EP1210806A1 - Demodulator unter verwendung von einem verzögerungsdetektor - Google Patents

Demodulator unter verwendung von einem verzögerungsdetektor

Info

Publication number
EP1210806A1
EP1210806A1 EP00956517A EP00956517A EP1210806A1 EP 1210806 A1 EP1210806 A1 EP 1210806A1 EP 00956517 A EP00956517 A EP 00956517A EP 00956517 A EP00956517 A EP 00956517A EP 1210806 A1 EP1210806 A1 EP 1210806A1
Authority
EP
European Patent Office
Prior art keywords
phase
receiver
signal
communication information
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00956517A
Other languages
German (de)
English (en)
French (fr)
Inventor
André Neubauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1210806A1 publication Critical patent/EP1210806A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying

Definitions

  • the present invention relates to a communication system according to the preamble of claim 1, in which wave-modulated signals, in particular MSK signals (minimum shift keymg), are transmitted, and a corresponding receiver.
  • wave-modulated signals in particular MSK signals (minimum shift keymg)
  • MSK signals minimum shift keymg
  • DECT systems Digital European Cordless Telephone
  • radio systems which are operated in the so-called unlicensed ISM frequency bands (Industrial Scientific Medical)
  • super heterodyne receivers are often used to receive and demodulate phase-modulated signals.
  • low IF intermediate frequency
  • zero IF zero IF
  • Low-IF receivers use a relatively low intermediate frequency, which can be, for example, approximately 1 MHz for input signal frequencies of approximately 2 GHz, while the intermediate frequency for zero-IF receivers is 0 MHz.
  • the phase-modulated received signal is demodulated by means of suitable, often analog signal processing (e.g. with DECT receivers).
  • FIG. 4 shows a simplified block diagram of such a low or zero IF (homodyne) receiver.
  • the communication information to be transmitted is transmitted via the phase of a carrier signal, the phase of the carrier signal being changed as a function of the value of the communication information to be transmitted.
  • ⁇ 0 denotes the carrier frequency
  • ⁇ 0 represents the zero phase
  • the signal components u (t) and v (t) contain the time-dependent phase information corresponding to the communication or night bits to be transmitted. By recovering this phase information, the values of the individual communication bits can be deduced in the receiver.
  • the reception signal x RF (t) is first pre-filtered by means of a bandpass filter 14 and amplified by means of a linear amplifier 23 in m low-IF or zero-IF receivers.
  • the received signal thus processed is then divided into two signal paths, namely an I and a Q signal path.
  • the received signal m in a mixer 15 is multiplied by the signal cos ( ⁇ 0 t) of a local oscillator 17, while in the Q signal path the received signal in a mixer 16 is multiplied by the corresponding quadrature signal -sm ( ⁇ 0 t) , which is obtained from the oscillator signal cos ( ⁇ 0 t) with the aid of a corresponding phase shift unit 18.
  • a low-pass filtering with the aid of appropriate anti-aliasing filters 19 and 20 and an A / D conversion with the aid of corresponding A / D converters 21 and 22 then take place in both signal paths.
  • the output signals of the two signal paths are finally grounded evaluated by a (in the present case digital) signal processing unit in order to use the signals thus obtained to produce the generally complex useful signal [u (t) + jv (t)] ⁇ 0 t) with the desired phase information, from which in turn the values of the transmitted communication or message bits d k can be derived.
  • such a homodyne receiver generally has two real signal paths, each with a mixer 15 or 16, a filter 19 or 20 and an A / D converter 21 or 22 required.
  • a component 18 is required to generate the quadrature signals of the local oscillator 17.
  • the procedure described above is in principle suitable for all types of phase modulation. However, it does not take advantage of the properties of suitably defined modulation methods to reduce effort.
  • the present invention is therefore based on the object of proposing a communication system for transmitting and receiving angle-modulated signals, in particular digital phase or frequency-modulated signals, and a corresponding receiver, the receiver being able to be implemented with significantly less effort.
  • coding information or coding bits are inserted into the message bits to be transmitted, where in particular, for example, a coding bit with the fixed binary value "1" can be inserted between two successive message bits.
  • the receiver is designed such that, by suitable signal processing of the angle-modulated signal based on the message and coding bits, the original message bits can be detected with only one real signal path, ie without a complex I / Q signal path. In contrast to the known homodyne receiver shown in FIG. 4, the destination of the receiver is therefore not the signal reconstruction, but the detection of the digital transmission data.
  • the proposed coding and pulse shaping make phase-incoherent demodulation of the angle-modulated received signal and detection of the digital transmit data independent of a possible phase shift between the high-frequency received signal of the receiver and the local oscillator signal, which is used in the receiver for mixing down the received signal into the baseband , enables.
  • the carrier phase control required in the homodyne receiver shown in FIG. 4 can thus be omitted.
  • the mixer, filter and A / D converter only have to be provided once. Since no complex I / Q signal path is required, the mixer, filter and A / D converter only have to be provided once. Since no complex I / Q signal path is required, the
  • Quadrature signal generation for the local oscillator signal is eliminated, and there are no matching requirements to be observed between the I / Q signal paths.
  • FIG. 1 shows a simplified block diagram of a receiver according to the invention
  • FIG. 2 shows a possible implementation of a digital demodulator shown in FIG. 1,
  • FIG. 4 shows a simplified block diagram of a known homodyne receiver.
  • the present invention is explained below by way of example using MSK-modulated (minimum shift keying) signals for the noise-free case.
  • MSK-modulated minimum shift keying
  • the invention is not restricted to this type of modulation, but rather can be applied generally to all types of angle modulation, in particular to all CPFSK (continuous phase frequency shift keying) modulation methods, such as those used according to the DECT or GSM mobile radio standard ,
  • the phase of the carrier signal is rotated either by - ⁇ / 2 or by + ⁇ / 2 depending on the binary value d k e ⁇ - 1,1) to be transmitted.
  • the high-frequency MSK signal x RF (t) transmitted by a transmitter 25 shown in FIG. 1 via a transmitting antenna 26 and received by a receiver 27 via a receiving antenna 1 generally has the form:
  • ⁇ 0 denotes the carrier frequency
  • ⁇ 0 the zero phase
  • the phase offset between the RF received signal and the signal from the local oscillator (not shown in FIG. 1) of the receiver 27
  • ⁇ (t) which are the result of the binary information to be transmitted adjusting phase change of the carrier signal.
  • the transmitter 25 shown in Fig. 1 is designed such that not only the actual message bits d k are transmitted phase-modulated, but also coding bits, which guide from the transmitter 25 at regular intervals before passing ⁇ be inserted, with the phase modulation in the yogaenbitsequenz.
  • ⁇ k ⁇ / 2 - (f + / t _, + ... + /, +
  • a digital demodulator 6 shown in FIG. 1 has the task of determining the transmitted message bits d k by evaluating the individual sample values y.
  • a possible implementation of the digital demodulator 6 is shown in FIG. 2 in the form of a simplified block diagram.
  • the digital demodulator 6 comprises only three memory or delay elements 7-9, which form a shift register of the length 3, two multipliers 10 and 11 and an adder 12 and a sign. Detector 13.
  • the multipliers 10 and 11 By interconnecting the multipliers 10 and 11 with the individual memory stages 7-9 of the shift register it is achieved that one of these two multipliers always multiplies two samples of the baseband signal sequence y k , which go back to two successive message bits, while the other multiplier two Multiplied samples of the baseband signal sequence y k , which are based on two successive coding bits.
  • the multiplication results are added by the adder 12, so that the sign detector 13 can simply determine and output the values of the transmitted message bits d by evaluating the sign of the addition result.
  • the aforementioned coding not only implements pulse shaping, but in particular enables phase-incoherent demodulation and detection of the message bits d independently of a possible phase offset ⁇ between the high-frequency received signal x RF (t) and the local oscillator signal, so that none Carrier phase control is required.
  • 3 shows the bit error rate (BER) that can be achieved using the present invention as a function of the bit signal-to-noise ratio E b / N 0 .
  • the corresponding BER characteristics of other known demodulation methods are also shown for comparison. It can be seen from the illustration in FIG.
  • a higher-quality Hadamard coding can be used, in which the coding bits are inserted into the message bit sequence to be transmitted at greater intervals.
  • the digital demodulator 6 shown in FIG. 2 must of course be adapted accordingly with regard to the length of the shift register and the connection of the two multipliers 10, 11 to the shift register.
EP00956517A 1999-09-08 2000-09-06 Demodulator unter verwendung von einem verzögerungsdetektor Withdrawn EP1210806A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942944A DE19942944A1 (de) 1999-09-08 1999-09-08 Kommunikationssystem und entsprechender Empfänger
DE19942944 1999-09-08
PCT/EP2000/008701 WO2001019046A1 (de) 1999-09-08 2000-09-06 Demodulator unter verwendung von einem verzögerungsdetektor

Publications (1)

Publication Number Publication Date
EP1210806A1 true EP1210806A1 (de) 2002-06-05

Family

ID=7921253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00956517A Withdrawn EP1210806A1 (de) 1999-09-08 2000-09-06 Demodulator unter verwendung von einem verzögerungsdetektor

Country Status (6)

Country Link
US (1) US6549588B2 (zh)
EP (1) EP1210806A1 (zh)
JP (1) JP3601713B2 (zh)
CN (1) CN100399774C (zh)
DE (1) DE19942944A1 (zh)
WO (1) WO2001019046A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031371B1 (en) * 2000-09-25 2006-04-18 Lakkis Ismail A CDMA/TDMA communication method and apparatus for wireless communication using cyclic spreading codes
US7339955B2 (en) * 2000-09-25 2008-03-04 Pulse-Link, Inc. TDMA communication method and apparatus using cyclic spreading codes
US8045935B2 (en) 2001-12-06 2011-10-25 Pulse-Link, Inc. High data rate transmitter and receiver
US7289494B2 (en) * 2001-12-06 2007-10-30 Pulse-Link, Inc. Systems and methods for wireless communication over a wide bandwidth channel using a plurality of sub-channels
US20050152483A1 (en) * 2001-12-06 2005-07-14 Ismail Lakkis Systems and methods for implementing path diversity in a wireless communication network
US20050201473A1 (en) * 2001-12-06 2005-09-15 Ismail Lakkis Systems and methods for receiving data in a wireless communication network
US7257156B2 (en) * 2001-12-06 2007-08-14 Pulse˜Link, Inc. Systems and methods for equalization of received signals in a wireless communication network
US7391815B2 (en) * 2001-12-06 2008-06-24 Pulse-Link, Inc. Systems and methods to recover bandwidth in a communication system
US7483483B2 (en) * 2001-12-06 2009-01-27 Pulse-Link, Inc. Ultra-wideband communication apparatus and methods
US7406647B2 (en) * 2001-12-06 2008-07-29 Pulse-Link, Inc. Systems and methods for forward error correction in a wireless communication network
US7450637B2 (en) * 2001-12-06 2008-11-11 Pulse-Link, Inc. Ultra-wideband communication apparatus and methods
US20050058180A1 (en) * 2001-12-06 2005-03-17 Ismail Lakkis Ultra-wideband communication apparatus and methods
US7349439B2 (en) * 2001-12-06 2008-03-25 Pulse-Link, Inc. Ultra-wideband communication systems and methods
US20050053121A1 (en) * 2001-12-06 2005-03-10 Ismail Lakkis Ultra-wideband communication apparatus and methods
US7317756B2 (en) * 2001-12-06 2008-01-08 Pulse-Link, Inc. Ultra-wideband communication apparatus and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746996A (en) * 1971-12-29 1973-07-17 Bell Telephone Labor Inc Asynchronous single-sideband demodulation
US4888793A (en) * 1988-05-06 1989-12-19 Motorola, Inc. Phase correcting DPSK/PSK receiver with digitally stored phase correction derived from received data
US5398002A (en) * 1989-02-15 1995-03-14 Samsung Electronics Co., Ltd. Automatic frequency control system by quadrature-phase in frequency or phase demodulating system
DK0486554T3 (da) * 1989-08-11 1994-12-27 Siemens Ag Oesterreich Fremgangsmåde og indretning til omsætning af digitalt modulerede modtagesignaler fra højfrekvensområdet
US5301206A (en) * 1992-02-07 1994-04-05 Victor Company Of Japan, Inc. Spread spectrum communication system
JPH0690225A (ja) * 1992-09-09 1994-03-29 Shodenryoku Kosoku Tsushin Kenkyusho:Kk ダイバーシティ無線受信機
US5450612A (en) * 1993-08-26 1995-09-12 Motorola, Inc. Communication system for communicating with a plurality of selective call receivers and method therefor
JP2643792B2 (ja) * 1993-09-14 1997-08-20 日本電気株式会社 復調装置
WO1996008850A2 (en) * 1994-09-14 1996-03-21 Philips Electronics N.V. A radio transmission system and a radio apparatus for use in such a system
JPH0983588A (ja) * 1995-09-18 1997-03-28 Mitsubishi Electric Corp 復調器及び変復調システム及び復調方法
US5907584A (en) * 1995-11-14 1999-05-25 Link Plus Corporation System and method for transmitting and receiving a Lincompex signal having information encoded thereon through angle modulation
FR2767238B1 (fr) * 1997-08-07 1999-10-01 Alsthom Cge Alcatel Dispositifs monocanal et multicanaux de demodulation coherente sans pilote, et ensemble correspondant de reception a plusieurs chemins de diversite

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0119046A1 *

Also Published As

Publication number Publication date
US20020111148A1 (en) 2002-08-15
DE19942944A1 (de) 2001-03-22
CN100399774C (zh) 2008-07-02
JP3601713B2 (ja) 2004-12-15
JP2003509908A (ja) 2003-03-11
WO2001019046A1 (de) 2001-03-15
CN1372745A (zh) 2002-10-02
US6549588B2 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
EP0486554B1 (de) Verfahren und vorrichtung zum umsetzen digital modulierter empfangssignale aus dem hochfrequenzbereich
EP1374428B1 (de) Sende- und empfangseinheit
EP1210806A1 (de) Demodulator unter verwendung von einem verzögerungsdetektor
DE69929013T2 (de) Phasenschätzung bei Trägerrückgewinnung für QAM-Signale
WO1998020625A1 (de) Verfahren zur drahtlosen übertragung einer nachricht
DE60117052T2 (de) Gemeinsame schätzung des gleichspannungsoffsets und des kanals mittels der methode der kleinsten quadrate
EP1770868B1 (de) Vorrichtung zum Überführen eines komplexwertigen Bandpasssignals in ein digitales Basisbandsignal
DE69838216T2 (de) Datenwandler
DE602004003863T2 (de) Demodulationsgerät und Demodulationsverfahren für drahtlose digitale Kommunikation
DE69826415T2 (de) Einseitenbandübertragung von QPSK-, QAM- und sonstigen Signalen
DE102004052898B4 (de) Kompensation des Trägerfrequenz-Offsets in einer für mehrere Modulationsarten ausgelegten Empfangsvorrichtung eines mobilen Kommunikationssystems
EP1354340B1 (de) Signalempfangs- und -verarbeitungsverfahren für schnurlose kommunikationssysteme
EP0579100B1 (de) Verfahren und Einrichtung zur Phasenkorrektur im Basisband eines PSK-Empfängers
DE102004052897B4 (de) Funkempfänger und Verfahren für den Empfang von mit zwei Modulationsarten modulierten Datenbursts
EP1238502B1 (de) Empfangsvorrichtung für winkelmodulierte signale unter verwendung digitaler kanalselektion
DE3733967C2 (zh)
EP0602394B1 (de) Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen
EP1340319A2 (de) Beseitigung von durch einen kanalselektionsfilter verursachten verzerrrungen
DE10300267B4 (de) Demodulation eines frequenzmodulierten Empfangssignals durch Abbilden der Nulldurchgänge auf eine Folge von Parameterwerten
DE19933266A1 (de) Vorrichtung zum Empfangen von Funksignalen
DE10157392C2 (de) Empfänger mit Offsetkompensation
DE102004061857A1 (de) Verfahren und Vorrichtung zur Trägerfrequenzsynchronisierung eines Offset-Quadraturphasenmodulierten Signals
DE102004028806B3 (de) Empfänger für ein drahtloses Kommunikationssystem
DE69433267T2 (de) Digital synchronisierter diversity-funkempfänger
WO2005067244A1 (de) Verfahren und vorrichtung zur demodulation eines phasenmodulierten signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20041028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070703