EP1215295B1 - Precipitation-hardening aluminium alloy and part thereof - Google Patents

Precipitation-hardening aluminium alloy and part thereof Download PDF

Info

Publication number
EP1215295B1
EP1215295B1 EP01127698A EP01127698A EP1215295B1 EP 1215295 B1 EP1215295 B1 EP 1215295B1 EP 01127698 A EP01127698 A EP 01127698A EP 01127698 A EP01127698 A EP 01127698A EP 1215295 B1 EP1215295 B1 EP 1215295B1
Authority
EP
European Patent Office
Prior art keywords
component
weight
alloy
aluminium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01127698A
Other languages
German (de)
French (fr)
Other versions
EP1215295A1 (en
Inventor
Andreas Dr. Barth
Mohamed Dr. Douaoui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1215295A1 publication Critical patent/EP1215295A1/en
Application granted granted Critical
Publication of EP1215295B1 publication Critical patent/EP1215295B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37

Definitions

  • the invention relates to an aluminum casting alloy according to claim 1 and a method for producing a component according to claim 3.
  • This alloy is especially intended for pistons in internal combustion engines.
  • the relatively high silicon content leads to good wear resistance and high strength even at high temperatures.
  • the other alloying elements prevent the formation of sharp primary silicon crystals, which form the starting points of fatigue fractures under alternating load.
  • white components only have limited elongation at break.
  • From CH-A-168 202 alloys are known having a composition in wt.% Of 8 to 15% Si, 0.1 to 0.6% Mg and up to 1% Ni or Co.
  • iron is added to reduce adhesion between the component and the mold of the alloy, but at higher concentrations it increases the brittleness of the component.
  • the cobalt here shows the functional property to reduce the adhesive properties of the component to the mold, without increasing the brittleness.
  • the iron content can be greatly reduced.
  • the object of the invention is thus to provide an alloy from which components result which have a high heat resistance, a high elongation at break, a high ductility with a low tendency to corrosion.
  • the object is achieved by an alloy according to claim 1 and a method for producing a component according to claim 3.
  • the alloy of the invention according to claim 1 has a silicon content of between 5% and 10%.
  • a lower silicon content would affect the castability of the alloy.
  • a higher silicon content leads to material embrittlement. More preferably, the silicon content is between 6.5% and 7.5%.
  • the alloying element magnesium forms, together with the silicon, Mg 2 Si crystals (magnesium silicide), which increase the strength.
  • Mg 2 Si crystals magnesium silicide
  • the resulting component has too low a strength, above 0.35% magnesium, the Mg 2 Si crystals lead to too high brittleness.
  • the alloying element nickel forms together with the aluminum intermetallic phases, such as. B. Al 3 Ni (nickel aluminide) which increase the thermal stability and melt congruently at temperatures above 800 ° C (in contrast to Al 2 Cu (copper aluminide), which forms in copper-containing alloys and melts below 600 ° C).
  • the phases containing aluminum and nickel do not adversely affect the ductility of the material.
  • the nickel content of the alloy according to the invention is between 0.3% and 3%, preferably between 0.5% and 2.5%.
  • Cobalt as an alloying element to the alloy according to the invention.
  • Cobalt also forms intermetallic compounds based on aluminum and cobalt, similar to the compounds based on aluminum and nickel, which increase the heat resistance.
  • the alloy according to the invention may contain cobalt between 0.6% by weight and 3% by weight.
  • Iron which reduces the elongation at break, can be dispensed with in the alloy according to the invention.
  • Another object of the invention is a method for producing a component according to claim 3.
  • the component is cast from an alloy, which is already described in claim 1 and has the advantages that result from this alloy.
  • a heat treatment of the component preferably after a solution annealing leads to a precipitation hardening (hot curing) of an Al matrix (by which the component is formed) by targeted intermetallic phases such.
  • B. said Mg 2 Si or Al 3 Ni are excreted.
  • the precipitation hardening takes place in a temperature interval between 160 ° C and 240 ° C for a period of 0.2 h to 10 h.
  • the precipitation hardening is particularly preferably carried out in a temperature interval between 180 ° C. and 220 ° C. for a period of 0.5 h to 8 h.
  • the duration of the temperature treatment depends on the temperature, at higher temperatures, the heat treatment is shortened considerably.
  • the component which is represented by the alloy according to the invention is preferably designed as a sand casting or chill casting component, since this facilitates the already mentioned heat treatment.
  • a component that is produced by die casting the heat treatment due to air bubbles is not readily possible. In this case, a procedurally more complex Vakuumdruckg tellvon would be applied.
  • the component according to the invention is designed as a cylinder head or as a cylinder crankcase in an internal combustion engine.
  • these components especially in cylinder heads very high pressures occur at high temperatures.
  • these components have very complex geometries such. B. on the valve webs in the cylinder head or on the cooling channels in the cylinder crankcase.
  • These constructions act as notches and break points especially at the high temperatures, pressures and alternating loads. A particularly high elongation at break in combination with an increased heat resistance offers a considerable advantage here.
  • a cylinder head of an internal combustion engine is cast in the cube casting process with the alloy according to the invention.
  • the casting parameters correspond to the usual process-related process control.
  • the component After casting and after cooling, the component has a coarse grain structure of mixed crystals, since aluminum has a very low solubility with respect to most alloying elements at room temperature. For this reason, a solution annealing of the component takes place for about 4 -5 h at a temperature of about 540 ° C. In this step, the alloying elements in the aluminum matrix dissolve. The component is then quenched in water leaving the alloying elements dissolved in the aluminum matrix.
  • the phases that form during precipitation hardening are intermetallic compounds, which include, among other things, Mg 2 Si, which determines the strength of the component increases and Al 3 Ni (or other ternary and / or quaternary intermetallic compounds based on aluminum and nickel) increases due to its high melting temperature, the heat resistance of the component.
  • the strength and the ductility of the component is adjustable by the temperature control and the duration of the temperature treatment, which, as mentioned, is due to the precipitated crystal (eg the intermetallic compounds Mg 2 Si and Al 3 Ni).
  • the size of the Mg2Si and Al3Ti precipitates which are also affected by the heat treatment, affects the component properties, as explained below.
  • FIGS. 1 and 2 schematically show the strength ⁇ of the component (left y-axis) and the elongation at break ⁇ (right-hand y-axis, dashed) as a function of the duration of the heat treatment t.
  • Figures 1 and 2 differ in the temperature T of the heat treatments, T of Figure 1 is smaller than T of Figure 2.
  • the solid curves 1 and 3 show schematically the course of strength ⁇ , the dashed lines 2 and 4 the course of Elongation at break ⁇ .
  • T6 the component strength reaches a maximum after a certain duration of the heat treatment.
  • This state is generally called T6
  • the component has a very fine structure of the precipitates here.
  • the elongation at break in the T6 state reaches a minimum. If the heat treatment is continued after reaching the T6 state, a so-called overcure occurs, which is referred to as T7 state.
  • the T7 state has the advantage that, due to the coarser structure of the precipitates that occurs in this state, the elongation at break increases again.
  • T6 and T7 are fixed technical terms, T does not stand for temperature in these terms.
  • task T7 is aimed at with the highest possible elongation at break.
  • the alloying elements silicon and magnesium cause an increase in strength and a shift of the curves 1 and 3 upwards. In turn, these elements shift the curves 2 and 4 downwards, which has a negative effect on the elongation at break. Surprisingly, it was found that both nickel and cobalt shift as the alloying elements curves 1 and 3 upwards, without exerting a negative effect on the elongation at break.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft eine Aluminium Gusslegierung nach Patentanspruch 1 sowie ein Verfahren zu Herstellung eines Bauteils nach Patentanspruch 3.The invention relates to an aluminum casting alloy according to claim 1 and a method for producing a component according to claim 3.

Aus der DE 44 04 420 A1 ist eine aushärtbare Aluminiumlegierung mit einer Zusammensetzung:

  • 8,0 bis 10,9 Gew.% Silizium,
  • 0,8 bis 2,0 Gew.% Magnesium,
  • 4,0 bis 5,9 Gew.% Kupfer
  • 1,0 bis 3,0 Gew.% Nickel,
  • 0,2 bis 0,4 Gew.% Mangan
sowie weniger als 0,5 Gew.% Eisen bekannt.
(Gew.% = Gewichtsprozent, Anteil der Einzelelemente an der Gesamtmasse der Legierung).DE 44 04 420 A1 discloses a curable aluminum alloy having a composition:
  • 8.0 to 10.9 wt.% Silicon,
  • 0.8 to 2.0% by weight of magnesium,
  • 4.0 to 5.9 wt.% Copper
  • 1.0 to 3.0% by weight nickel,
  • 0.2 to 0.4% by weight of manganese
and less than 0.5% by weight of iron.
(Wt.% = Weight percent, proportion of individual elements in the total mass of the alloy).

Diese Legierung ist insbesondere für Kolben in Verbrennungsmotoren gedacht. Der relativ hohe Siliziumanteil führt zu einer guten Verschleißbeständigkeit und hoher Festigkeit auch bei hohen Temperaturen. Die übrigen Legierungselemente verhindern die Ausbildung von scharfen Primärsilizium-Kristallen, die unter Wechselbelastung die Ausgangspunkte von Ermüdungsbrüchen bilden. Allerdings weißen derartige Bauteile lediglich begrenzte Bruchdehnungen auf.This alloy is especially intended for pistons in internal combustion engines. The relatively high silicon content leads to good wear resistance and high strength even at high temperatures. The other alloying elements prevent the formation of sharp primary silicon crystals, which form the starting points of fatigue fractures under alternating load. However, such white components only have limited elongation at break.

Die DE 42 15 160 C2 beschreibt eine Aluminiumlegierung für Druckgussanwendungen, die eine gute Entformbarkeit eines Bauteils aus der Druckgussform gewährleistet. Sie weist neben 99,7% reinem Hüttenaluminium folgende Zusammensetzung auf:

  • 5,0 bis 12,0 Gew.% Silizium,
  • 0 bis 0,8 Gew.% Magnesium,
  • weniger als 0,01 Gew.% Kupfer
  • weniger als 0,2 Gew.% Eisen,
  • 0,1 bis 0,5 Gew.% Kobalt.
DE 42 15 160 C2 describes an aluminum alloy for die-casting applications, which ensures good releasability of a component from the die casting mold. In addition to 99.7% pure primary aluminum, it has the following composition:
  • 5.0 to 12.0% by weight of silicon,
  • 0 to 0.8% by weight of magnesium,
  • less than 0.01% by weight copper
  • less than 0.2% by weight iron,
  • 0.1 to 0.5% by weight of cobalt.

Aus der CH-A-168 202 sind Legierungen bekannt mit einer Zusammensetzung in Gew.% von 8 bis 15 % Si, 0,1 bis 0,6 % Mg und bis zu 1 % Ni oder Co.From CH-A-168 202 alloys are known having a composition in wt.% Of 8 to 15% Si, 0.1 to 0.6% Mg and up to 1% Ni or Co.

Im Allgemeinen wird für die Herabsetzung der Haftung zwischen dem Bauteil und der Gießform der Legierung Eisen zugegeben, das jedoch bei höheren Konzentrationen die Sprödigkeit des Bauteils erhöht. Insbesondere das Kobalt zeigt hier die funktionale Eigenschaft, die Klebeeigenschaften des Bauteils an der Gießform zu verringern, ohne die Sprödigkeit zu erhöhen. Somit kann der Eisenanteil stark reduziert werden.In general, iron is added to reduce adhesion between the component and the mold of the alloy, but at higher concentrations it increases the brittleness of the component. In particular, the cobalt here shows the functional property to reduce the adhesive properties of the component to the mold, without increasing the brittleness. Thus, the iron content can be greatly reduced.

Die bereits angesprochene Sprödigkeit der Legierung, die auf verschieden Legierungselemente zurückzuführen ist und als Kompromiss in verschiedenen Anwendungen akzeptabel ist, führt bei bestimmten, hoch belasteten Bauteilen zum Versagen. Dies gilt insbesondere für Motorenbauteile wie Zylinderköpfe oder Zylinderkurbelgehäuse. Hier wirken besonders hohe Temperaturen und Drücke und Wechselbelastungen. Hinzu kommt, dass komplexe Geometrien in hohem Maße Kerbwirkungen hervorrufen. In diesen Fällen ist eine außerordentlich hohe Duktilität des Werkstoffes erforderlich, um ein Bauteilversagen zu vermeiden. Dies gilt insbesondere bei modernen Hochleistungsmotoren, bei denen die Belastungen in den Zylinderköpfen stetig am steigen sind.The already mentioned brittleness of the alloy, which is due to different alloying elements and is acceptable as a compromise in different applications, leads to failure for certain, heavily loaded components. This applies in particular to engine components such as cylinder heads or cylinder crankcases. Here are particularly high temperatures and pressures and alternating loads. In addition, complex geometries cause significant notch effects. In these cases, an extremely high ductility of the material is required to avoid component failure. This is especially true in modern high performance engines, where the loads in the cylinder heads are steadily rising.

Die Aufgabe der Erfindung besteht demnach darin, eine Legierung bereitzustellen, aus der Bauteile resultieren, die eine hohe Warmfestigkeit, eine hohe Bruchdehnung, eine hohe Duktilität bei einer geringen Korrosionsneigung aufweisen.The object of the invention is thus to provide an alloy from which components result which have a high heat resistance, a high elongation at break, a high ductility with a low tendency to corrosion.

Die Aufgabe wird durch eine Legierung nach Patentanspruch 1 und einem Verfahren zur Herstellung eines Bauteils nach Patentanspruch 3 gelöst.The object is achieved by an alloy according to claim 1 and a method for producing a component according to claim 3.

Die erfindungsgemäße Legierung nach Patentanspruch 1 weist einen Siliziumanteil auf, der zwischen 5 % und 10 % liegt. Ein niedrigerer Siliziumanteil würde die Gießbarkeit der Legierung beeinträchtigen. Ein höherer Siliziumanteil führt zu einer Materialversprödung. Besonders bevorzugt liegt der SiliziumAnteil zwischen 6,5 % und 7,5 %.The alloy of the invention according to claim 1 has a silicon content of between 5% and 10%. A lower silicon content would affect the castability of the alloy. A higher silicon content leads to material embrittlement. More preferably, the silicon content is between 6.5% and 7.5%.

Das Legierungselement Magnesium bildet zusammen mit dem Silizium Mg2Si-Kristalle (Magnesiumsilizid), die festigkeitssteigernd wirken. Bei einem Magnesiumanteil unterhalb der erfindungsgemäßen Untergrenze weist das resultierende Bauteil eine zu geringe Festigkeit auf, oberhalb von 0,35 % Magnesium führen die Mg2Si-Kristalle zu einer zu hohen Sprödigkeit.The alloying element magnesium forms, together with the silicon, Mg 2 Si crystals (magnesium silicide), which increase the strength. With a magnesium content below the lower limit according to the invention, the resulting component has too low a strength, above 0.35% magnesium, the Mg 2 Si crystals lead to too high brittleness.

Das Legierungselement Nickel bildet zusammen mit dem Aluminium intermetallische Phasen, wie z. B. Al3Ni (Nickelaluminid) die die Warmfestigkeit erhöhen und erst bei Temperaturen über 800° C kongruent schmelzen (im Gegensatz zu Al2Cu (Kupferaluminid), das sich bei kupferhaltigen Legierungen bildet und bereits unterhalb von 600° C schmilzt). Zudem wirken sich die Phasen, die Aluminium und Nickel enthalten, nicht negativ auf die Duktilität des Materials aus. Der Nickel-Anteil an der erfindungsgemäßen Legierung liegt zwischen 0,3 % und 3 %, bevorzugt zwischen 0,5 % und 2,5 %.The alloying element nickel forms together with the aluminum intermetallic phases, such as. B. Al 3 Ni (nickel aluminide) which increase the thermal stability and melt congruently at temperatures above 800 ° C (in contrast to Al 2 Cu (copper aluminide), which forms in copper-containing alloys and melts below 600 ° C). In addition, the phases containing aluminum and nickel do not adversely affect the ductility of the material. The nickel content of the alloy according to the invention is between 0.3% and 3%, preferably between 0.5% and 2.5%.

Es ist möglich, der erfindungsgemäßen Legierung Kobalt als Legierungselement zuzugeben. Kobalt bildet ebenfalls intermetallische Verbindungen auf der Basis von Aluminium und Kobalt, ähnlich wie die Verbindungen auf Basis von Aluminium und Nickel, die die Warmfestigkeit erhöhen. Die erfindungsgemäße Legierung kann Kobalt zwischen 0,6 Gew. % und 3 Gew. % enthalten.It is possible to add cobalt as an alloying element to the alloy according to the invention. Cobalt also forms intermetallic compounds based on aluminum and cobalt, similar to the compounds based on aluminum and nickel, which increase the heat resistance. The alloy according to the invention may contain cobalt between 0.6% by weight and 3% by weight.

Auf Eisen, durch das die Bruchdehnung reduziert wird, kann in der erfindungsgemäßen Legierung verzichtet werden. Das selbe gilt für das Kupfer als Legierungselement, das die Korrosionsbeständigkeit verschlechtert.Iron, which reduces the elongation at break, can be dispensed with in the alloy according to the invention. The same applies to the copper as an alloying element, which deteriorates the corrosion resistance.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Bauteils nach Patentanspruch 3. Das Bauteil wird aus einer Legierung gegossen, die bereits im Patentanspruch 1 beschrieben wird und die Vorteile aufweist, die aus dieser Legierung resultieren.Another object of the invention is a method for producing a component according to claim 3. The component is cast from an alloy, which is already described in claim 1 and has the advantages that result from this alloy.

Eine Wärmebehandlung des Bauteils vorzugsweise nach einem Lösungsglühen führt zu einer Ausscheidungshärtung (Warmaushärten) einer Al-Matrix (durch die das Bauteil bildet ist) indem gezielt intermetallischen Phasen wie z. B. das genannte Mg2Si oder das Al3Ni ausgeschieden werden. Die Ausscheidungshärtung erfolgt in einem Temperaturintervall zwischen 160° C und 240° C für eine Dauer von 0,2 h bis 10 h. Besonders bevorzugt erfolgt die Ausscheidungshärtung in einem Temperaturintervall zwischen 180° C und 220° C für eine Dauer von 0,5 h bis 8 h. Die Dauer der Temperaturbehandlung hängt von der Temperatur ab, bei höheren Temperaturen verkürzt sich die Wärmebehandlung erheblich.A heat treatment of the component preferably after a solution annealing leads to a precipitation hardening (hot curing) of an Al matrix (by which the component is formed) by targeted intermetallic phases such. B. said Mg 2 Si or Al 3 Ni are excreted. The precipitation hardening takes place in a temperature interval between 160 ° C and 240 ° C for a period of 0.2 h to 10 h. The precipitation hardening is particularly preferably carried out in a temperature interval between 180 ° C. and 220 ° C. for a period of 0.5 h to 8 h. The duration of the temperature treatment depends on the temperature, at higher temperatures, the heat treatment is shortened considerably.

Das Bauteil, das durch die erfindungsgemäße Legierung dargestellt wird, ist bevorzugt als Sandguß- oder Kokillenguß-Bauteil ausgebildet, da so die bereits genannte Wärmebehandlung erleichtert wird. Für ein Bauteil, das im Druckgießverfahren hergestellt wird, ist die Wärmebehandlung auf Grund von Lufteinschlüssen nicht ohne Weiteres möglich. In diesem Fall müßte ein, verfahrenstechnisch aufwendigeres Vakuumdruckgießverfahren angewandt werden.The component which is represented by the alloy according to the invention is preferably designed as a sand casting or chill casting component, since this facilitates the already mentioned heat treatment. For a component that is produced by die casting, the heat treatment due to air bubbles is not readily possible. In this case, a procedurally more complex Vakuumdruckgießverfahren would be applied.

Besonders zweckmäßig ist das erfindungsgemäße Bauteil als Zylinderkopf oder als Zylinderkurbelgehäuse in einem Verbrennungsmotor ausgestaltet. In diesen Bauteilen, insbesondere in Zylinderköpfen treten sehr hohe Drücke bei hohen Temperaturen auf. Hinzu kommt, dass diese Bauteile sehr komplexe Geometrien aufweisen wie z. B. an den Ventilstegen im Zylinderkopf oder an den Kühlkanälen im Zylinderkurbelgehäuse. Diese Konstruktionen wirken gerade bei den hohen Temperaturen, Drücken und Wechselbelastung als Kerben und Bruchausgangsstellen. Eine besonders hohe Bruchdehnung in Kombination mit einer erhöhten Warmfestigkeit bietet hier einen erheblichen Vorteil.Particularly suitably, the component according to the invention is designed as a cylinder head or as a cylinder crankcase in an internal combustion engine. In these components, especially in cylinder heads very high pressures occur at high temperatures. In addition, these components have very complex geometries such. B. on the valve webs in the cylinder head or on the cooling channels in the cylinder crankcase. These constructions act as notches and break points especially at the high temperatures, pressures and alternating loads. A particularly high elongation at break in combination with an increased heat resistance offers a considerable advantage here.

Die Ausgestaltung der Erfindung wird im folgenden Ausführungsbeispiel näher erläutert.The embodiment of the invention will be explained in more detail in the following embodiment.

Es zeigen:

Fig. 1,
das schematische Aushärtverhalten eines Bauteils als Funktion der Zeit, bei einer Temperatur T1.
Fig. 2,
das schematische Aushärtverhalten eines Bauteils als Funktion der Zeit, bei einer Temperatur T2, wobei T2 größer als T1 ist.
Show it:
Fig. 1,
the schematic curing behavior of a component as a function of time, at a temperature T1.
2,
the schematic curing behavior of a component as a function of time, at a temperature T2, where T2 is greater than T1.

Ein Zylinderkopf eines Verbrennungsmotors wird im Kokollengießverfahren mit der erfindungsgemäßen Legierung gegossen. Die Gießparameter entsprechen der üblichen verfahrensbedingten Prozeßführung.A cylinder head of an internal combustion engine is cast in the cube casting process with the alloy according to the invention. The casting parameters correspond to the usual process-related process control.

Nach dem Gießen und nach dem Abkühlen weist das Bauteil eine grobe Kornstruktur von Mischkristallen auf, da Aluminium gegenüber den meisten Legierungselementen bei Raumtemperatur eine sehr geringe Löslichkeit aufweist. Aus diesem Grund erfolgt nun ein Lösungsglühen des Bauteils für ca. 4 -5 h bei einer Temperatur von ca. 540° C. Bei diesem Schritt lösen sich die Legierungselemente in der Aluminiummatrix. Anschließend wird das Bauteil in Wasser abgeschreckt, wobei die Legierungselemente in der Aluminiummatrix gelöst bleiben.After casting and after cooling, the component has a coarse grain structure of mixed crystals, since aluminum has a very low solubility with respect to most alloying elements at room temperature. For this reason, a solution annealing of the component takes place for about 4 -5 h at a temperature of about 540 ° C. In this step, the alloying elements in the aluminum matrix dissolve. The component is then quenched in water leaving the alloying elements dissolved in the aluminum matrix.

Im Weiteren erfolgt ein Auscheidungshärten, bei dem die in der Aluminiummatrix gelösten Elemente unter Bildung von Mischkristallen aus der Matrix kontrolliert ausscheiden. Dies erfolgt bei einer Temperatur von 220° C über 0,5 Stunden. Alternativ hierzu kann das Ausscheidungshärten bei 180° C für 8 Stunden erfolgen. Die Phasen, die sich beim Ausscheidungshärten bilden (Ausscheidungen)sind intermetallische Verbindungen, diese beinhalten unter anderem Mg2Si, das die Festigkeit des Bauteils steigert und Al3Ni (oder andere ternäre und/oder quarternäre intermetallische Verbindungen auf Basis von Aluminium und Nikkel) das auf Grund seiner hohen Schmelztemperatur die Warmfestigkeit des Bauteils erhöht.This is followed by excretion hardening, in which the elements dissolved in the aluminum matrix precipitate out of the matrix in a controlled manner, forming mixed crystals. This is done at a temperature of 220 ° C for 0.5 hours. Alternatively, the precipitation hardening may be done at 180 ° C for 8 hours. The phases that form during precipitation hardening (precipitates) are intermetallic compounds, which include, among other things, Mg 2 Si, which determines the strength of the component increases and Al 3 Ni (or other ternary and / or quaternary intermetallic compounds based on aluminum and nickel) increases due to its high melting temperature, the heat resistance of the component.

Die Festigkeit und die Duktilität des Bauteils ist durch die Temperaturführung und der Dauer der Temperaturbehandlung einstellbar, was, wie erwähnt, auf die ausgeschiedenen Kristall (z. B. die intermetallische Verbindungen Mg2Si und Al3Ni) zurückzuführen ist.The strength and the ductility of the component is adjustable by the temperature control and the duration of the temperature treatment, which, as mentioned, is due to the precipitated crystal (eg the intermetallic compounds Mg 2 Si and Al 3 Ni).

Ebenso wirkt sich die Größe der Mg2Si und Al3Ti-Ausscheidungen, die ebenfalls durch die Wärmebehandlung beeinflußt werden auf die Bauteileigenschaften aus, was im Folgenden erläutert wird.Likewise, the size of the Mg2Si and Al3Ti precipitates, which are also affected by the heat treatment, affects the component properties, as explained below.

In Fig. 1 und Fig. 2 ist schematisch die Festigkeit σ des Bauteils (linke y-Achse) und die Bruchdehnung ε (rechte y-Achse, gestrichelt) als Funktion der Dauer der Wärmebehandlung t dargestellt. Die Figuren 1 und 2 unterscheiden sich in der Temperatur T der Wärmebehandlungen, wobei T von Figur 1 kleiner ist als T von Figur 2. Die durchgezogenen Kurven 1 und 3 zeigen schematisch den Verlauf der Festigkeit σ, die gestrichelten Linien 2 und 4 den Verlauf der Bruchdehnung ε.FIGS. 1 and 2 schematically show the strength σ of the component (left y-axis) and the elongation at break ε (right-hand y-axis, dashed) as a function of the duration of the heat treatment t. Figures 1 and 2 differ in the temperature T of the heat treatments, T of Figure 1 is smaller than T of Figure 2. The solid curves 1 and 3 show schematically the course of strength σ, the dashed lines 2 and 4 the course of Elongation at break ε.

Abhängig von der Temperatur erreicht die Bauteilfestigkeit nach einer bestimmten Dauer der Wärmebehandlung ein Maximum. Dieser Zustand wird im Allgemeinen T6 genannt, das Bauteil weist hier eine sehr feine Struktur der Ausscheidungen auf. Gleichzeitig erreicht die Bruchdehnung im T6 Zustand ein Minimum. Wird die Wärmebehandlung nach Erreichen des T6-Zustandes fortgesetzt, tritt eine sogenannte Überhärtung ein, was als T7-Zustand bezeichnet wird. Der T7-Zustand hat den Vorteil, dass auf Grund der gröberen Struktur der Ausscheidungen, die sich in diesem Zustand einstellt, die Bruchdehnung wieder zunimmt.Depending on the temperature, the component strength reaches a maximum after a certain duration of the heat treatment. This state is generally called T6, the component has a very fine structure of the precipitates here. At the same time, the elongation at break in the T6 state reaches a minimum. If the heat treatment is continued after reaching the T6 state, a so-called overcure occurs, which is referred to as T7 state. The T7 state has the advantage that, due to the coarser structure of the precipitates that occurs in this state, the elongation at break increases again.

Die Bezeichnungen T6 und T7 sind feststehende Fachbegriffe, T steht in diesen Bezeichnungen nicht für Temperatur.The terms T6 and T7 are fixed technical terms, T does not stand for temperature in these terms.

Bei der Wärmebehandlung des erfindungsgemäßen Bauteils ist darauf zu achten, dass sowohl die Festigkeit als auch die Bruchdehnung den Anforderungen an das Bauteil entsprechen. Im Allgemeinen ist aufgabenbezogen der Zustand T7 mit einer möglichst hohen Bruchdehnung anzustreben.During the heat treatment of the component according to the invention, care must be taken that both the strength and the elongation at break meet the requirements for the component. In general, task T7 is aimed at with the highest possible elongation at break.

Ein Vergleich von Figur 1 und Figur 2 zeigt, dass die Maxima und Minima des T6-Zustandes bei einer höheren Temperatur (Figur 2) deutlich stärker ausgeprägt sind und früher erreicht werden als bei niedrigeren Temperaturen (Figur 1). Die Phasenbildung ist bei höheren Temperaturen jedoch schwerer zu kontrollieren. Die beschriebene Wärmebehandlung von 220° C für 1,2 h stellt einen Kompromiss dieser Aspekte dar.A comparison of Figure 1 and Figure 2 shows that the maxima and minima of the T6 state at a higher temperature (Figure 2) are much more pronounced and reached earlier than at lower temperatures (Figure 1). However, phase formation is more difficult to control at higher temperatures. The described heat treatment of 220 ° C for 1.2 h represents a compromise of these aspects.

Die Legierungselemente Silizium und Magnesium bewirken eine Festigkeitssteigerung und eine Verschiebung der Kurven 1 und 3 nach oben. Im Gegenzug werden durch diese Elemente die Kurven 2 und 4 nach unten verschoben, was sich negativ auf die Bruchdehnung auswirkt. Überraschenderweise konnte festgestellt werden, dass sowohl Nickel als auch Kobalt als Legierungselemente die Kurven 1 und 3 nach oben verschieben, ohne eine negative Auswirkung auf die Bruchdehnung auszuüben.The alloying elements silicon and magnesium cause an increase in strength and a shift of the curves 1 and 3 upwards. In turn, these elements shift the curves 2 and 4 downwards, which has a negative effect on the elongation at break. Surprisingly, it was found that both nickel and cobalt shift as the alloying elements curves 1 and 3 upwards, without exerting a negative effect on the elongation at break.

Somit führt die Zugabe von Nickel und/oder Kobalt an sich, insbesondere jedoch in Kombination mit einer kontrollierten Wärmebehandlung, durch die sich die gewünschten Ausscheidungen von Verbindungen auf der Basis von Aluminium und Nickel bzw. Aluminium und Kobalt bilden und die vorteilhafte Kornstruktur eingestellt wird, zu der erfindungsgemäßen Lösung der Aufgabe.Thus, the addition of nickel and / or cobalt in itself, but especially in combination with a controlled heat treatment, which form the desired precipitates of compounds based on aluminum and nickel or aluminum and cobalt and the advantageous grain structure is adjusted, to the inventive solution of the problem.

Claims (8)

  1. Age-hardenable aluminium casting alloy, characterized in that the alloy, in addition to aluminium, contains as functional elements
    5 to 7.5% by weight silicon,
    0.2 to 0.35% by weight magnesium,
    0.3 to 3% by weight nickel
    and/or 0.6 to 3% by weight cobalt,
    remainder Al and production-related impurities.
  2. Age-hardenable aluminium casting alloy according to Claim 1, characterized in that the alloy, in addition to aluminium, contains as functional elements
    6.5 to 7.5% by weight silicon,
    0.2 to 0.35% by weight magnesium,
    0.5 to 2.5% by weight nickel,
    remainder Al and production-related impurities.
  3. Process for producing a component from an aluminium alloy, characterized in that
    • an alloy which, in addition to aluminium, contains as functional elements
    5 to 7.5% by weight silicon,
    0.2 to 0.35% by weight magnesium,
    0.3 to 3% by weight nickel
    and/or 0.6 to 3% by weight cobalt,
    remainder Al and production-related impurities, is selected for the component, and
    in that the component contains phases which include aluminium and nickel and/or aluminium and cobalt and are in the form of binary and/or ternary and/or quaternary intermetallic compounds.
  4. Process according to Claim 3, characterized in that
    • an alloy, which in addition to aluminium, contains as functional elements
    6.5 to 7.5% by weight silicon,
    0.2 to 0.35% by weight magnesium, and
    0.5 to 2.5% by weight nickel,
    is selected for the component, and
    in that the component contains phases which include aluminium and nickel and are in the form of binary and/or ternary and/or quaternary intermetallic compounds.
  5. Process according to Claim 3 or 4, characterized in that the component is hot-age-hardened for 0.2 to 10 h at a temperature of between 160°C and 240°C.
  6. Process according to one of Claims 3 to 5, characterized in that the component is heat-treated for 0.5 to 8 h at a temperature of between 180°C and 220°C.
  7. Process according to one of Claims 3 to 6, characterized in that the component is produced in a sand-casting or gravity die-casting or vacuum die-casting process.
  8. Process according to one of Claims 3 to 7, characterized in that a cylinder head or a cylinder crankcase of an internal combustion engine is formed.
EP01127698A 2000-12-15 2001-11-21 Precipitation-hardening aluminium alloy and part thereof Expired - Lifetime EP1215295B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10062547 2000-12-15
DE10062547A DE10062547A1 (en) 2000-12-15 2000-12-15 Hardenable cast aluminum alloy and component

Publications (2)

Publication Number Publication Date
EP1215295A1 EP1215295A1 (en) 2002-06-19
EP1215295B1 true EP1215295B1 (en) 2006-06-14

Family

ID=7667285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01127698A Expired - Lifetime EP1215295B1 (en) 2000-12-15 2001-11-21 Precipitation-hardening aluminium alloy and part thereof

Country Status (3)

Country Link
US (1) US6676775B2 (en)
EP (1) EP1215295B1 (en)
DE (2) DE10062547A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013777B4 (en) * 2004-03-20 2005-12-29 Hydro Aluminium Deutschland Gmbh Method for producing a cast part from an AL / Si casting alloy
US8062250B2 (en) * 2004-08-10 2011-11-22 Unomedical A/S Cannula device
DE102005037738B4 (en) * 2005-08-10 2009-03-05 Daimler Ag Aluminum casting alloy with high dynamic strength and thermal conductivity
DE102007033827A1 (en) * 2007-07-18 2009-01-22 Technische Universität Clausthal Aluminum casting alloy and its use
AT509343B1 (en) * 2010-07-02 2011-08-15 Voecklabrucker Metallgiesserei Alois Dambauer & Co Ges M B H ALUMINUM ALLOY
HUE055985T2 (en) 2011-09-16 2022-01-28 Ball Corp Impact extruded containers from recycled aluminium scrap
EP2983998B1 (en) 2013-04-09 2022-04-27 Ball Corporation Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys and it's method of manufacturing
US20180044155A1 (en) 2016-08-12 2018-02-15 Ball Corporation Apparatus and Methods of Capping Metallic Bottles
BR122020012460B1 (en) 2016-12-30 2022-09-06 Ball Corporation ALUMINUM ALLOY, METHOD FOR PRODUCING A CONTAINER AND CONTAINER
WO2018152230A1 (en) 2017-02-16 2018-08-23 Ball Corporation Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers
CA3074430C (en) 2017-09-15 2023-01-03 Ball Corporation System and method of forming a metallic closure for a threaded container
DE102021114484A1 (en) 2021-06-07 2022-12-08 Audi Aktiengesellschaft Aluminum cast alloy
DE102021131973A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
DE102021131935A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH168202A (en) * 1932-02-05 1934-03-31 Metallgesellschaft Ag Aluminum-silicon alloy.
GB394746A (en) * 1932-02-05 1933-07-06 Lightalloys Ltd Aluminium alloys and methods of treating same
FR2343895A1 (en) * 1976-03-10 1977-10-07 Pechiney Aluminium PROCESS FOR MANUFACTURING HOLLOW BODIES IN SILICON ALUMINUM ALLOYS BY SHELL SPINNING
US4243438A (en) 1978-07-21 1981-01-06 Sumitomo Aluminium Smelting Co., Ltd. Production of aluminum impact extrusions
US4274438A (en) * 1979-02-21 1981-06-23 Westinghouse Electric Corp. Method of diagnostic valve testing
JPH03120334A (en) * 1989-09-29 1991-05-22 Showa Alum Corp Low thermal expansion aluminum alloy having excellent extrudability
US5240521A (en) * 1991-07-12 1993-08-31 Inco Alloys International, Inc. Heat treatment for dispersion strengthened aluminum-base alloy
DE4215160C2 (en) * 1992-05-08 1995-01-26 Vaw Ver Aluminium Werke Ag Use of a cast aluminum alloy
JP3142659B2 (en) 1992-09-11 2001-03-07 ワイケイケイ株式会社 High strength, heat resistant aluminum base alloy
DE4404420C2 (en) 1994-02-11 1997-07-17 Alcan Gmbh Aluminum-silicon alloy and its use
JP3164587B2 (en) * 1996-09-03 2001-05-08 トヨタ自動車株式会社 Alloys with excellent thermal fatigue resistance, aluminum alloys with excellent thermal fatigue resistance, and aluminum alloy members with excellent thermal fatigue resistance
JPH1182151A (en) * 1997-09-11 1999-03-26 Yamaha Motor Co Ltd Cylinder block made of aluminium alloy

Also Published As

Publication number Publication date
DE50110140D1 (en) 2006-07-27
EP1215295A1 (en) 2002-06-19
US20020088509A1 (en) 2002-07-11
DE10062547A1 (en) 2002-06-20
US6676775B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
DE112004001160B4 (en) Aluminum alloy for a cast engine block, cast cylinder block for an internal combustion engine, and use of the aluminum alloy
DE10352932B4 (en) Cast aluminum alloy
DE102007042099B4 (en) Aluminum alloy for engine components
DE102016118729A1 (en) A new high-pressure injection molding process for aluminum alloys for high temperature and corrosive environments
EP1215295B1 (en) Precipitation-hardening aluminium alloy and part thereof
EP1718778B1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE102009012073B4 (en) Use of an aluminum casting alloy
DE602004008934T2 (en) AL-SI-CU ALUMINUM ALLOY FORMING HIGH WARM PROOF RESISTANCE
DE60100370T2 (en) Die-cast magnesium alloy
DE102015105558A1 (en) IMPROVED ALUMINUM ALLOYING CASTING COMPONENTS
DE102009015316B4 (en) Metal treatment for the elimination of hot crack defects in low silicon aluminum alloys
DE102009036056A1 (en) Impact-resistant aluminum alloy suitable for thick-walled die castings, especially crank cases, has specified composition
EP2735621A1 (en) Aluminium die casting alloy
DE102018130544A1 (en) HIGH-TEMPERATURE ALUMINUM ALLOY ALLOY FOR CYLINDER HEADS
DE3541781A1 (en) HEAT-RESISTANT, HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR PRODUCING A COMPONENT MADE FROM THIS ALLOY
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
DE10323741B3 (en) Aluminum casting alloy for the production of e.g. pistons of IC engines contains alloying additions of silicon, magnesium, zirconium, hafnium and titanium
EP1917372B1 (en) Aluminium casting alloy
WO2017174185A1 (en) Aluminum alloy, in particular for a casting method, and method for producing a component from such an aluminum alloy
DE60114281T2 (en) Cast and forged product using a copper-based alloy
DE102020208831A1 (en) Aluminum alloy for die casting and a method for producing aluminum cast alloy using the same
DE112017007033T5 (en) ALUMINUM ALLOYS
EP2041328B1 (en) Aluminum alloy and the utilization thereof for a cast component, in particular a motor vehicle
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production
DE102013002632B4 (en) Aluminum-silicon diecasting alloy and method of making a die cast component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20050322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

REF Corresponds to:

Ref document number: 50110140

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLERCHRYSLER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50110140

Country of ref document: DE

Owner name: BURANI CONSULTING LIMITED LIABILITY COMPANY, W, US

Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE

Effective date: 20120418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201013

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50110140

Country of ref document: DE