EP1212806B1 - Systeme de filtre passe-bande haute frequence a poles d'attenuation - Google Patents

Systeme de filtre passe-bande haute frequence a poles d'attenuation Download PDF

Info

Publication number
EP1212806B1
EP1212806B1 EP00960529A EP00960529A EP1212806B1 EP 1212806 B1 EP1212806 B1 EP 1212806B1 EP 00960529 A EP00960529 A EP 00960529A EP 00960529 A EP00960529 A EP 00960529A EP 1212806 B1 EP1212806 B1 EP 1212806B1
Authority
EP
European Patent Office
Prior art keywords
resonator
resonators
frequency
bandpass filter
bandstop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00960529A
Other languages
German (de)
English (en)
Other versions
EP1212806A1 (fr
Inventor
Heinz Chaloupka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryoelectra GmbH
Original Assignee
Cryoelectra GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryoelectra GmbH filed Critical Cryoelectra GmbH
Publication of EP1212806A1 publication Critical patent/EP1212806A1/fr
Application granted granted Critical
Publication of EP1212806B1 publication Critical patent/EP1212806B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/209Hollow waveguide filters comprising one or more branching arms or cavities wholly outside the main waveguide

Definitions

  • the invention relates to a high-frequency bandpass filter arrangement, consisting of one Main resonator and at least one to the main resonator coupled blocking resonator, the main resonator by one, on both sides by discontinuities in Shape of a break or metal wall limited Line section is defined, and at a center frequency has an electromagnetic natural vibration.
  • the invention relates to the structure of bandpass filters from coupled resonators for highly selective filtering of high frequency electromagnetic signals in one Operating frequency range, which is above about 0.5 GHz and is below about 100 GHz.
  • High frequency bandpass filters are an important one Component in systems of communication technology, such as B. in terrestrial and satellite-based round, Directional and mobile radio as well as in radar and Navigation systems.
  • B. in Individual filters the function of the radio receiver Preselection, i.e. suppressing unwanted Interference signals and filter banks the function of the Frequency drains.
  • Individuals serve in radio transmitters
  • Bandpass filter u. a. to suppress out-of-band spectral components in the output signal of the amplifier and Filter banks are used in the form of output multiplexers Merging different carrier signals on one common antenna.
  • passive electromagnetic filter is based on the Storage of electrical and magnetic field energy.
  • the Storage of electrical and magnetic field energy separately from each other, in a finite number spatial separate discrete elements, namely in capacities and Inductors instead. Because the geometric dimensions of these discrete components much smaller than that Operating wavelength, typically less than one Tenths of the guided wavelength, must be and on the other hand, the idle quality of these components Reduction in dimensions decreases sharply for steep-sided filters preferred above about 1 GHz Coupled resonator structures instead of Interconnections of discrete capacities and Inductors used.
  • resonators which are the building blocks of the filter class considered here is one large number of different types to choose from.
  • Out coaxial TEM line pieces and waveguide pieces become coaxial resonators or cavity resonators formed where the electromagnetic field is completely enclosed by conductive surfaces.
  • These resonators can be used for volume reduction and Partial change in the spatial field profile or completely with low loss dielectric material be filled. This takes place in dielectric resonators Field confinement mainly through the interface between the dielectric material and the surrounding one Air and that from this interface to the outside space decaying field is possibly by metal casing shielded.
  • the selection of the design of the resonators is u. a. of that of the filter specification (see below) required idle quality of the resonators affected.
  • a high idle quality means in conventional Technology has a relatively large geometric dimension Resonators.
  • this is in the lower GHz range for the entirety of all resonators of a filter Available volume is limited.
  • a reduction in Volume requirements of around 50% can be obtained from Dual use of resonators via orthogonal modes (Dual-mode resonators).
  • An exception to the rule that high idling quality, large geometric dimensions mean, is achieved when using cooled planar High temperature superconductor resonators.
  • the electrical behavior of a bandpass filter becomes characterized by frequency bandwidth (Pass width) and position of the pass band the maximum insertion loss and minimum Reflection attenuation in the pass band, by the width the transition areas between passband and Exclusion area as well as the minimal blocking attenuation in the Stop band.
  • the filter's resonators become the frequency response of the filter degraded in such a way that the achievable steepness of the Filter edges is limited by rounding effects and the dissipative insertion loss in the pass band is increased. Since this degradation is a first approximation only from N and not from the number M of transmission zeros depends, so you can at given Idle quality of the resonators filters with higher Slope steepness and less dissipative Realize insertion loss by increasing M / N.
  • the one with filters from coupled resonators today predominantly followed path to the generation of Transmission zeros consist in the introduction of Couplings between not directly adjacent resonators ("Couplings"), in addition to the direct couplings neighboring resonators.
  • Couplings with a suitable strength and sign that is, couplings between non-adjacent ones Resonators lead to transmission zeros in the restricted areas, whereby pro Overcoupling, depending on the position of the coupling path, one or two Transmission zeros are produced.
  • Ratio M / N and the greatest freedom of choice the frequency position of the individual transmission zeros this leads to a coupling scheme, which as "canonical coupling structure" is called and at even number N using N-2 different overcouplings on N-2 freely placeable Transmission zeros leads.
  • M N-2 zeros, which are symmetrical to the pass band one has at least (N-2) / 2 couplings.
  • This band stop serves Interference frequencies outside the pass band to eliminate.
  • FIG. 6 of this publication shows the layout of a 5-pin bandpass using microstrip technology.
  • the 4 transmission zeros are realized by 4 additional resonators in the form of ⁇ / 4 stub lines.
  • Figure 8 of the publication shows a 3-pin filter made of 3 parallel-coupled microstrip line resonators.
  • the 2 transmission zeros are realized in that the middle resonator is provided with 2 blocking resonators in the form of stub lines.
  • a band-stop filter with two mutually separate blocking ranges can also be used instead of a bandpass filter.
  • the used pass band lies between the two band band stop band.
  • a filter of this type is known from US Pat. No. 5,291,161 A, which consists of a continuous main line and galvanically coupled stub lines and in which each stub line generates a transmission zero point. From IC Hunter and JR Rhodes "Electronically tunable microwave bandstop filters" in IEEE Transactions on Microwave Theory and Techniques, vol. MTT-30, No.
  • the second disadvantage is that the number N of attenuation zeros is less than the number of resonators in the pass band used between the two stop areas and therefore the maximum steepness of the filter edges between pass band and stop area that can be achieved for a given resonator number N R cannot be achieved.
  • the object is achieved by the in the Objects described claims solved.
  • the invention uses bandpass filter structures proposed in which blocking resonators such the structure is integrated that each blocking resonator both one of the desired transmission zeros in the Restricted area as well as together with the rest Filter structure an additional damping zero in the Passband realized.
  • impedance-symmetrical and impedance-unbalanced filter elements are to be understood that with an impedance-symmetrical Filter element when connecting the input and output gates with the same termination resistance, the maximum values of the Power transmission factor with negligible Losses reach one, while at transmission unbalanced filter element complete Power transmission only for highly asymmetrical gate resistors is achievable.
  • Figure 1e shows the principle in a schematic manner Structure of an impedance-symmetrical according to the invention
  • Figures 1a to 1d show schematic way structures, which the state of the Correspond to technology and therefore only for gradual Explanation of the basic principle of the invention Serve structure according to Figure 1e.
  • Fig. 1a symbolically shows a homogeneous high-frequency line 1, in which this line as a metallic TEM line z. B. as a coaxial line, as a planar line such. B. a microstrip line or strip line or coplanar line, or as a waveguide or as a dielectric line.
  • FIG. 1b schematically shows a structure modified compared to FIG. 1a, in which two discontinuities 3 are inserted symmetrically into the cable run.
  • These discontinuities define a line section of finite length a, on which electromagnetic natural vibrations occur at those frequencies at which the length a corresponds to an integer multiple of half the line wavelength, and these natural vibrations are characterized by standing waves with nodes and antinodes of the electrical and magnetic field strength along the line , with a node of the electric or magnetic field strength existing in the plane of symmetry 4 at the resonance frequency.
  • the discontinuities limiting the line piece can technically z. B. in the form of line interruptions or in the form of metallic diaphragms, and it is also well known in the art that about the strength of the coupling between the leads and the ends of the line section serving as a resonator, the frequency bandwidth ⁇ f of the transmission curve can be changed.
  • Figure 1c shows a structure modified from Figure 1a, in which a resonance circuit 6 ("blocking resonator”) is coupled to the line, so that the frequency response of the power transmission factor 7 has a transmission zero at the frequency f s .
  • This structure represents the construction of a unipolar bandstop ("notch filter”), which is well known in the prior art.
  • FIG. 1d shows a structure modified from FIG. 1c, in which instead of a blocking resonator two blocking resonators 8 with different resonance frequencies are coupled and lead to two transmission zeros at f s1 and f s2 .
  • An essential aspect of the invention consists in forming the structure according to FIG. 1e from a combination of the structure according to FIG. 1b and the blocking resonator pair from FIG. 1d.
  • the line section of finite length forms a resonator, here referred to as the main resonator, which has a node of the electric or magnetic field in the middle.
  • An essential aspect of the invention is the choice of the coupling between the blocking resonators and the main resonator in such a way that this coupling disappears at the frequency f 0 . B.
  • the two blocking resonators thus assume a double function in that on the one hand they realize two transmission zeros - as in the structure according to FIG.
  • the frequency response 10 of the structure according to FIG. 1e is thus characterized by a suitable choice of the resonance frequencies and coupling strengths by three transmission maxima (damping zeros) at f 1 , f 2 and f 3 and two transmission zeros at f s1 and f s2 .
  • the frequency position of the transmission zeros is determined by the resonance frequencies of the blocking resonators and the frequency position of the average transmission maximum by the length of the main resonator.
  • the position of the two outer transmission maxima can be changed by the coupling strength between the main resonator and blocking resonators, with an increase in the coupling, these frequencies shifting towards the middle frequency.
  • the electrical field at frequency f 0 has a node in the plane of symmetry and thus the two blocking resonators must be electrically coupled according to the above design rules, while in the case of magnetic field maxima at the ends, because of the node of the magnetic one Field, a magnetic coupling must be present.
  • the length of the line section must correspond to a full wavelength instead of half the center frequency line wavelength.
  • N N g xQ
  • M NQ transmission zeros
  • An impedance-unbalanced filter element becomes realized according to the invention in that an impedance-symmetrical Filter element with a pair of blocking resonators 1e is modified, one of the two Discontinuities are brought close to the site which is coupled to the blocking resonator pair.
  • an impedance-symmetrical Filter element with a pair of blocking resonators 1e is modified, one of the two Discontinuities are brought close to the site which is coupled to the blocking resonator pair.
  • the impedance-symmetrical Link 5 located at one end of the cascade or it can be inserted centrally (see Fig. 4c).
  • Fig. 5 shows an example of the implementation of a 7-pin Filters with 6 transmission zeros in the form a single filter element according to that in Fig. 2c principle shown in coaxial line technology.
  • the Main resonator 1 has a rectangular exterior and Inner conductor and a length equal to 1.5 times that Center frequency wavelength.
  • the the line piece limiting discontinuities are more capacitive in form Coupler trained.
  • the blocking resonators 2 are as on End of short-circuited coaxial line pieces of one length of a quarter of a line wavelength, which are capacitively coupled to the main resonator.
  • Fig. 6 shows a modification of the structure of Fig. 5, by now the blocking resonators 2 galvanically with the Inner conductors of the main resonator are connected, but on Are capacitively loaded at the end.
  • Fig. 7 shows a structure of two impedance-unbalanced Filter elements and an impedance-symmetrical Link with 9 poles and 8 Receives transmission zeros.
  • the main resonator 1 consists of a short-circuited at both ends Rectangular waveguide, which at the center frequency Has a length corresponding to a waveguide wavelength.
  • the 4 blocking resonators 2 are in the form of short-circuited 1/4 waveguide pieces realized.
  • the coupling to the Gates can e.g. B. via a coaxial transition 3.
  • FIG. 9 shows an example of an implementation with dielectric resonators in the case of a filter comprising two impedance-symmetrical filter elements, each filter element producing three poles and two transmission zeros and thus the bandpass filter having a total of 6 poles and 4 transmission zeros.
  • the dimension of the main resonator is chosen so that it has a natural resonance at f 0 with the field distribution shown in FIG. 9b, and the dimension of the blocking resonators are chosen so that they resonate at the 4 blocking frequencies f 1 to f 4 and thereby have a field distribution corresponding to FIG. 9c. Because of the spatial field distribution of the main resonator, it does not couple to the resonance fields of the blocking resonators at f 0 . For frequencies different from f 0 , however, a coupling is obtained between the main resonator and the blocking resonators, with the result that an additional 4 natural resonances arise.
  • the coupling to the gates can e.g. B. via conductor loops 4.
  • the main resonator 5 consists of a dielectric cuboid of length a, which corresponds approximately to a wavelength of the surface wave on the dielectric cuboid. A field distribution corresponding to FIG. 10b is thereby obtained on the main resonator.
  • the 4 blocking resonators 1 to 4 also consist of dielectric cuboids, the individual lengths b1 to b4 of which influence the frequency position of the 4 transmission zeros.
  • the entire structure of the main dielectric resonator and 4 dielectric blocking resonators realizes 5 natural vibrations.
  • the frequency position of the poles can be changed via the coupling strength between the main and blocking resonators.
  • the "gaps" between the resonators with the widths h 1 to h 4 filled with air or a dielectric material with a relatively low dielectric constant serve to change this coupling strength.
  • the principle according to the invention can also apply to planar ones Resonator structures, such as B. microstrip line structures are used, including microstrip line structures from high temperature superconductors from Are interested as this despite an enormous Degree of miniaturization over a high idling quality feature.
  • FIG. 11 illustrates the implementation of an impedance-asymmetrical filter element according to the invention using microstrip line technology.
  • Fig. 11a the principle of a microstrip line resonator, which is well known in the prior art, is first brought to mind.
  • FIG. 11a shows the well-known structure of a microstrip line resonator 3, which at its ends is capacitively connected to the leads 4, 5 is coupled.
  • the frequency response of the power transmission factor 6 shows a maximum at the frequency f 0 and the width of this maximum can be changed via the strength of the coupling at the line ends (discontinuities).
  • FIG. 11b shows how an impedance-asymmetrical filter element according to the invention can be realized in microstrip line technology.
  • a T-shaped conductor structure is used in which the length of the individual arms corresponds to approximately a quarter of the line wavelength at the center frequency, a well-defined asymmetry in the length or width of the side arms 3 being necessary for the function.
  • the side arms represent a simple implementation of the blocking resonators, the blocking frequencies being influenced over the length of the arms. Together with the third arm, the side arms form a structure which resonates at two different frequencies and thus the T-structure is a special form of a dual-mode resonator.
  • the output gate can be capacitively connected to the T in the manner shown in FIG. 11b Structure to be coupled.
  • the frequency response 6 of the two-port thus created is characterized by two transmission maxima and two transmission zeros, the absolute value of the transmission maximum being able to be far below one due to the asymmetry. For this reason, a single asymmetrical filter element - in contrast to the impedance-symmetrical filter element - is not yet a usable bandpass filter.
  • this microstrip line structure can also be modified in a variety of ways, e.g. B. by using inhomogeneous line pieces of variable width.
  • Fig. 12 shows an example of how 4 impedance-unbalanced Filter members 1 and one conventional half-wave resonator 2 a 9-pin Filters with 8 transmission zeros are formed can.
  • the resonator 2 takes over in the cascade Providing an additional pole that Transformation of the impedance at gate 2 (e.g. 50 ohms) the low impedance level at the coupling point to Branch point of the T-shaped resonators.
  • the Dimensioning the parameters of each Filter elements for example. B. done so that a Cauer characteristic for the frequency response is achieved.

Claims (14)

  1. Système de filtre passe-bande à haute fréquence comprenant un résonateur principal (1) et au moins un résonateur de blocage (4, 6, 8) couplé au résonateur principal (1), le résonateur principal (1) étant défini par un tronçon de ligne délimité sur les deux côtés par des discontinuités (2 et 3 sur les figures jusqu'à 2c) sous la forme d'une interruption ou d'une paroi métallique, et présentant une oscillation propre électromagnétique à une fréquence moyenne (f0), caractérisé en ce que le résonateur de blocage (4) couplé au résonateur principal réalise un facteur de réflexion de valeur 1 à sa fréquence de blocage (fs) pour un onde sur la partie de ligne du résonateur principal (1), et en ce que l'au moins un résonateur de blocage est couplé le long du tronçon de ligne avec le résonateur principal aux endroits où le couplage dépendant de la fréquence entre le résonateur de blocage et le résonateur principal disparaít à la fréquence moyenne du filtre passe-bande en raison de la variation dans l'espace du champ électrique et du champ magnétique le long de la ligne, le résonateur de blocage réalisant un zéro de transmission dans la zone de blocage et conjointement avec la structure de filtre restante un zéro d'amortissement dans la zone de passage.
  2. Système de filtre passe-bande à haute fréquence selon la revendication 1, caractérisé en ce que l'au moins un résonateur de blocage est constitué par une paire de résonateurs de blocage disposés de façon symétrique l'un par rapport à l'autre.
  3. Système de filtre passe-bande à haute fréquence selon la revendication 1, caractérisé en ce que le couplage du au moins un résonateur de blocage au résonateur principal s'effectue de façon électrique.
  4. Dispositif de filtre passe-bande à haute fréquence selon la revendication 1, caractérisé en ce que le couplage du au moins un résonateur de blocage au résonateur principal s'effectue de façon magnétique.
  5. Système de filtre passe-bande à haute fréquence selon la revendication 1, caractérisé en ce que le couplage du au moins un résonateur de blocage au résonateur principal s'effectue de façon galvanique.
  6. Filtre passe-bande selon la revendication 1 avec trois fréquences propres (pôles) et deux zéros de transmission, caractérisé en ce que le résonateur principal est constitué par un tronçon de ligne avec une longueur qui correspond avec la fréquence moyenne du filtre passe-bande à peu près à une demi-longueur d'onde de ligne, en ce que deux résonateurs de blocage sont couplés au résonateur principal au centre du tronçon de ligne de telle sorte que le couplage dépendant de la fréquence disparaít avec la fréquence moyenne, en ce que la fréquence de blocage de l'un des deux résonateurs de blocage est inférieure à la fréquence moyenne du filtre passe-bande et la fréquence de blocage de l'autre résonateur de blocage est supérieure à la fréquence moyenne du filtre passe-bande,
       en ce que, pour les fréquences de blocage des deux résonateurs de blocage, on choisit les fréquences dans la plage de blocage pour lesquelles on souhaite des zéros de transmission du filtre passe-bande, et en ce que, avec l'intensité du couplage entre les résonateurs de blocage et le résonateur principal, les trois maxima de transmission sont déplacés à l'intérieur de la plage de passage de telle sorte que l'amortissement de réflexion dans la plage de passage se situe au-dessus d'une valeur minimale prédéfinie.
  7. Filtre passe-bande selon la revendication 1 avec cinq fréquences propres (pôles) et quatre zéros de transmission, caractérisé en ce que le résonateur principal est constitué par un tronçon de ligne avec une longueur qui correspond avec la fréquence moyenne à peu près à une longueur d'onde de ligne, en ce que deux paires de résonateurs de blocage sont couplées au résonateur principal à une distance réciproque d'environ une demi-longueur d'onde de ligne en fréquence moyenne le long du tronçon de ligne du résonateur principal et à une distance d'environ un quart de longueur d'onde de ligne entre les paires extérieures du résonateur de blocage et les extrémités du tronçon de ligne de telle sorte que le couplage dépendant de la fréquence disparaít avec la fréquence moyenne du filtre passe-bande.
  8. Filtre passe-bande selon la revendication 1 avec 2m+1 (avec m comme nombre naturel) fréquences propres (pôles) et 2m zéros de transmission, caractérisé en ce que le résonateur principal est constitué par un tronçon de ligne avec une longueur d'environ m fois une demi-longueur d'onde à fréquence moyenne, en ce que m paires de résonateurs de blocage sont couplées au résonateur principal à une distance réciproque d'une demi-longueur d'onde de ligne à fréquence moyenne le long du tronçon de ligne et à une distance d'environ un quart de longueur d'onde de ligne entre les paires extérieures de résonateur de blocage et les extrémités du tronçon de ligne de telle sorte que le couplage dépendant de la fréquence disparaít avec la fréquence moyenne du filtre passe-bande.
  9. Filtre passe-bande selon la revendication 1 avec 2m+1 (avec m comme nombre naturel) fréquences propres (pôles) et 2m zéros de transmission, caractérisé en ce que le résonateur principal est constitué par un tronçon de ligne avec une longueur d'environ (m+1) fois une demi-longueur d'onde de ligne à fréquence moyenne, en ce que m paires de résonateurs de blocage sont couplées au résonateur principal à une distance réciproque d'une demi-longueur d'onde de ligne à fréquence moyenne le long du tronçon de ligne et à une distance d'environ une demi-longueur d'onde de ligne entre les paires extérieures de résonateur de blocage et les extrémités du tronçon de ligne de telle sorte que le couplage dépendant de la fréquence disparaít avec la fréquence moyenne du filtre passe-bande.
  10. Filtre passe-bande selon la revendication 1 avec une cascade d'éléments de filtre (nombre Q) avec lequel ces éléments de filtre sont constitués de filtres passe-bande selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'une extrémité du tronçon de ligne, servant de résonateur principal, d'un élément de filtre est couplée de façon électrique ou magnétique ou galvanique avec l'extrémité voisine du tronçon de ligne de l'élément de filtre suivant, et avec lequel les deux extrémités extérieures des tronçons de ligne des éléments de filtre extérieurs sont couplées avec la porte d'entrée ou la porte de sortie.
  11. Filtre passe-bande selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les résonateurs sont conçus comme des résonateurs coaxiaux.
  12. Filtre passe-bande selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les résonateurs sont conçus comme des résonateurs à cavité.
  13. Filtre passe-bande selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les résonateurs sont conçus comme des résonateurs diélectriques.
  14. Filtre passe-bande selon l'une quelconque des revendications 1 à 10, avec des résonateurs planaires de ligne microbande ou des résonateurs coplanaires, y compris des résonateurs planaires à base de supraconducteurs à haute température.
EP00960529A 1999-08-31 2000-08-26 Systeme de filtre passe-bande haute frequence a poles d'attenuation Expired - Lifetime EP1212806B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19941311 1999-08-31
DE19941311A DE19941311C1 (de) 1999-08-31 1999-08-31 Bandfilter
PCT/EP2000/008333 WO2001017057A1 (fr) 1999-08-31 2000-08-26 Systeme de filtre passe-bande haute frequence a poles d'attenuation

Publications (2)

Publication Number Publication Date
EP1212806A1 EP1212806A1 (fr) 2002-06-12
EP1212806B1 true EP1212806B1 (fr) 2003-03-05

Family

ID=7920218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00960529A Expired - Lifetime EP1212806B1 (fr) 1999-08-31 2000-08-26 Systeme de filtre passe-bande haute frequence a poles d'attenuation

Country Status (11)

Country Link
EP (1) EP1212806B1 (fr)
JP (1) JP2003508948A (fr)
KR (1) KR20020047141A (fr)
CN (1) CN1241289C (fr)
AT (1) ATE233956T1 (fr)
AU (1) AU7280000A (fr)
CA (1) CA2383777A1 (fr)
DE (2) DE19941311C1 (fr)
ES (1) ES2191642T3 (fr)
IL (1) IL148267A0 (fr)
WO (1) WO2001017057A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917164B2 (ja) * 2003-12-08 2007-05-23 松下電器産業株式会社 分波器および合波器
US7321884B2 (en) 2004-02-23 2008-01-22 International Business Machines Corporation Method and structure to isolate a qubit from the environment
EP2013938B1 (fr) * 2005-11-18 2016-01-13 Resonant Inc. Filtre de frequence radio raccordable a faible perte
WO2009003190A1 (fr) 2007-06-27 2008-12-31 Superconductor Technologies, Inc. Filtre de radiofréquence pouvant être syntonisé de faible perte
US9165723B2 (en) 2012-08-23 2015-10-20 Harris Corporation Switches for use in microelectromechanical and other systems, and processes for making same
US20140055215A1 (en) * 2012-08-23 2014-02-27 Harris Corporation Distributed element filters for ultra-broadband communications
US9053874B2 (en) 2012-09-20 2015-06-09 Harris Corporation MEMS switches and other miniaturized devices having encapsulating enclosures, and processes for fabricating same
US9053873B2 (en) 2012-09-20 2015-06-09 Harris Corporation Switches for use in microelectromechanical and other systems, and processes for making same
US8907849B2 (en) 2012-10-12 2014-12-09 Harris Corporation Wafer-level RF transmission and radiation devices
US9203133B2 (en) 2012-10-18 2015-12-01 Harris Corporation Directional couplers with variable frequency response
CN104981870B (zh) * 2013-02-22 2018-03-20 三菱电机株式会社 声音增强装置
CN104659452B (zh) * 2013-11-22 2017-06-27 南京理工大学 一种基于十字型谐振器的双重陷波频段超宽带带通滤波器
JP6158780B2 (ja) * 2014-03-14 2017-07-05 レゾナント インコーポレイテッドResonant Inc. 低損失の可変無線周波数フィルタ
WO2016057898A1 (fr) 2014-10-10 2016-04-14 Idera Pharmaceuticals, Inc. Traitement du cancer par agoniste(s) du tlr9 avec des inhibiteurs du point de contrôle
CN106257933B (zh) * 2015-06-18 2019-08-30 雅马哈株式会社 声学结构和音响板
AU2017234163B2 (en) 2016-03-15 2023-01-19 Mersana Therapeutics, Inc. NaPi2b-targeted antibody-drug conjugates and methods of use thereof
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
US20180271996A1 (en) 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
WO2019104289A1 (fr) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Conjugués anticorps-pyrrolobenzodiazépine
WO2019126691A1 (fr) 2017-12-21 2019-06-27 Mersana Therapeutics, Inc. Conjugués anticorps-pyrrolobenzodiazépine
CN108594646A (zh) * 2018-03-12 2018-09-28 上海电力学院 一种基于滤波约分法的不稳定连续系统辨识方法
CN110729536B (zh) * 2018-07-16 2021-09-10 罗森伯格技术有限公司 一种同轴腔体双通带滤波器
KR20210084546A (ko) 2018-10-29 2021-07-07 메르사나 테라퓨틱스, 인코포레이티드 펩티드 함유 링커를 갖는 시스테인 조작된 항체-약물 접합체
CN109326858A (zh) * 2018-11-27 2019-02-12 安徽阖煦微波技术有限公司 一种高抑制腔体滤波器
CN110148816B (zh) * 2019-04-19 2020-07-10 华中科技大学 一种多通带零反射滤波器
JP6764163B1 (ja) 2019-11-21 2020-09-30 株式会社Space Power Technologies マイクロストリップアンテナ、情報機器
CN111709154B (zh) * 2020-07-21 2023-05-23 西安烽矩电子科技有限公司 一种腔体滤波器中混合电磁耦合产生传输零点的设计方法
CN112072238B (zh) * 2020-07-31 2022-01-28 南京邮电大学 一种发夹型带通滤波器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE893523C (de) * 1943-02-03 1953-10-15 Telefunken Gmbh Hochfrequenz-Breitbanduebertrager
US3747030A (en) * 1971-06-07 1973-07-17 Oak Electro Netics Corp Band pass filter with transmission line section
AU470870B2 (en) * 1973-10-29 1976-04-01 Matsushita Electric Industrial Co., Ltd. Filters employing elements with distributed constants
FR2546340B1 (fr) * 1983-05-20 1985-12-06 Thomson Csf Filtre hyperfrequence coupe-bande accordable, de type coaxial, a resonateurs dielectriques
ATE55847T1 (de) * 1985-12-13 1990-09-15 Siemens Ag Bandsperre fuer kurze elektromagnetische wellen mit leitungselementen.
JPH0334305U (fr) * 1989-08-14 1991-04-04
US5291161A (en) * 1991-07-22 1994-03-01 Matsushita Electric Industrial Co., Ltd. Microwave band-pass filter having frequency characteristic of insertion loss steeply increasing on one outside of pass-band
DE4232054A1 (de) * 1992-09-24 1994-03-31 Siemens Matsushita Components Mikrowellen-Keramikfilter

Also Published As

Publication number Publication date
EP1212806A1 (fr) 2002-06-12
DE19941311C1 (de) 2001-06-07
WO2001017057A1 (fr) 2001-03-08
CN1241289C (zh) 2006-02-08
IL148267A0 (en) 2002-09-12
KR20020047141A (ko) 2002-06-21
CA2383777A1 (fr) 2001-03-08
CN1371534A (zh) 2002-09-25
ATE233956T1 (de) 2003-03-15
JP2003508948A (ja) 2003-03-04
AU7280000A (en) 2001-03-26
DE50001421D1 (de) 2003-04-10
ES2191642T3 (es) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1212806B1 (fr) Systeme de filtre passe-bande haute frequence a poles d'attenuation
DE60306067T2 (de) Dielektrischer Monoblockmikrowellenverzögerungsfilter mit Dreifachmodus
DE69911006T2 (de) Hts-filter mit eigenresonanten spiralresonatoren
DE69433305T2 (de) Geschichtetes dielektrisches Filter
DE69924168T2 (de) Bandpassfilter, Duplexer, Hochfrequenzmodul und Kommunikationsgerät
DE10248477B4 (de) LC-Hochpaßfilter-Schaltungsvorrichtung, laminierte LC-Hochpaßfiltervorrichtung, Multiplexer und Funkkommunikationseinrichtung
DE69728104T2 (de) Gegentakt-Mikrostreifenleitungsfilter
DE69828249T2 (de) Hochfrequenzübertragungsleitung, dielektrischer Resonator, Filter, Duplexer und Kommunikationsgerät
KR100618422B1 (ko) 코플레너 웨이브가이드 필터 및 그 형성방법
US20050206481A1 (en) Filter
DE10008018A1 (de) Dielektrischer Resonator, Induktor, Kondensator, Dielektrisches Filter, Oszillator und Kommunikationsvorrichtung
Wu et al. Quasi-reflectionless microstrip bandpass filters with improved passband flatness and out-of-band rejection
DE60107883T2 (de) Schaltungsanordnung zur Unterdrückung von parasitären Wellentypen auf planaren Wellenleitern
DE102015009221A1 (de) Verbesserter abstimmbarer Dual-Band-Bandpassfilter
EP1388206B1 (fr) Dispositif filtre destine a des systemes de lignes symetriques et asymetriques
DE10325595B3 (de) Hochfrequenzfilter, insbesondere nach Art einer Duplexweiche
DE2727485A1 (de) Resonator fuer hochfrequente elektromagnetische schwingungen
DE10065510C2 (de) Resonator, Filter und Duplexer
EP2100343B1 (fr) Filtre de ferrite composé de conduites en aileron à couplage d'iris
DE3835480A1 (de) Hochfrequenz-bandpassfilter
Belmajdoub et al. Design and optimization of a new compact 2.4 GHz-bandpass filter using DGS technique and U-shaped resonators for WLAN applications
DE3111106C2 (fr)
KR102259102B1 (ko) 전송영점을 갖는 로우 패스 필터
CN116130910A (zh) 一种电磁带隙滤波功分器
DE60110033T2 (de) Bandpassfilter mit einer kompakten dielektrischen Struktur aus halbwellen Resonatoren und dazwischenliegenden evanescenten Wellenleitern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030305

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030305

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50001421

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030606

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20030812

Year of fee payment: 4

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030826

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030826

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030829

Year of fee payment: 4

Ref country code: ES

Payment date: 20030829

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191642

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1212806E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031208

BERE Be: lapsed

Owner name: *CRYOELECTRA G.M.B.H.

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040826

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040827

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050826

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060926

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301