EP1212401B1 - Detergent en pastilles - Google Patents

Detergent en pastilles Download PDF

Info

Publication number
EP1212401B1
EP1212401B1 EP00964124A EP00964124A EP1212401B1 EP 1212401 B1 EP1212401 B1 EP 1212401B1 EP 00964124 A EP00964124 A EP 00964124A EP 00964124 A EP00964124 A EP 00964124A EP 1212401 B1 EP1212401 B1 EP 1212401B1
Authority
EP
European Patent Office
Prior art keywords
acid
proteins
alcohol
detergent tablet
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00964124A
Other languages
German (de)
English (en)
Other versions
EP1212401A1 (fr
Inventor
Manfred Weuthen
Bernd Fabry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Publication of EP1212401A1 publication Critical patent/EP1212401A1/fr
Application granted granted Critical
Publication of EP1212401B1 publication Critical patent/EP1212401B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/384Animal products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/32Protein hydrolysates; Fatty acid condensates thereof

Definitions

  • the invention is in the field of molded detergents and relates to tablets with surfactants, builders and disintegrants, which additionally contain proteins or protein derivatives as softeners.
  • Softdetergents are available on the market that not only clean the laundry, but also give it a special soft feel. Such preparations, which are often referred to as Softdetergents contain as softeners usually cationic surfactants of the type of tetraalkylammonium compounds, usually in combination with layered silicates. The said quaternary ammonium compounds are unsatisfactory in terms of their biodegradability, and it is also known that laundry treated with them can cause irritation to very sensitive consumers. In combination with anionic surfactants, it is also easy to undesirable salt formation. For this reason, there is a lively interest in substitutes that are free of these disadvantages.
  • the object of the present invention was to provide new shaped detergent, preferably in the form of tablets available, which are no longer objectionable in terms of their ecotoxicological compatibility and easily soluble under washing conditions, show sufficient chemical resistance and especially the laundry one give excellent softness.
  • detergent tablets of the invention meet the requirements mentioned above in an excellent manner.
  • the non-enzymatic proteins and protein derivatives are ideal substitutes for cationic surfactants, since they provide a comparable finish, but are also chemically stable under alkaline conditions and offer no environmental or toxicological reasons for complaint.
  • the detergents are free of cationic surfactants.
  • the detergents may contain as component (a) anionic, nonionic and / or amphoteric or zwitterionic surfactants; However, preferably anionic surfactants or combinations of anionic and nonionic surfactants are present.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates , Mono- and dialkylsulfosuccinamates,
  • Preferred alkylbenzenesulfonates preferably follow the formula (I) R-Ph-SO 3 X (I) in which R is a branched, but preferably linear, alkyl radical having 10 to 18 carbon atoms, Ph is a phenyl radical and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R is a branched, but preferably linear, alkyl radical having 10 to 18 carbon atoms
  • Ph is a phenyl radical
  • X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Alkyl and / or alkenyl sulfates which are also frequently referred to as fatty alcohol sulfates, are the sulfation products of primary and / or secondary alcohols, which preferably follow the formula (II), R 2 O-SO 3 Y (II) in which R 2 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • R 2 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and Y is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used according to the invention are the sulfation products of caproic alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, Behenyl alcohol and erucyl alcohol and their technical mixtures obtained by high-pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen's oxo synthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts. Particular preference is given to alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts.
  • alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts.
  • branched primary alcohols are oxo alcohols, as they are accessible, for example, by reacting carbon monoxide and hydrogen to alpha-olefins by the shop process.
  • Such alcohol mixtures are commercially available under the trade names Dobanol® or Neodol®. Suitable alcohol mixtures are Dobanol 91®, 23®, 25®, 45®.
  • oxo alcohols as obtained by the classical oxo process of Enichema or the Condea by addition of carbon monoxide and hydrogen to olefins.
  • These alcohol mixtures are a mixture of highly branched alcohols.
  • Such alcohol mixtures are commercially available under the trade name Lial®.
  • Suitable alcohol mixtures are Lial 91®, 111®, 123®, 125®, 145®.
  • R 3 CO-OX (III) is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 and preferably 12 to 18 carbon atoms and X is alkali metal and / or alkaline earth metal, ammonium, alkylammonium or alkanolammonium.
  • Typical examples are the sodium, potassium, magnesium, ammonium and triethanolammonium salts of caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, Linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • coconut or palm kernel fatty acids are used in the form of their sodium or potassium salts.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol ethers, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, alk (en) yloligoglycosides, fatty acid N-alkylglucamides, protein hydrolysates (especially wheat-based vegetable products), polyol fatty acid esters, sugar esters, sorbitan esters , Polysorbates and amine oxides. If the nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution. Preference is given to using fatty alcohol polyglycol ethers, alkoxylated fatty acid lower alkyl esters or alkyl oligoglucosides.
  • the preferred fatty alcohol polyglycol ethers follow the formula (IV) , R 4 O (CH 2 CHR 5 O) n H (IV) in which R 4 is a linear or branched alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms, R 5 is hydrogen or methyl and n is a number from 1 to 20.
  • Typical examples are the addition products of on average 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide to caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol , Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol and Brassidylalkohol as well as their technical mixtures. Particularly preferred are addition products of 3, 5 or 7 moles of ethylene oxide to technical Kokosfettalkohole.
  • Suitable alkoxylated fatty acid lower alkyl esters are surfactants of the formula (V) , R 6 CO- (OCH 2 CHR 7 ) m OR 8 (V) in the R 6 CO is a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms, R 7 is hydrogen or methyl, R 8 is linear or branched alkyl radicals having 1 to 4 carbon atoms and m is from 1 to 20 stands.
  • Typical examples are the formal charge products of an average of 1 to 20 and preferably 5 to 10 moles of ethylene and / or propylene oxide in the methyl, ethyl, propyl, isopropyl, butyl and tert-butyl esters of caproic acid, caprylic acid, 2 Ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid, and technical mixtures thereof.
  • the products are prepared by insertion of the alkylene oxides into the carbonyl ester bond in the presence of special catalysts, such as, for example, calcined hydrotalcite.
  • catalysts such as, for example, calcined hydrotalcite.
  • Particularly preferred are reaction products of on average 5 to 10 moles of ethylene oxide in the ester bond of technical Kokosfettklamethylestern.
  • Alkyl and alkenyl oligoglycosides which are also preferred nonionic surfactants, usually follow the formula (VI), R 9 O- [G] p (VI) in which R 9 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained by the relevant methods of preparative organic chemistry. Representative of the extensive literature reference is made here to the documents EP-A1 0 301 298 and WO 90/03977 .
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses having 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or Alkenyloligoglykoside are thus alkyl and / or Alkenyloligo glucoside .
  • alkyl and / or Alkenyloligoglykoside with a moderate degree of oligomerization p used from 1.1 to 3.0.
  • those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • the alkyl or alkenyl radical R 9 can be derived from primary alcohols having 4 to 11, preferably 8 to 10 carbon atoms.
  • Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and technical mixtures thereof, as obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the hydrogenation of aldehydes from Roelen's oxo synthesis.
  • the alkyl or alkenyl radical R 9 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14 carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and technical mixtures thereof which can be obtained as described above. Preference is given to alkyl oligoglucosides based on hydrogenated C 12/14 coconut alcohol having a DP of 1 to 3.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • the surfactants mentioned are exclusively known compounds. With regard to the structure and production of these substances, reference may be made to relevant reviews, for example J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, pp. 54-124 or J. Falbe (ed.), “Catalysts, Surfactants and mineral oil additives ", Thieme Verlag, Stuttgart, 1978, pp. 123-217 .
  • the detergents may contain the surfactants in amounts of 1 to 50, preferably 5 to 25 and in particular 10 to 20 wt .-% - based on the detergent.
  • Non-enzymatic proteins and their derivatives which are preferably protein hydrolysates and / or protein fatty acid condensates, are known substances which are used, for example, in skincare compositions [cf. Soap-Fats-Oil-Waxes, 108 , 177 (1982)].
  • the term "non-enzymatic" was chosen to distinguish the substances from typical detergent enzymes which are not used in the context of the invention.
  • Typical examples of non-enzymatic proteins that can be used in the compositions according to the invention are keratin, elastin, collagen, wheat proteins, milk proteins, protein proteins, silk proteins, almond proteins, soya proteins and other cereal proteins, as well as proteins from animal skins.
  • protein hydrolysates Degradation products of these animal or vegetable proteins, which are cleaved by acid, alkaline and / or enzymatic hydrolysis and thereafter have an average molecular weight in the range of 600 to 4000, preferably 2000 to 3500.
  • protein hydrolyzates in the absence of a hydrophobic moiety, are not surfactants in the classical sense, they are widely used to formulate surfactants because of their dispersing properties. Overviews of the preparation and use of protein hydrolysates are described, for example, by G. Schuster and A. Domsch in Seifen Oils Fette Wachse, 108, 177 (1982) and Cosm.Toil. 99, 63 (1984) by HW Steisslinger in Parf. Kosm.
  • protein fatty acid condensates are obtained.
  • the condensates are usually used in the form of their alkali, alkaline earth, ammonium, alkylammonium or alkanolammonium salts.
  • Typical examples are the condensation products of wheat or soy protein hydrolysates with caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic, elaeostearic, arachidic, gadoleic, acids , Behenic acid and erucic acid and their technical mixtures.
  • the agents according to the invention may contain the proteins or protein derivatives in amounts of from 0.1 to 10, preferably from 1 to 8, and in particular from 3 to 5,% by weight, based on the compositions.
  • the laundry detergent tablets according to the invention contain phosphates.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates.
  • tripolyphosphates In some cases it has been shown that in particular tripolyphosphates, even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing power.
  • the phosphates are in the final preparations preferably in amounts of 10 to 60, in particular 15 to 25 wt .-% - based on the means - included.
  • disintegrants component d
  • disintegrating agents can be present homogeneously distributed macroscopically in the molded body, Seen microscopically, however, they form production zones of increased concentration.
  • Preferred disintegrants include polysaccharides such as natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins, etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyvinyl pyrrolidone, collidone, alginic acid and their alkali metal salts, amorphous or partially crystalline layered silicates (bentonites), polyurethanes, polyethylene glycols and gas-generating systems.
  • polysaccharides such as natural starch and its derivatives (carboxymethyl starch, starch glycolates in the form of their alkali salts, agar agar, guar gum, pectins, etc.), celluloses and their derivatives (carboxymethyl cellulose, microcrystalline cellulose), polyvinyl pyrrolidone, collidone, alginic acid and their
  • disintegrants which may be present within the meaning of the invention are, for example, the publications WO 98/40462 (Rettenmeyer), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel) refer to.
  • the teaching of these documents is expressly incorporated by reference.
  • the moldings may contain the disintegrants in amounts of 0.1 to 25, preferably 1 to 20 and in particular 5 to 15 wt .-% - based on the moldings.
  • Further preferred ingredients of the detergents according to the invention are additional inorganic and organic builders, the main inorganic builders used being zeolites, crystalline sheet silicates or amorphous silicates with builder properties.
  • the amount of co-builder is to be counted towards the preferred amounts of phosphates.
  • the finely crystalline, synthetic and bound water-containing zeolite frequently used as detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and mixtures of A, X and / or P as well as Y.
  • zeolite X co-crystallized sodium / potassium aluminum silicate of zeolite A and zeolite X, which (as VEGOBOND AX ® commercial product of Condea Augusta SpA) is commercially available.
  • the zeolite can be used as a spray-dried powder or else as und
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols having 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 .yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline sheet silicates are described, for example, in European Patent Application EP 0164514 A1 .
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the process described in international patent application WO 91/08171 .
  • Further suitable phyllosilicates are known, for example, from the patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1 . Its usability is not limited to any particular composition or structural formula. However, smectites, in particular bentonites, are preferred here.
  • small amounts of iron may be incorporated in the crystal lattice of the layered silicates according to the above formulas.
  • the phyllosilicates may contain hydrogen, alkali, alkaline earth metal ions, in particular Na + and Ca 2+ , due to their ion-exchanging properties.
  • the amount of water of hydration is usually in the range of 8 to 20 wt .-% and is dependent on the swelling state or on the type of processing.
  • Useful layered silicates are known, for example, from US Pat. No. 3,966,629, US Pat. No. 4,062,647, EP 0026529 A1 and EP 0028432 A1 .
  • phyllosilicates are used, which are largely free of calcium ions and strong coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates having a modulus Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2, 6, which are delay-delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products are microcrystalline Have ranges of size 10 to several hundred nm, with values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which likewise have a dissolution delay compared with the conventional water glasses, are described, for example, in German patent application DE 4400024 A1 .
  • Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • Useful organic builders are, for example, usable in the form of their sodium salts polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for environmental reasons, and mixtures thereof.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes. Preference is given to hydrolysis products having average molecular weights in the range from 400 to 500,000.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a customary measure for the reducing effect of a polysaccharide compared to dextrose, which has a DE of 100.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP 0232202 A1, EP 0427349 A1, EP 0472042 A1 and EP 0542496 A1 and international patent applications WO 92/18542, WO 93/08251, WO 93/16110, WO 94 / 28030, WO 95/07303, WO 95/12619 and WO 95/20608 .
  • Also suitable is an oxidized oligosaccharide according to the German patent application DE 19600018 A1.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Suitable co-builders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates , as described, for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP 0150930 A1 and Japanese Patent Application JP 93/339896 . Suitable amounts are in zeolith lotteryn and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are described, for example, in International Patent Application WO 95/20029 .
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrenesulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 5,000 to 200,000, preferably from 10,000 to 120,000 and in particular from 50,000 to 100,000 (in each case measured against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually added later to one or more basic granules.
  • biodegradable polymers of more than two different monomer units for example those according to DE 4300772 A1 as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or according to DE 4221381 C2 as monomers salts of acrylic acid and 2-Alkylallylsulfonklare and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids, their salts or their precursors Particular preference is given to polyaspartic acids or their salts and derivatives.
  • polyacetals which can be obtained by reacting dialdehydes with polyol carboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups, for example as described in European Patent Application EP 0280223 A1 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • compositions may also contain components that positively affect oil and grease washability from fabrics.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic Cellulose ethers, as well as known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • compositions are water-soluble inorganic salts such as bicarbonates, carbonates, amorphous silicates, normal water glasses which do not have outstanding builder properties, or mixtures of these; in particular, alkali metal carbonate and / or amorphous alkali metal silicate, above all sodium silicate with a molar ratio of Na 2 O: SiO 2 of from 1: 1 to 1: 4.5, preferably from 1: 2 to 1: 3.5, are used.
  • the content of sodium carbonate in the final preparations is preferably up to 40% by weight, advantageously between 2 and 35% by weight.
  • the content of the sodium silicate (without any special builder properties) is generally up to 10% by weight and preferably between 1 and 8% by weight.
  • compositions may contain further known additives, for example salts of polyphosphonic acids, optical brighteners, enzymes, enzyme stabilizers, defoamers, small amounts of neutral filler salts and dyes and fragrances and the like.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • the content of the bleaching agents is preferably from 5 to 35% by weight and in particular up to 30% by weight, it being advantageous to use perborate monohydrate or percarbonate.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran and the enol esters, acyl
  • hydrophilic substituted acyl acetals known from German patent application DE 19616769 A1 and the acyllactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are likewise preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 4443177 A1 can also be used. Such bleach activators are contained in the customary amount range, preferably in amounts of from 1% by weight to 10% by weight, in particular from 2% by weight to 8% by weight, based on the total agent.
  • the sulfone imines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446982 B1 and EP 0453 003 B1 can also be present as so-called bleach catalysts.
  • Suitable transition metal compounds include, in particular, the manganese, iron, cobalt, ruthenium or molybdenum-salene complexes known from German patent application DE 19529905 A1 and their N- analogues known from German patent application DE 19620267 A1, which are known from German Patent Application DE 19536082 A1 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium described in German Patent Application DE 196 05 688 - and copper complexes with nitrogen-containing tripod ligands that from German patent application DE known cobalt 19620411 A1, iron-, copper- and ruthenium-ammine complexes, the manganese in the German patent application DE 4416438 A1 described, copper and cobalt complexes, the cobalt complexes described in European Patent Application EP 0272030 A1 , the manganese complexes known from European Patent Application EP 0693
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0.1 wt .-%, each based on the total agent used.
  • Suitable enzymes are, in particular, those from the class of the hydrolases, such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains, and graying. Cellulases and other glycosyl hydrolases can contribute to color retention and increase the softness of the fabric by removing pilling and microfibrils. It is also possible to use oxidoreductases for bleaching or inhibiting color transfer.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include in particular ⁇ -amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and ⁇ -glucosidases, which are also called cellobiases, or mixtures thereof used. Since the different cellulase types differ by their CMCase and avicelase activities, targeted mixtures of the cellulases can be used to set the desired activities.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature degradation.
  • the proportion of enzymes, enzyme mixtures or enzyme granules may be, for example, about 0.1 to 5 wt .-%, preferably 0.1 to about 2 wt .-%.
  • the agents may contain other enzyme stabilizers .
  • enzyme stabilizers 0.5 to 1% by weight of sodium formate can be used.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO 2 ) and pyroboric acid (tetraboric acid H 2 B 4 O 7 ).
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone is also useful.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, and polyvinylpyrrolidone, for example, in amounts of from 0.1 to 5% by weight, based on the compositions, used.
  • the agents may contain as optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which are used in place of the morpholino Group a Diethanolaminooeuvre, a methylamino group, an anilino group or a 2-Methoxyethylaminoxx carry.
  • brighteners of the substituted diphenylstyrene type may be present, for example the alkali metal salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or (4-chlorostyryl) -4 '- (2-sulfostyryl). Mixtures of the aforementioned brightener can be used.
  • Uniformly white granules are obtained when the means except the usual brighteners in conventional amounts, for example between 0.1 and 0.5 wt .-%, preferably between 0.1 and 0.3 wt .-%, even small amounts, for example 10 -6 to 10 -3 wt .-%, preferably by 10 -5 wt .-%, of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy).
  • Suitable soil repellents are those which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10. More specifically, the molecular weight of the linking polyethylene glycol units is in the range of 750 to 5,000, that is, the degree of ethoxylation of the polymers containing polyethylene glycol groups may be about 15 to 100.
  • the polymers are characterized by an average molecular weight of about 5000 to 200,000 and may have a block, but preferably a random structure.
  • Preferred polymers are those having molar ratios of ethylene terephthalate / polyethylene glycol terephthalate of from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Further preferred are those polymers comprising linking polyethylene glycol units having a molecular weight of from 750 to 5,000, preferably from 1000 to about 3000 and a molecular weight of the polymer of about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (ICI) or Repelotex® SRP 3 (Rhöne-Poulenc).
  • waxy compounds can be used as defoamers.
  • "Waxy” is understood as meaning those compounds which have a melting point at atmospheric pressure above 25 ° C. (room temperature), preferably above 50 ° C. and in particular above 70 ° C.
  • the waxy defoamer substances are practically insoluble in water, i. at 20 ° C in 100 g of water they have a solubility below 0.1 wt .-%.
  • Suitable waxy compounds are, for example, bisamides, fatty alcohols, fatty acids, carboxylic esters of monohydric and polyhydric alcohols and paraffin waxes or mixtures thereof.
  • Suitable paraffin waxes are generally a complex mixture without a sharp melting point. For characterization is usually determined its melting range by differential thermal analysis (DTA), as described in "The Analyst” 87 (1962), 420 , and / or its solidification point , This is the temperature at which the paraffin passes from the liquid to the solid state by slow cooling. In this case, at room temperature completely liquid paraffins, that is those with a solidification point below 25 ° C, according to the invention not useful.
  • the paraffin wax mixtures known from EP 0309931 A1 can be used, for example, from 26% by weight to 49% by weight of microcrystalline paraffin wax having a solidification point of from 62 ° C.
  • paraffins or paraffin mixtures are used which solidify in the range of 30 ° C to 90 ° C. It should be noted that even at room temperature appearing paraffin wax mixtures may contain different proportions of liquid paraffin.
  • paraffin waxes which can be used according to the invention, this liquid fraction is as low as possible and is preferably completely absent.
  • particularly preferred paraffin wax mixtures at 30 ° C have a liquid content of less than 10 wt .-%, in particular from 2 wt .-% to 5 wt .-%, at 40 ° C, a liquid content of less than 30 wt .-%, preferably from 5 Wt .-% to 25 wt .-% and in particular from 5 wt .-% to 15 wt .-%, at 60 ° C, a liquid content of 30 wt .-% to 60 wt .-%, in particular of 40 wt .-%.
  • the temperature at which a liquid content of 100% by weight of the paraffin wax is reached is, in the case of particularly preferred paraffin wax mixtures, still below 85 ° C., in particular at 75 ° C. to 82 ° C.
  • the paraffin waxes may be petrolatum, microcrystalline waxes or hydrogenated or partially hydrogenated paraffin waxes.
  • Suitable bisamides as defoamers are those which are derived from saturated fatty acids containing 12 to 22, preferably 14 to 18, carbon atoms and alkylenediamines having 2 to 7 carbon atoms.
  • Suitable fatty acids are lauric, myristic, stearic, arachic and behenic acid and mixtures thereof, such as those obtainable from natural fats or hardened oils, such as tallow or hydrogenated palm oil.
  • Suitable diamines are, for example, ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, p-phenylenediamine and toluenediamine.
  • Preferred diamines are ethylenediamine and hexamethylenediamine.
  • Particularly preferred bisamides are bis-myristoylethylenediamine, bispalmitoylethylenediamine, bisstearoylethylenediamine and mixtures thereof and the corresponding derivatives of hexamethylenediamine.
  • Suitable carboxylic esters as defoamers are derived from carboxylic acids having 12 to 28 carbon atoms. In particular, they are esters of behenic acid, stearic acid, hydroxystearic acid, oleic acid, palmitic acid, myristic acid and / or lauric acid.
  • the alcohol portion of the carboxylic acid ester contains a monohydric or polyhydric alcohol having 1 to 28 carbon atoms in the hydrocarbon chain.
  • suitable alcohols are behenyl alcohol, arachidyl alcohol, coconut oil, 12-hydroxystearyl alcohol, oleyl alcohol and lauryl alcohol and also ethylene glycol, glycerol, polyvinyl alcohol, sucrose, erythritol, pentaerythritol, sorbitan and / or sorbitol.
  • Preferred esters are those of ethylene glycol, glycerol and sorbitan, wherein the acid portion of the ester is selected in particular from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
  • Candidate polyhydric alcohol esters include xylitol monopalmitate, pentarythritol monostearate, glycerol monostearate, ethylene glycol monostearate and sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate and mixed tallow alkyl sorbitan mono- and diesters.
  • Useful glycerol esters are the mono-, di- or triesters of glycerol and said carboxylic acids, the mono- or diesters being preferred.
  • Glycerol monostearate, glycerol monooleate, glycerol monopalmitate, glycerol monobehenate and glyceryl distearate are examples of this.
  • suitable natural esters as defoamers are beeswax, which is mainly from the esters CH 3 (CH 2 ) 24 COO (CH 2 ) 27 CH 3 and CH 3 (CH 2 ) 26 COO (CH 2 ) 25 CH 3
  • carnauba wax which is a mixture of carnaubaic acid alkyl esters, often in combination with minor ones Proportions of free carnaubaic acid, other long-chain acids, high molecular weight alcohols and hydrocarbons, is.
  • Suitable carboxylic acids as further defoamer compound are, in particular, behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid, and mixtures thereof, which are obtainable from natural fats or optionally hardened oils, such as tallow or hydrogenated palm oil.
  • Preferred are saturated fatty acids having 12 to 22, in particular 18 to 22 C-atoms.
  • Suitable fatty alcohols as further antifoam compounds are the hydrogenated products of the described fatty acids.
  • dialkyl ethers may additionally be present as defoamers.
  • the ethers may be asymmetric or symmetrical, ie containing two identical or different alkyl chains, preferably containing 8 to 18 carbon atoms.
  • Typical examples are di-n-octyl ether, di-i-octyl ether and di-n-stearyl ether, particularly suitable are dialkyl ethers having a melting point above 25 ° C, in particular above 40 ° C.
  • fatty ketones which can be obtained by the relevant methods of preparative organic chemistry. They are prepared , for example, from carboxylic acid magnesium salts which are pyrolyzed at temperatures above 300 ° C. with elimination of carbon dioxide and water, for example in accordance with German laid-open specification DE 2553900 OS. Suitable fatty ketones are those prepared by pyrolysis of the magnesium salts of lauric, myristic, palmitic, palmitoleic, stearic, oleic, elaidic, petroselic, arachidic, gadoleic, behenic or erucic acid.
  • fatty acid polyethylene glycol esters which are preferably obtained by basic homogeneously catalyzed addition of ethylene oxide to fatty acids.
  • the addition of ethylene oxide to the fatty acids takes place in the presence of alkanolamines as catalysts.
  • alkanolamines especially triethanolamine, results in extremely selective ethoxylation of the fatty acids, especially when it comes to producing low ethoxylated compounds.
  • the paraffin waxes described are particularly preferably used alone as waxy defoamers or in admixture with one of the other waxy defoamers, wherein the proportion of paraffin waxes in the mixture is preferably more than 50% by weight, based on waxy defoamer mixture.
  • the paraffin waxes can be applied to carriers as needed.
  • carrier material all known inorganic and / or organic carrier materials are suitable. Examples of typical inorganic support materials are alkali metal carbonates, aluminosilicates, water-soluble phyllosilicates, alkali silicates, alkali metal sulfates, for example sodium sulfate, and alkali metal phosphates.
  • the alkali metal silicates are preferably a compound having a molar ratio of alkali metal oxide to SiO 2 of from 1: 1.5 to 1: 3.5.
  • the use of such silicates results in particularly good grain properties, in particular high abrasion stability and yet high dissolution rate in water.
  • the aluminosilicates designated as support material include, in particular, the zeolites, for example zeolite NaA and NaX.
  • the compounds referred to as water-soluble layer silicates include, for example, amorphous or crystalline water glass.
  • silicates can be used which are under the name Aerosil® or Sipernat® commercially.
  • Suitable organic support materials are, for example, film-forming polymers, for example polyvinyl alcohols, polyvinylpyrrolidones, poly (meth) acrylates, polycarboxylates, cellulose derivatives and starch.
  • Useful cellulose ethers are, in particular, alkali metal carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose and so-called cellulose mixed ethers, such as, for example, methylhydroxyethylcellulose and methylhydroxypropylcellulose, and mixtures thereof.
  • Particularly suitable mixtures are composed of sodium carboxymethylcellulose and methylcellulose, wherein the carboxymethylcellulose usually has a degree of substitution of 0.5 to 0.8 carboxymethyl groups per anhydroglucose unit and the methylcellulose has a degree of substitution of 1.2 to 2 methyl groups per anhydroglucose unit.
  • the mixtures preferably contain alkali metal carboxymethylcellulose and nonionic cellulose ethers in weight ratios of from 80:20 to 40:60, in particular from 75:25 to 50:50.
  • Native starch composed of amylose and amylopectin is also suitable as the carrier. Native starch is starch, as it is available as an extract from natural sources, such as rice, potatoes, corn and wheat. Native starch is a commercial product and thus easily accessible.
  • one or more of the abovementioned compounds can be used, in particular selected from the group of alkali metal carbonates, alkali metal sulphates, alkali metal phosphates, zeolites, water-soluble phyllosilicates, alkali metal silicates, polycarboxylates, cellulose ethers, polyacrylate / polymethacrylate and starch.
  • Particularly suitable are mixtures of alkali metal carbonates, in particular sodium carbonate, alkali metal silicates, in particular sodium silicate, alkali metal sulfates, in particular sodium sulfate and zeolites.
  • Suitable silicones are customary organopolysiloxanes which may have a finely divided silica content, which in turn may also be silanated. Such organopolysiloxanes are described, for example, in European Patent Application EP 0496510 A1 . Particularly preferred are polydiorganosiloxanes known in the art. However, it is also possible to use compounds crosslinked via siloxane, as are known to the person skilled in the art under the name silicone resins. In general, the polydiorganosiloxanes contain finely divided silica, which may also be silanated. Particularly suitable are siliceous dimethyl polysiloxanes.
  • the polydiorganosiloxanes have a Brookfield viscosity at 25 ° C in the range from 5,000 mPas to 30,000 mPas, in particular from 15,000 to 25,000 mPas.
  • the silicones are preferably applied to support materials. Suitable carrier materials have already been described in connection with the paraffins.
  • the support materials are usually in amounts of 40 to 90 wt .-%, preferably in amounts of 45 to 75 wt .-% - based on defoamer - included.
  • perfume oils or fragrances individual perfume compounds , for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and Methylcedrylketon to the alcohols anethole, citronellol, eugenol; Geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • the fragrances can be incorporated directly into the compositions of the invention, but it may also be advantageous to apply the fragrances on carriers, which enhance the adhesion of the perfume on the laundry and provide a slower fragrance release for long-lasting fragrance of the textiles.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • the final preparations may also contain inorganic salts as fillers or leveling agents, such as, for example, sodium sulfate, which is preferably present in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition.
  • inorganic salts such as, for example, sodium sulfate, which is preferably present in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition.
  • the production of the moldings is usually carried out by tabletting or Preßagglomerierung.
  • the resulting particulate Preßagglomerate can either be used directly as a detergent or aftertreated by conventional methods and / or processed.
  • the usual post-treatments include, for example, powdering with finely divided ingredients of detergents or cleaners, whereby the bulk density is generally further increased.
  • a preferred after-treatment is also the procedure according to the German patent applications DE 19524287 A1 and DE 19547457 A1 , wherein dust-like or at least finely divided ingredients (the so-called fines) are adhered to the particulate process end products according to the invention, which serve as a core, and thus arise means , which have these so-called fines as an outer shell.
  • the solid detergents are in tablet form, these tablets preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets may, for example, be circular or rectangular.
  • Multi-layer tablets, especially tablets with 2 or 3 layers, which may also be different in color, are especially preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed portions.
  • Moldings having a particularly advantageous dissolution rate are obtained when the granular constituents before pressing have a proportion of particles which have a diameter outside the range from 0.02 to 6 mm of less than 20, preferably less than 10% by weight.
  • a particle size distribution in the range from 0.05 to 2.0 and particularly preferably from 0.2 to 1.0 mm is preferred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Pastilles de détergent, contenant :
    (a) des tensio-actifs anioniques, non ioniques et/ou amphotères,
    (b) des protéines non enzymatiques et/ou leurs dérivés,
    (c) des phosphates et
    (d) des agents de fragmentation,
    caractérisées en ce qu'
    elles contiennent des tensio-actifs anioniques choisis dans le groupe constitué par les sulfonates d'alkylbenzène, les sulfates d'alkyle, les savons, les sulfonates d'alcanes, les sulfonates d'oléfines et les sulfonates d'ester méthylique.
  2. Pastilles de détergent selon la revendication 1,
    caractérisées en ce qu'
    elles contiennent des tensio-actifs non ioniques choisis dans le groupe constitué par les polyglycoléthers d'alcools gras, les alhylesters inférieurs d'acides gras alcoxylés et les alkyl et/ou alcényl-oligoglycosides.
  3. Pastilles de détergent selon les revendications 1 et/ou 2,
    caractérisées en ce qu'
    elles contiennent des tensio-actifs en quantités de 1 à 50 % en poids - rapporté au détergent.
  4. Pastilles de détergent selon au moins l'une des revendications 1 à 4,
    caractérisées en ce qu'
    elles contiennent des protéines choisies dans le groupe constitué par la kératine, l'élastine, le collagène, les protéines de blé, les protéines de lait, les protéines d'albumine, les protéines de soie, les protéines d'amande et les protéines de soja.
  5. Pastilles de détergent selon la revendication 4,
    caractérisées en ce qu'
    elles contiennent des protéines sous forme de leurs hydrolysats ou des produits de condensation des hydrolysats avec des acides gras.
  6. Pastilles de détergent selon au moins l'une des revendications 1 à 5,
    caractérisées en ce qu'
    elles contiennent les protéines ou leurs dérivés en quantités de 0,1 à 10 % en poids - rapporté au détergent.
  7. Pastilles de détergent selon au moins l'une des revendications 1 à 6,
    caractérisées en ce qu'
    elles contiennent du tripolyphosphate de sodium.
  8. Pastilles de détergent selon au moins l'une des revendications 1 à 7,
    caractérisées en ce qu'
    elles contiennent des phosphates en quantités de 10 à 60 % en poids - rapporté au détergent.
  9. Pastilles de détergent selon au moins l'une des revendications 1 à 8,
    caractérisées en ce qu'
    elles contiennent des agents de fragmentation choisis dans le groupe constitué par les polysaccharides, la polyvinylpyrrolidone, le kollidon, l'acide alginique et ses sels alcalins, les silicates stratifiés amorphes ou également en partie cristallins, les polyuréthanes et les polyéthylènes glycols.
  10. Pastilles de détergent selon au moins l'une des revendications 1 à 9,
    caractérisées en ce qu'
    elles contiennent des agents de fragmentation en des quantités de 0,1 à 25 % en poids - rapporté au détergent.
EP00964124A 1999-09-15 2000-09-06 Detergent en pastilles Expired - Lifetime EP1212401B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19944218 1999-09-15
DE19944218A DE19944218A1 (de) 1999-09-15 1999-09-15 Waschmitteltabletten
PCT/EP2000/008687 WO2001019951A1 (fr) 1999-09-15 2000-09-06 Detergent en pastilles

Publications (2)

Publication Number Publication Date
EP1212401A1 EP1212401A1 (fr) 2002-06-12
EP1212401B1 true EP1212401B1 (fr) 2006-11-29

Family

ID=7922123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00964124A Expired - Lifetime EP1212401B1 (fr) 1999-09-15 2000-09-06 Detergent en pastilles

Country Status (5)

Country Link
US (1) US6951838B1 (fr)
EP (1) EP1212401B1 (fr)
DE (2) DE19944218A1 (fr)
ES (1) ES2277595T3 (fr)
WO (1) WO2001019951A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820844A1 (fr) * 2006-02-15 2007-08-22 The Procter and Gamble Company Tablette détergente sans agent blanchissant
EP2620211A3 (fr) 2012-01-24 2015-08-19 Takasago International Corporation Nouvelles microcapsules

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE280223C (fr)
DE496510C (de) 1930-04-24 Vermeta G M B H Mappen- oder Kofferschloss
DE164514C (fr)
DE301298C (fr)
BE617684A (fr) * 1961-05-15
US4118332A (en) * 1965-10-22 1978-10-03 Colgate-Palmolive Company Synergistic antibacterial composition containing mixtures of certain halogenated diphenyl ethers and trichlorocarbanilides
US3594324A (en) * 1968-05-24 1971-07-20 Stauffer Chemical Co Detergent composition containing a synergistic combination of emc and gelatin as soil suspension agents
FR2147443A5 (en) * 1971-07-28 1973-03-09 Dynachim Sarl Neutral detergents without phosphates - for all fibre types
ZA734721B (en) 1972-07-14 1974-03-27 Procter & Gamble Detergent compositions
US3957967A (en) * 1973-07-27 1976-05-18 Blendax-Werke R. Schneider & Co. Agent for the care and the cleaning of teeth and dentures
GB1455873A (en) 1973-08-24 1976-11-17 Procter & Gamble Textile-softening detergent compositions
GB1529841A (en) * 1975-01-13 1978-10-25 Procter & Gamble Ltd Detergent compositions
US4076800A (en) * 1975-01-13 1978-02-28 The Procter & Gamble Company Protein-containing detergent compositions for protecting keratinous materials
GB1536136A (en) * 1975-03-03 1978-12-20 Unilever Ltd Detergent composition
DE2553900A1 (de) 1975-12-01 1977-06-08 Konrad Ruckstuhl Verfahren und vorrichtungen zur aufbereitung von gepressten zuckerrohrbagasse-ballen
EP0026529B2 (fr) 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Compositions détergentes
EP0028432B1 (fr) 1979-11-03 1984-01-18 THE PROCTER & GAMBLE COMPANY Compositions de lavage granulaires
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
CA1238917A (fr) 1984-01-31 1988-07-05 Vivian B. Valenty Adjuvant pour detergent
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
DE3526405A1 (de) 1985-07-24 1987-02-05 Henkel Kgaa Schichtsilikate mit beschraenktem quellvermoegen, verfahren zu ihrer herstellung und ihre verwendung in wasch- und reinigungsmitteln
FR2597473B1 (fr) 1986-01-30 1988-08-12 Roquette Freres Procede d'oxydation de di-, tri-, oligo- et polysaccharides en acides polyhydroxycarboxyliques, catalyseur mis en oeuvre et produits ainsi obtenus.
GB8629837D0 (en) 1986-12-13 1987-01-21 Interox Chemicals Ltd Bleach activation
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3723826A1 (de) 1987-07-18 1989-01-26 Henkel Kgaa Verfahren zur herstellung von alkylglykosiden
DE3732947A1 (de) 1987-09-30 1989-04-13 Henkel Kgaa Zur verwendung in wasch- und reinigungsmitteln geeignetes schaumregulierungsmittel
US5576425A (en) 1988-10-05 1996-11-19 Henkel Kommanditgesellschaft Auf Aktien Process for the direct production of alkyl glycosides
DE3833780A1 (de) 1988-10-05 1990-04-12 Henkel Kgaa Verfahren zur direkten herstellung von alkylglykosiden
GB8908416D0 (en) 1989-04-13 1989-06-01 Unilever Plc Bleach activation
EP0427349B1 (fr) 1989-11-10 1995-07-12 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procédé pour la préparation de polydicarboxysaccharides
YU221490A (sh) 1989-12-02 1993-10-20 Henkel Kg. Postupak za hidrotermalnu izradu kristalnog natrijum disilikata
GB9003741D0 (en) 1990-02-19 1990-04-18 Unilever Plc Bleach activation
US5041232A (en) 1990-03-16 1991-08-20 Lever Brothers Company, Division Of Conopco, Inc. Sulfonimines as bleach catalysts
US5047163A (en) 1990-03-16 1991-09-10 Lever Brothers Company, Division Of Conopco, Inc. Activation of bleach precursors with sulfonimines
GB2242130A (en) 1990-03-20 1991-09-25 Infowise Ltd Cleaning and sanitising tablets manufactured by direct compression
EP0458398B1 (fr) 1990-05-21 1997-03-26 Unilever N.V. Activation du blanchiment
IT1249883B (it) 1990-08-13 1995-03-30 Ferruzzi Ricerca & Tec Agenti sequestranti del calcio a base di carboidrati ossidati e loro impiego come builder per detergenti
IT1245063B (it) 1991-04-12 1994-09-13 Ferruzzi Ricerca & Tec Procedimento per l'ossidazione di carboidrati
ATE155165T1 (de) 1991-07-31 1997-07-15 Ausimont Spa Verfahren zur erhöhung der bleichwirksamkeit eines inorganischen persalzes
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
EP0542496B1 (fr) 1991-11-14 1998-05-20 The Procter & Gamble Company Amidon oxydé à C6/C2-C3 utilisé comme ingrédient pour détergent
EP0544490A1 (fr) 1991-11-26 1993-06-02 Unilever Plc Compositions détergentes de blanchiment
US5194416A (en) 1991-11-26 1993-03-16 Lever Brothers Company, Division Of Conopco, Inc. Manganese catalyst for activating hydrogen peroxide bleaching
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
CA2085642A1 (fr) 1991-12-20 1993-06-21 Ronald Hage Activation de blanchiment
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
AU6949194A (en) 1993-05-20 1994-12-20 Procter & Gamble Company, The Bleaching compositions comprising n-acyl caprolactam activators
JP3285871B2 (ja) 1993-05-20 2002-05-27 ザ、プロクター、エンド、ギャンブル、カンパニー 手洗いまたは他の低水クリーニングシステムで使用するためのn−アシルカプロラクタムを含む漂白コンパウンド
CN1066715C (zh) 1993-05-20 2001-06-06 普罗格特-甘布尔公司 包含取代的苯甲酰基己内酰胺漂白活化剂的漂白化合物
DE4317519A1 (de) 1993-05-26 1994-12-01 Henkel Kgaa Herstellung von Polycarboxylaten auf Polysaccharid-Basis
IL109705A (en) * 1993-06-17 1998-07-15 Allergan Inc Enzyme compositions and methods for contact lens cleaning
US5405413A (en) 1993-06-24 1995-04-11 The Procter & Gamble Co. Bleaching compounds comprising acyl valerolactam bleach activators
NL194919C (nl) 1993-09-07 2003-07-04 Tno Werkwijze voor het oxideren van koolhydraten.
NL9301905A (nl) 1993-11-04 1995-06-01 Inst Voor Agrotech Onderzoek Werkwijze voor het oxideren van koolhydraten.
DE4400024A1 (de) 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4402851A1 (de) 1994-01-31 1995-08-03 Henkel Kgaa Wirbelschicht-Oxidationsverfahren zur Herstellung von Polycarboxylaten auf Polysaccharid-Basis
DE4416438A1 (de) 1994-05-10 1995-11-16 Basf Ag Ein- oder mehrkernige Metall-Komplexe und ihre Verwendung als Bleich- und Oxidationskatalysatoren
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
ES2221665T3 (es) 1994-07-21 2005-01-01 Ciba Specialty Chemicals Holding Inc. Composicion de blanqueo de tejidos.
FR2723858B1 (fr) * 1994-08-30 1997-01-10 Ard Sa Procede de preparation d'agents tensioactifs a partir de sous-produits du ble et nouveaux xylosides d'alkyle
GB9419091D0 (en) 1994-09-22 1994-11-09 Cerestar Holding Bv Process for decreasing the build up of inorganic incrustations on textiles and detergent composition used in such process
DE4443177A1 (de) 1994-12-05 1996-06-13 Henkel Kgaa Aktivatormischungen für anorganische Perverbindungen
DE19524287A1 (de) 1995-07-06 1997-01-09 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19547457A1 (de) 1995-12-19 1997-06-26 Henkel Kgaa Von Staub- und Feinanteilen freie granulare Wasch- und Reinigungsmittel hoher Schüttdichte
DE19529905A1 (de) 1995-08-15 1997-02-20 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19536082A1 (de) 1995-09-28 1997-04-03 Henkel Kgaa Aktivatorkomplexe für Persauerstoffverbindungen
DE19600018A1 (de) 1996-01-03 1997-07-10 Henkel Kgaa Waschmittel mit bestimmten oxidierten Oligosacchariden
DE19605688A1 (de) 1996-02-16 1997-08-21 Henkel Kgaa Übergangsmetallkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19620411A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallamminkomplexe als Aktivatoren für Persauerstoffverbindungen
DE19613103A1 (de) 1996-04-01 1997-10-02 Henkel Kgaa Übergangsmetallkomplex-haltige Systeme als Aktivatoren für Persauerstoffverbindungen
DE19616767A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616769A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acylacetale als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616693A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19616770A1 (de) 1996-04-26 1997-11-06 Henkel Kgaa Acyllactame als Bleichaktivatoren für Wasch- und Reinigungsmittel
DE19620267A1 (de) 1996-05-20 1997-11-27 Henkel Kgaa Katalytisch wirksame Aktivatorkomplexe mit N¶4¶-Liganden für Persauerstoffverbindungen
DE19701896A1 (de) * 1997-01-21 1998-07-23 Clariant Gmbh Granulares sekundäres Alkansulfonat
DE19709991C2 (de) 1997-03-11 1999-12-23 Rettenmaier & Soehne Gmbh & Co Waschmittelpreßling und Verfahren zu seiner Herstellung
DE19710254A1 (de) 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
GB2327949A (en) * 1997-08-02 1999-02-10 Procter & Gamble Detergent tablet
DE29824160U1 (de) * 1998-01-28 2000-08-10 Henkel Kgaa Mehrphasige Waschmitteltabletten
DE19808757B4 (de) * 1998-03-02 2007-09-20 Henkel Kgaa Duftperlen in Wasch- und Reinigungsmittelformkörpern
DE19818965A1 (de) * 1998-04-28 1999-11-04 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19824743A1 (de) * 1998-06-03 1999-12-09 Henkel Kgaa Bruchstabile und schnellösliche Wasch- und Reinigungsmittelformkörper
DE19828579A1 (de) * 1998-06-26 1999-12-30 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE19831707A1 (de) * 1998-07-15 2000-01-20 Henkel Kgaa Verfahren zur Herstellung fettalkoholsulfathaltiger Wasch- und Reinigungsmittelformkörper

Also Published As

Publication number Publication date
DE19944218A1 (de) 2001-03-29
US6951838B1 (en) 2005-10-04
DE50013819D1 (de) 2007-01-11
EP1212401A1 (fr) 2002-06-12
WO2001019951A1 (fr) 2001-03-22
ES2277595T3 (es) 2007-07-16

Similar Documents

Publication Publication Date Title
EP1240290B1 (fr) Granulats de tensioactifs presentant une plus grande vitesse de dissolution
EP1106675B1 (fr) Utilisation de polyglycolethers de glycerides partiels
EP1232242B1 (fr) Granules d'agent tensio-actif a vitesse de decomposition amelioree
EP1188817A2 (fr) Composition Detergente
EP1191094A2 (fr) Composition Detergente
EP1257627A1 (fr) Melange tensioactif contenant des alcoxylats d'alcools gras a base de matieres vegetales
EP1186649A1 (fr) Tablettes détergentes
EP1188819A1 (fr) Tablettes détergentes
WO2001027238A1 (fr) Pastilles detergentes
DE19942539A1 (de) Waschmittel
EP1212401B1 (fr) Detergent en pastilles
EP1240288A1 (fr) Corps moules d'agents de lavage et de nettoyage presentant des proprietes de decomposition ameliorees
DE10046251A1 (de) Wasch- und Reinigungsmittel auf Basis von Alkyl- und/oder Alkenyloligoglycosiden und Fettalkoholen
EP1375633B1 (fr) Compositions détergentes contenant des polymères
EP1212400B1 (fr) Detergent en pastilles
EP1228180A1 (fr) Granules d'antimousse
EP1310550B1 (fr) Composition démoussante et son utilisation
EP1249489A1 (fr) Corps moules d'agents de lavage et de nettoyage présentant des proprietés de décomposition améliorées
EP1205536A2 (fr) Utilisation des mélanges tensioactifs
EP1314722B1 (fr) Esters de polyglycol d'acides sulphoniques aromatiques
DE10002008A1 (de) Verfahren zur Herstellung von Tablettensprengmitteln
EP1090982A1 (fr) Article moulé ayant une solubilité dans l'eau améliorée
DE19953027A1 (de) Waschmitteltabletten
DE19948669A1 (de) Waschmitteltabletten
DE19953794A1 (de) Formkörper mit verbesserter Wasserlöslichkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013819

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070214

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277595

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

BERE Be: lapsed

Owner name: COGNIS IP MANAGEMENT G.M.B.H.

Effective date: 20070930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070906