Weiter sind die Ersatzschaltbilder von zwei RFID-Etiketten a, b veranschaulicht. Diese umfassen jeweils eine Spule 12 mit Induktivität L-L bzw. L2 und eine Kapazität 14 parallel zum Trans- ponderchip 16. Die Kopplungsverhältnisse sind durch Linien veranschaulicht, wobei ks die Kopplung Sender/Empfänger-Trans- ponder und k die Kopplung zwischen den beiden Transpondern darstellt. Gibt es Unterschiede in Größe (und somit Kopplung) oder Frequenz der RFID-Etiketten, kommt es zu den erwähnten Auslöschungen. Fig. 5 und 6 veranschaulichen Simulationen dieses Vorgangs der unerwünschten Kopplung zwischen zwei benachbarten RFID-Etiketten mit gleicher und ungleicher Resonanzfrequenz.
Im ersten Beispiel (Fig. 5) ist der Frequenzgang für Transponder mit gleicher Resonanzfrequenz dargestellt, wobei keine Kopplung (k=0) bei 13,56 MHz vorliegt und totale Kopplung (k=l) bei ca. 10 MHz vorliegt. Mit zunehmender Kopplung nimmt somit die sich ergebende Resonanzfrequenz zu niedrigeren Frequenzen ab.
Bei ungleicher Resonanzfrequenz gemäß dem in Fig. 6 dargestellten zweiten Beispiel liegt zwar wiederum bei 13,56 MHz keine Kopplung (k=0) vor und die Kopplung nimmt zu niedrigeren Frequenzen zu, wobei wiederum totale Kopplung (k=l) bei ca. 10 MHz vorliegt. Es hat sich nun aber kurz oberhalb von 13,56 MHz eine Nullstelle x gebildet, so daß es unter Umständen zu einem Ausfall des Chips kommen kann.
Zur Ausschaltung von zufällig auftretenden Störsignalen sind im Mikro ellenbereich arbeitende RFID-Systeme bekannt geworden, bei denen die Transponder mit mehreren Resonanzfrequenzen arbeiten. Dies ist bei einem in der US 5 446 447 beschriebenen RFID-System der Fall, um die Lesezeit herabzusetzen.
Weiter sind RFID-Systeme mit Sendefrequenzen im Mikrowellenbereich eingesetzt worden, bei denen das Sendesignal mit einem Signal von z.B. 1 kHz moduliert wird und zusätzlich zur Resonanzfrequenz auch die zweite Harmonische des Transponders de- tektiert wird. Nach der Demodulation und Durchlaufen eines 1 kHz-Detektors können die empfangenen Transpondersignale dann sicher von Störsignalen unterschieden und so Fehlalarme vermieden werden. Problematisch bei diesen RFID-Systemen sind jedoch die Auswirkungen von Mehrweg- und Laufzeiteffekten .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, das einen zuverlässigen Betrieb, insbesondere Kommu- nikation und Speisung, ermöglicht, auch wenn sich mehrere Transponder in großer räumlicher Nähe befinden.
Diese Aufgabe ist erfindungsgemäß bei einem Verfahren mit den Merkmalen des Anspruchs 1 und bei einem System mit den Merkmalen des Anspruchs 6 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Bei dem erfindungsgemäßen Verfahren zum Auslesen und Beschreiben von RFID-Transpondern mit induktiver Kopplung unter Verwendung einer Schreib-/Lese-Einheit arbeiten somit die Transponder mit einer festen Resonanzfrequenz. Die Sendefrequenz wird von einer Sendegrundfrequenz entsprechend dieser Resonanzfrequenz für Betriebsbedingungen mit hoher Reichweite auf einen festgelegten alternativen Wert der Sendefrequenz für Betriebsbedingungen mit hoher Erkennungsrate herabgesetzt, so daß eine sichere Kommunikation zwischen Transponder und Schreib-/Lese- Einheit gewährleistet wird.
Das erfindungsgemäße Verfahren eignet sich zum Einsatz im Bereich von ca. 10 kHz bis ca. 30 MHz. Vorzugsweise findet es Anwendung im Radiofrequenzbereich. Als Frequenzkombinationen werden vorzugsweise folgende Werte vorgesehen: a) fR = 13 , 56 MHz ; fSI = 13 , 56 MHz , fS2 = 6 , 78 MHz b) fR = 27 , 125 MHz ; fsl = 27,125 MHz, fS2 = 13,56 MHz, fS3 = 6,78 MHz Die Fertigungstoleranzen lassen die Transponder-Resonanzfrequenz etwa um ± 2 % variieren.
Durch das Vorsehen von zwei Betriebsfrequenzen ist es ermöglicht, zum einen Störungen durch sich in der Nähe befindende weitere Transponder auszuschalten oder jedenfalls weitgehend zu reduzieren und zum anderen mit der erforderlichen Reichweite zu arbeiten. Vorteilhaft sind die Schwingkreise der Transponder so abgeglichen, daß sie einzeln optimal auf der Sendegrundfrequenz arbeiten und dort auch die größte Reichweite haben. Ist davon auszugehen, daß sich in der Nähe eines Transponders weitere Transponder befinden, deren Signale die Kommunikation stören könnten, wird die Betriebsfrequenz, d.h. die Sendefrequenz der Sender-/Lese-Einheit, etwa von 13,56 MHz auf den (oder einen) niedrigeren Wert 6,78 MHz herabgesetzt, der damit weiter von der Resonanzfrequenz 13,56 MHz des Tranponders fort liegt. Damit ist die Störwahrscheinlichkeit verringert und die Erkennungsrate ist erhöht, wie es für dicht gepackte RFID-Etiketten erforderlich ist. Es können somit bei abweichender Abfrage- und Resonanzfrequenz mit sicherer Erkennungsrate viele Transponder gleicher Resonanzfrequenz gleichzeitig im Lesefeld erfaßt werden. Die Senderreichweite ist bei herabgesetzter Sendefrequenz zwangsläufig geringer. Wird andererseits eine größere Reichweite (Erkennungsdistanz) des Senders benötigt und ist mit weniger Störungen zu rechnen, dann wird die höhere Sendefrequenz eingestellt. Das erfindungsgemäße Verfahren sieht es somit vor, dieselben Transponder abhängig von den Bedingungen vor Ort mit unterschiedlichen Sendegeräten zu betreiben.
So kann beispielsweise ein Schleusensystem am Ausgang einer Bibliothek, eines Lagers oder eines Verkaufgeschäfts mit der Grundfrequenz (z.B. 13,56 MHz) senden, denn an diesem Ort ist mit wenig Störungen durch andere Tranponder zu rechnen. Vielmehr kommt es hier auf eine größere Sendereichweite an. Hingegen werden die Schreib-/Lese-Einheiten der Lager- und Verkaufsbewirtschaftung mit einer niedrigeren alternativen Sendefrequenz (z.B. 6,78 MHz) arbeiten, da hier die Reichweite nicht so wichtig ist, es vielmehr auf große Störungssicherheit ankommt.
Das erfindungsgemäße System zum Auslesen und Beschreiben von RFID-Transpondern, das sich insbesondere zur Durchführung des erfindungsgemäßen Verfahrens eignet, umfaßt einen auf einem Träger angeordneten Transponder mit einem Resonanzschwingkreis mit einer Resonanzfrequenz, eine Empfängereinrichtung und eine Schreib-/Lese-Einheit mit Sender/Empfänger, wobei der Resonanz- Schwingkreis eine feste Resonanzfrequenz hat, und der Sender/ Empfänger der Schreib-/Lese-Einheit hat eine zur Grundsendefre- quenz alternative niedrigere Sendefrequenz (Sendefrequenzen) entsprechend den Resonanzfrequenzen des Transponders.
Vielseitig einsetzbar sind dabei Sender mit mehreren einstellbaren Sendfrequenzen, beispielsweise 13,56 MHz und 6,78 MHz.
Bevorzugt findet das erfindungsgemäße System Anwendung bei sehr dünnen Etiketten, die in die unterschiedlichsten Waren eingebettet werden.
Das erfindungsgemäße Verfahren und System zum Auslesen und Beschreiben von RFID-Transpondern kann Anwendung finden als Ersatz für optische Barcode-Systeme (Retail, Logistik, Lagerbewirtschaftung) ; als Ersatz für SmartCards (Zahlkarten, Garantiekarten, Rabattkarten) ; als Mittel zur Identifikation (Bücher, Dokumente, Pässe, Tickets, Zertifikate) ; zur Absicherung des Urheberrechtsschutzes (Bilder, Kleider, Tonträger) . Diese Aufzählung ist lediglich beispielhaft und keinesfalls vollständig. Beim Einsatz der RFID-Transponder ergeben sich gegenüber den herkömmlichen Systemen die großen Vorteile einer hohen Lesegeschwindigkeit und die Unabhängigkeit von der Positionierung, Witterung und des nicht auftretenden Verschleißes. Es können einer oder mehrere Transponder ausreichend mit Betriebsspannung versorgt werden, damit diese aktiv werden und durch Lastmodulation eine Rückantwort erzeugen können.
Diese Rückantwort wird synchron zum Trägersignal, jedoch auf ganzzahligem Verhältnis zu diesem gesendet, wobei der Takt im Transponderchip durch Teilung aus dem Sendersignal gewonnen wird. Bei einer Ausführungsform wird als Rückkanal ein amplitudenmodulierter Hilfsträger mit Frequenz f2/32 verwendet, d.h. der Rückkanal ist auf fs = fs ± fs/32.
Die Erfindung wird im folgenden weiter anhand bevorzugter Aus- führungsbeispiele und der Zeichnung beschrieben, wobei diese Darstellung lediglich zu Veranschaulichungszwecken dient und die Erfindung nicht auf die gezeigten Merkmalskombinationen einschränken soll. In der Zeichnung zeigen: Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Lese- Schreib-Schaltung,
Fig. 2 ein Beispiel für die Verwendung erfindungsgemäßer RFID-Etiketten in einem Bücherregal,
Fig. 3 ein Beispiel für die Verwendung erfindungsgemäßer RFID-Etiketten in einer Dokumentenablage,
Fig. 4 Ersatzschaltbilder von Sender/Empfänger und Transpon- derkreis zur Veranschaulichung der Kopplung zweier benachbarter Transponder,
Fig. 5 eine Veranschaulichung der Simulation des Vorgangs der unerwünschten Kopplung zwischen zwei benachbarten RFID-Etiketten mit gleicher Resonanzfrequenz und
Fig. 6 eine Veranschaulichung der Simulation des Vorgangs der unerwünschten Kopplung zwischen zwei benachbarten RFID-Etiketten mit ungleicher Resonanzf equenz.
Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels einer Lese-Schreib-Schaltung beschrieben, die in Fig. 1 dargestellt ist. Als erstes wird der Aufbau des Teils (a) der Schreib-/Lese-Einheit erläutert. Eine Spannungsversorgung 42 kann an das Versorgungsnetz angeschlossen sein oder alternativ über Batterie oder Akkumulator erfolgen. Im gezeigten Ausführungsbeispiel ist die Spannungsversorgung 42 an das Versorgungsnetz mit 230 V angeschlossen und die Versorgungsspannung kann am Ausgang 44 abgegriffen werden.
Der Senderzweig der Lese-Schreib-Schaltung umfaßt einen Oszillator (Quarzoszillator) 22 mit vier Ausgängen f(l), f(2), f(3), f (4) für vier Sendefrequenzen. Ein von einem Mikrokontroller 30 gesteuerter Auswahlschalter ist eingangsseitig jeweils mit einem ausgewählten der vier Ausgänge, hier dem Ausgang f (1) des Oszillators 22 verbunden und ausgangsseitig mit einem Modulator 26 verbunden. Im Modulator 26 werden die vom Oszillator 22 aus- gegebenen Trägersignale mit den Sendekommandos und Daten moduliert. Ein Leistungsverstärker 28 ist mit dem Ausgang des Modulators 26 verbunden und ist mit dem Mikrokontroller 30 verbunden, der seine Ausgangsleistung steuert. Das im Leistungsverstärker 28 verstärkte Sendesignal wird über eine Leitung (Koaxialleitung mit 50 Ω Impedanz) 50 an eine Antennenanpaß- schaltung gegeben, die zwei variable Kondensatoren 51, 52 umfaßt. Die Kondensatoren 51, 52 müssen eventuell entsprechend der Sendefrequenz nachgestimmt werden, um die benötigte Impedanztransformation durchführen zu können, wobei die Dimensionierung der Kapazitätswerte vorzugsweise über den Mikrokontroller 30 gesteuert wird. Das Sendesignal wird dann über eine Antenne 54 abgestrahlt .
Am Knotenpunkt 31 beginnt der Empfangszweig und hier wird die in die Antenne 54 induzierte Spannungsvariation abgegriffen. Ein Demodulator umfaßt einen Spitzenwertgleichrichter 32 und einen Schwellwertschalter 34 und ist mit dem Mikrokontroller 30 verbunden, der die demodulierten Signale aufbereitet. Mit dem Ausgang des Mikrokontrollers 30 ist ein Optointerface 40 verbunden. Es kann auch ein Datentransfer zu einem Steuer-Rechner vorgesehen sein, wobei über dieselbe Leitung auch Kommandos und Daten in den Mikrokontroller 30 eingegeben werden können, wie durch den Doppelpfeil (DATA) angedeutet ist .
In Fig. 1 ist weiter bei (b) der Teil der Transponderschaltung dargestellt. Diese umfaßt eine Antenne 60 mit Kondensator 62. Ein Vollwellengleichrichter 64 richtet die durch die Schreib-/ Lese-Einheit, d.h. das von der Antenne 54 ausgestrahlte magnetische Wechselfeld, induzierte Spannung gleich. Die von ihm ausgegebenen Signale werden dem Transponder-Chip 66 zugeführt. Wenn der Transponder 66 eine Meldung an die Schreib-/Lese-Einheit ausgibt, werden die zugehörigen Daten über einen parallel geschalteten Reihenkreis aus Feldeffektttransistor 68 und Widerstand 70 über einen Hilfsträger digital kodiert, indem der Widerstand 70 über den Feldeffekttransistor 68 ein- und ausgeschaltet wird. Eine Schaltung gemäß Fig. 1 (a) kann beispielsweise sowohl für den Einsatz in einer Schleuse als auch in einem Lager oder Verkaufsraum vorgesehen werden. In der Schleuse, wo wenig Störungen durch benachbarte weitere Transponder zu befürchten sind, wird zur Erzielung einer höheren Reichweite des Sendesignals mit der Frequenz f (1) (nämlich im vorliegenden Fall mit 13,56 MHz) gearbeitet. Andererseits wird die Schaltung für ein Gerät in einem Verkaufsraum mit niedrigerer Frequenz f (2) (nämlich im vorliegenden Fall mit 6,78 MHz) betrieben, bei der sich die Felder nahe beieinander befindliche Transponder nicht stören.
In Fig. 2 ist ein Beispiel für die Anwendung des erfindungs- gemäßen Verfahrens bei RFID-Etiketten für Bücher dargestellt. In beispielsweise die Einbanddeckeninnenseiten von Büchern 70, die auf einem nicht gezeigten Regal stehen, sind RFID-Etiketten 72 mit Resonanzfrequenz 13,56 MHz eingeklebt. Die RFID-Etiketten 72 sind aufgrund der einheitlichen Anbringungsweise mehr oder weniger ausgerichtet, so daß ihre Spulen im wesentlichen zur Deckung kommen und wie eine gemeinsame Spule wirken. Der Verlauf des Magnetfeldes und die Durchflutung der Sende- und Transponderantennen ist bei H veranschaulicht . Bei einer Sendefrequenz von 13,56 MHz würde es zu erheblichen Störungen bis zum Ausfall der Transpondersignale kommen. Durch Einsatz eines Sendegeräts mit 6,78 MHz Sendegerät können die Transpondersi- gnale sicher empfangen werden.
Ähnlich ist bei einem in Fig. 3 gezeigten Beispiel der Fall bei einer Dokumentenablage. Die RFID-Etiketten 70 mit Resonanzfrequenz 13,56 MHz sind jeweils auf einem Eckbereich eines Dokuments 74 angebracht und kommen ebenfalls zur Deckung, so daß sich bei einer Sendefrequenz von 13,56 MHz erhebliche Störungen ergeben würden (siehe auch Magnetfeld H) . Auch hier wird vorteilhaft mit 6,78 MHz Sendefrequenz gearbeitet.

Claims

Ansprüche
1. Verfahren zum Auslesen und Beschreiben von RFID-Transpon- dern mit induktiver Kopplung unter Verwendung einer Schreib-/ Lese-Einheit mit Sendefrequenz (f) , wobei die Transponder mit Resonanzfrequenz (fR) arbeiten, dadurch g e k e n n z e i c h n e t , daß die Resonanzfrequenz (fR) der Transponder fest vorgegeben wird und für Betriebsbedingungen mit hoher Reichweite die Resonanzfrequenz (fR) des Transponders als Sendegrundfrequenz (f) gewählt wird und für Betriebsbedingungen mit hoher Erkennungsrate die Sendefrequenz auf einen festgelegten alternativen Wert (fS2) herabgesetzt wird, so daß eine sichere Kommunikation zwischen Transponder und Schreib-/Lese- Einheit gewährleistet wird.
2. Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß als alternativer Wert der Sendefrequenz (fS2) die Hälfte der Sendegrundfrequenz (fS2 = fsl/2) gewählt wird.
3. Verfahren nach Anspruch 1 oder 2 , dadurch g e k e n n z e i c h n e t , daß mehrere alternative Sendefrequenzen unterhalb der Sendegrundfrequenz (f) verwendet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , daß die Resonanzfrequenz von 13,56 MHz und als Sendefrequenzen 13,56 MHz, und 6,78 MHz gewählt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , daß die Resonanzfrequenz von 27,125 MHz und als Sendefrequenzen 27,125 MHz, 13,56 MHz und 6,78 MHz gewählt werden.
6. System zum Auslesen und Beschreiben von RFID-Transpon- dern, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, wobei das System einen auf einem Träger angeordneten Transponder mit einem Resonanzschwingkreis mit Resonanzfrequenz (fR) , eine Empfängereinrichtung und eine Schreib-/Lese-Einheit mit Sender/Empfänger und Sendefrequenz (fsl) umfaßt, dadurch g e k e n n z e i c h n e t , daß der Resonanzschwingkreis eine feste Resonanzfrequenz (fR) hat und der Sender/Empfänger der Schreib-/Lese-Einheit eine Sendegrund- frequenz (f) gleich der Resonanzfrequenz (fR) des Transponders und eine festgelegte alternative niedrigere Sendefrequenz (fS2) hat.
7. System nach Anspruch 6 , dadurch g e k e n n z e i c h n e t , daß der Sender/Empfänger auf mehrere alternative niedrigere Sendefrequenzen (f(l), f(2), f(3), f(4)) einstellbar ist.
EP00967877A 1999-10-18 2000-10-16 Verfahren zum auslesen und beschreiben von rfid-transpondern Expired - Lifetime EP1224607B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19950145A DE19950145C1 (de) 1999-10-18 1999-10-18 Verfahren zum Auslesen und Beschreiben von RFID-Transpondern
DE19950145 1999-10-18
PCT/EP2000/010168 WO2001029753A1 (de) 1999-10-18 2000-10-16 Verfahren zum auslesen und beschreiben von rfid-transpondern

Publications (2)

Publication Number Publication Date
EP1224607A1 true EP1224607A1 (de) 2002-07-24
EP1224607B1 EP1224607B1 (de) 2004-08-11

Family

ID=7926038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967877A Expired - Lifetime EP1224607B1 (de) 1999-10-18 2000-10-16 Verfahren zum auslesen und beschreiben von rfid-transpondern

Country Status (7)

Country Link
US (1) US6639514B1 (de)
EP (1) EP1224607B1 (de)
JP (1) JP2003512801A (de)
AT (1) ATE273539T1 (de)
AU (1) AU7788200A (de)
DE (2) DE19950145C1 (de)
WO (1) WO2001029753A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022445A2 (en) * 2003-08-29 2005-03-10 Zih Corp. Spatially selective uhf near field microstrip coupler device and rfid systems using device
US7398054B2 (en) 2003-08-29 2008-07-08 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
US8544740B2 (en) 2004-06-10 2013-10-01 Zih Corp. Apparatus and method for communicating with an RFID transponder
US9108434B2 (en) 2007-12-18 2015-08-18 Zih Corp. RFID near-field antenna and associated systems

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183882A1 (en) 2000-10-20 2002-12-05 Michael Dearing RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
USRE47599E1 (en) 2000-10-20 2019-09-10 Promega Corporation RF point of sale and delivery method and system using communication with remote computer and having features to read a large number of RF tags
AU1176902A (en) 2000-10-20 2002-05-06 Promega Corp Radio frequency identification method and system of distributing products
FR2824018B1 (fr) * 2001-04-26 2003-07-04 Arjo Wiggins Sa Couverture incorporant un dispositif d'identification radiofrequence
CN1309179C (zh) * 2002-04-17 2007-04-04 盛群半导体股份有限公司 识别代码传送方法及电路装置
US7216805B2 (en) * 2002-07-23 2007-05-15 Massachusetts Institute Of Technology Methods and apparatus for counting and positioning using resonant tags
DE10258779A1 (de) * 2002-12-16 2004-07-15 Infineon Technologies Ag Verfahren zur kontaktlosen Datenübertragung und Verwendung dieses Verfahrens
GB2402920A (en) * 2003-06-21 2004-12-22 Arjo Med Aktiebolag Ltd Sling attachment device
CN100583132C (zh) * 2003-11-04 2010-01-20 艾利丹尼森公司 具有加强读出性的射频识别标签
TWI228410B (en) * 2003-12-08 2005-03-01 Ind Tech Res Inst Assisting and guiding device for visually impaired
EP1610257A1 (de) * 2004-06-23 2005-12-28 St Microelectronics S.A. Impedanzanpassung in einem Gerät zum Lesen elektromagnetischer Transpondern
DE102004037347A1 (de) 2004-08-02 2006-02-23 Infineon Technologies Ag Identifikationsdatenträger-Anordnung, Lese-Vorrichtung und Identifikations-System
US8049594B1 (en) 2004-11-30 2011-11-01 Xatra Fund Mx, Llc Enhanced RFID instrument security
US7367496B2 (en) * 2005-06-06 2008-05-06 International Business Machines Corporation Detecting wear through use of information-transmitting devices
DE102006024948A1 (de) 2006-05-29 2007-12-06 Giesecke & Devrient Gmbh Verfahren zur kontaktlosen Übertragung von Daten und/oder Energie zwischen einem Endgerät und wenigstens einem Transponder
US7710275B2 (en) 2007-03-16 2010-05-04 Promega Corporation RFID reader enclosure and man-o-war RFID reader system
DE102011009011B4 (de) * 2011-01-20 2023-10-05 ABUS August Bremicker Söhne Kommanditgesellschaft Hangschloss zum Sichern und Überwachen eines Schalters
US20120186308A1 (en) 2011-01-20 2012-07-26 Abus August Bremicker Soehne Kg Padlock for securing and monitoring a switch
USD821401S1 (en) * 2016-01-29 2018-06-26 Siebels Asset Management Research, Ltd. Controlled document tracking and/or authentication device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870391A (en) * 1988-04-05 1989-09-26 Knogo Corporation Multiple frequency theft detection system
US5466447A (en) * 1988-06-29 1995-11-14 Amgen Inc. Method for treating psoriasis
FR2640830B1 (fr) * 1988-12-16 1994-08-26 Levionnais Philippe Dispositif pour l'echange d'informations a distance entre un objet portatif et une station
NZ314270A (en) 1992-11-18 1998-06-26 British Tech Group Transponder identification system: interrogator transmits inhibiting signal to disable transponders
US5446447A (en) 1994-02-16 1995-08-29 Motorola, Inc. RF tagging system including RF tags with variable frequency resonant circuits
DE4436977A1 (de) 1994-10-15 1996-04-18 Esselte Meto Int Gmbh Anlage zur elektronischen Artikelüberwachung
DE19514601A1 (de) * 1995-04-20 1996-10-24 Esselte Meto Int Gmbh Anlage zur elektronischen Artikelüberwachung, insbesondere zur Detektion von Schwingkreisen mit stark unterschiedlichen Resonanzfrequenzen
US6356197B1 (en) * 2000-04-03 2002-03-12 Sensormatic Electronics Corporation Electronic article surveillance and identification device, system, and method
US20020180588A1 (en) * 2001-06-05 2002-12-05 Erickson David P. Radio frequency identification in document management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0129753A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160493B2 (en) 2003-08-29 2012-04-17 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
WO2005022445A3 (en) * 2003-08-29 2005-07-07 Zih Corp Spatially selective uhf near field microstrip coupler device and rfid systems using device
US7398054B2 (en) 2003-08-29 2008-07-08 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
EP1820659A3 (de) * 2003-08-29 2009-12-16 ZIH Corp. Räumlich selektive UHF-Nahfeldmikrostreifenkupplungsvorrichtung und diese Vorrichtung verwendende RFID-Systeme
US7650114B2 (en) 2003-08-29 2010-01-19 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
EP2266807A1 (de) * 2003-08-29 2010-12-29 ZIH Corp. Räumlich selektive UHF-Nahfeldmikrostreifenkupplungsvorrichtung und diese Vorrichtung verwendende RFID-Systeme
WO2005022445A2 (en) * 2003-08-29 2005-03-10 Zih Corp. Spatially selective uhf near field microstrip coupler device and rfid systems using device
US8351959B2 (en) 2003-08-29 2013-01-08 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
US9852318B2 (en) 2003-08-29 2017-12-26 Zih Corp. Spatially selective UHF near field microstrip coupler device and RFID systems using device
US8544740B2 (en) 2004-06-10 2013-10-01 Zih Corp. Apparatus and method for communicating with an RFID transponder
US8596532B2 (en) 2004-06-10 2013-12-03 Zih Corp. Apparatus and method for communicating with an RFID transponder
US9613242B2 (en) 2004-06-10 2017-04-04 Zih Corp. Apparatus and method for communicating with an RFID transponder
US9108434B2 (en) 2007-12-18 2015-08-18 Zih Corp. RFID near-field antenna and associated systems

Also Published As

Publication number Publication date
US6639514B1 (en) 2003-10-28
JP2003512801A (ja) 2003-04-02
DE19950145C1 (de) 2001-05-10
DE50007403D1 (de) 2004-09-16
WO2001029753A1 (de) 2001-04-26
AU7788200A (en) 2001-04-30
ATE273539T1 (de) 2004-08-15
EP1224607B1 (de) 2004-08-11

Similar Documents

Publication Publication Date Title
EP1224607B1 (de) Verfahren zum auslesen und beschreiben von rfid-transpondern
EP1763820B1 (de) Transpondereinheit
EP1336158B1 (de) Kontaktloser datenträger
EP1076876B1 (de) Vorrichtung zur kontaktlosen übertragung von daten
DE60032049T2 (de) Entfernungsbestimmung zwischen einem elektromagnetischen Transponder und einem Terminal
DE69721335T2 (de) Datenaustauschvorrichtung mit kontakt- und kontaktloser betriebsart
DE19705301C1 (de) Einrichtung zur berührungslosen Informations- und Energieübertragung
DE60014708T2 (de) Antenne für radiofrequenzen für ein objektabfragegerät mit einer radiofrequenzantenne und ein damit verbundener elektrischer schaltkreis
DE69922587T2 (de) Übertragungsverfahren
DE19717505C2 (de) Transponder-Kommunikationseinrichtung
WO2001033489A2 (de) Fernauslesbare identifikationsmarke und verfahren zum betrieb einer solchen
US9558383B2 (en) Intermodulation mitigation technique in an RFID system
EP1357503B1 (de) Transponder mit abgestimmtem Resonanzkreis
DE60007291T2 (de) Schaltungsanordnung zum empfangen und senden von daten mit induktiver kopplung
DE60036319T2 (de) Leser mit Einrichtung zur Bestimmung des Abstandes zwischen dem Leser und einem Transponder
EP1862953B1 (de) Verfahren zur kontaktlosen Übertragung von Daten und / oder Energie zwischen einem Endgerät und wenigstens einem Transponder
WO1997007413A1 (de) Frequency-hopping für passive und semi-passive telemetrie- und identifikationssysteme
EP2141637B1 (de) Tragbarer Datenträger mit aktiver Kontaktlosschnittstelle und Verfahren zum Betreiben
DE102009031554A1 (de) Vorrichtung für die kontaktlose Übertragung von Daten
WO2005004046A1 (de) Elektronisches bauelement für identifikationsmarken
EP1480156A2 (de) Vorrichtung zur Ausstrahlung von HF-Signalen, insbesondere in einem Identifikationssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

111L Licence recorded

Free format text: 0100 BIBLIOTHECA RFID LIBRARY SYSTEMS AG

Effective date: 20030319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 06K 7/08 B

Ipc: 7G 06K 7/00 A

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 06K 7/08 B

Ipc: 7G 06K 7/00 A

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040811

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50007403

Country of ref document: DE

Date of ref document: 20040916

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041122

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041209

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. JOACHIM LAUER PATENTANWALT

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050513

Year of fee payment: 5

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20051021

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051024

Year of fee payment: 6

Ref country code: CH

Payment date: 20051024

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

BERE Be: lapsed

Owner name: *LUCATRON A.G.

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50007403

Country of ref document: DE

Representative=s name: PATENTANWAELTE REINHARDT & POHLMANN PARTNERSCH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50007403

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191031

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191030

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191028

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50007403

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201015