EP1207350B1 - Brennkammer und Verfahren zum Betrieb dieser Brennkammer - Google Patents

Brennkammer und Verfahren zum Betrieb dieser Brennkammer Download PDF

Info

Publication number
EP1207350B1
EP1207350B1 EP01126841A EP01126841A EP1207350B1 EP 1207350 B1 EP1207350 B1 EP 1207350B1 EP 01126841 A EP01126841 A EP 01126841A EP 01126841 A EP01126841 A EP 01126841A EP 1207350 B1 EP1207350 B1 EP 1207350B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion chamber
mixing zone
lance
chamber according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01126841A
Other languages
English (en)
French (fr)
Other versions
EP1207350A2 (de
EP1207350A3 (de
Inventor
Marcel Stalder
Daniel Burri
Urs Benz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7663158&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1207350(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1207350A2 publication Critical patent/EP1207350A2/de
Publication of EP1207350A3 publication Critical patent/EP1207350A3/de
Application granted granted Critical
Publication of EP1207350B1 publication Critical patent/EP1207350B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • a combustion chamber with auto-ignition From the Laid-open specification DE-A1-44 17 538 is known a combustion chamber with auto-ignition.
  • fuel and supporting air are introduced into a hot gas stream through a fuel lance, where they are mixed and the mixture is burned in a downstream combustion zone.
  • the fuel lance is located in a mixing zone and is centrally located there. It is dimensioned for about 10% of the total volume flow through the channel, wherein the fuel can be injected transversely or in the direction of the flow.
  • the injected fuel is entrained in conjunction with a portion of support air through a plurality of radial openings of the upstream injected vertebrae and mixed with the mainstream.
  • the injected fuel follows the helical course of the vortices and is evenly distributed downstream in the chamber. This reduces the risk of impact rays on the opposite channel wall and the formation of "hot spots", as is the case with an untwisted flow.
  • the invention solves the problem of providing a combustion chamber and a method for operating this combustion chamber, with which it is possible to minimize the disturbance of the hot gas flow in the mixing zone of the combustion chamber. This should be done with less cooling of the fuel lance and it should be an improved behavior of the combustion chamber in all load ranges.
  • this is achieved in a device according to the preamble of claim 1, characterized in that the fuel is injected from at least one side wall of the mixing zone of the combustion chamber wherein the fuel lance has the shape of a ball or an ellipsoid and protrudes into the interior of the mixing zone and it is at
  • the method according to claim 8 achieved in that the at least one fuel lance is embedded in a side wall of the mixing zone of the combustion chamber. wherein the fuel lance is in the form of a sphere or ellipsoid and projects into the interior of the mixing zone.
  • support air is injected through this fuel lance.
  • the at least one fuel lance has the shape of a ball or an ellipsoid extending in the main flow direction and is embedded in the side wall of the combustion chamber and protrudes into the interior of the mixing zone of the combustion chamber. Due to the design of the mixing zone as Venturi channel or possibly additionally existing internals (radially or in the circumferential direction), an increase of the speed and thus an improved mixing of hot gas and fuel / supporting air can be achieved. Trailing areas behind the fuel lance, in which fuel can accumulate, are practically excluded by this type of arrangement.
  • the cooling of the fuel lance can be advantageously minimized.
  • the area of the seal between the side wall of the mixing zone and fuel lance is also advantageously kept small and in an advantageous manner.
  • An advantageous embodiment of the inventive method is that the fuel and the possibly existing supporting air are injected in different fuel / supporting air mixture jets in the mixing zone of the combustion chamber, wherein the different fuel / supporting air mixture jets in different directions or in different sectors are directed within the mixing zone of the combustion chamber.
  • This embodiment is therefore particularly advantageous because depending on the utilization of the combustion chamber beams can be switched on or off.
  • This is also advantageous in combination with the above-mentioned internals because of the targeted feeding of different sectors by the jets, the fuel can be transported at the same pressure in different areas within the mixing zone.
  • the FIG. 1 shows an inventive combustion chamber 1, which is designed as a arranged around a shaft axis 9 annular combustion chamber.
  • the combustion chamber 1 consists of a vortex generator 14, a mixing zone 11 and a combustion zone 12.
  • Such ring burner chambers are very well suited to be operated as a self-igniting combustion chamber 1, the combustion chamber 1 then placed between two, not shown in the single figure turbines is.
  • the upstream-acting turbine is designed only for partial expansion of the hot gases 5, the hot gases 5 then still flowing at a fairly high temperature into the vortex generator 14 and the mixing zone 11 of the combustion chamber 1.
  • the temperature of auto-ignition is of course fuel-dependent.
  • Between the mixing zone 11 and the combustion zone 12 is a abrupt cross-sectional widening 13. In the plane of the cross-sectional widening 13, the flame front sets in.
  • the mixing zone 11, as in the FIG. 1 is shown, is designed as Venturi channel.
  • another form of cross-sectional change may be chosen as long as this serves to improve acceleration and mixing of fuel 4 and hot gases 5.
  • a fuel lance 2 In the area of the narrowest point is a fuel lance 2, with which fuel 3 and additional supporting air 4 are injected into the hot gases 5.
  • the fuel lance 2 is embedded in a side wall 6 of the mixing zone 11. The distribution of the fuel 3 and the supporting air 2 thus takes place asymmetrically with respect to the cross section of the mixing zone 11.
  • the fuel lance 2 represents only a slight disturbance of the flow, this disturbance being located only on the side wall 6 of the mixing zone 11 and no longer, as hitherto, centrally in the main flow.
  • the fuel lance 2 in the form of a sphere or an ellipsoid extending in the main flow direction of the hot gas 5 is let into the side wall 6 of the combustion chamber 1 and protrudes into the interior of the mixing zone 11 of the combustion chamber 1 through a reduced area of the contact point between the fuel lance 2 and the hot gas flow can advantageously both the cooling of the fuel lance 2 minimized and the strength of the combustion chamber 1 can be increased overall.
  • An advantageous embodiment of the inventive method is that the fuel 3 and the possibly existing supporting air 4 in various fuel / supporting air mixture jets 7 are injected into the mixing zone 11 of the combustion chamber 1, wherein the various fuel / supporting air mixture jets 7 are directed into different sectors or in different target areas within the mixing zone 11 of the combustion chamber 1.
  • the FIG. 2 shows a section along the line II-II of FIG. 1 , There, the orientation of the beams 7 in different areas of the mixing zone 11 is clearly visible.
  • the FIG. 3 further shows the section III of the FIG. 2 closer.
  • the support air 4 surrounds the fuel 3 shell-shaped, the fuel jets are injected as a plain jet in the mixing zone.
  • By choosing different ducts different types of fuel (gaseous / liquid) can be used.
  • Such an injection principle is in principle from the Laid-Open Publication EP-A1-1, 030, 109 known.
  • jets 7 are therefore particularly advantageous since, depending on the utilization of the combustion chamber, jets 7 can be switched on or off. This means that the rays 7 are individually spiked. Overall, the entire operating range can be increased from minimum to maximum fuel quantity. Thus, an improved partial load behavior is achieved, which has a positive effect in terms of pollutant behavior, ie formation of CO, NO x , UHC and so on. In addition, it is also possible to connect or disconnect all fuel / supporting air mixture jets 7 of a fuel lance 2 together.
  • the inventive arrangement of the fuel lances 2 is also advantageous because trailing areas behind the fuel lance 2, in which fuel can accumulate 3, are virtually completely excluded.
  • the mixing zone 11 By a change in cross section of the mixing zone 11, for example as Venturi channel or possibly additionally existing internals (radially or circumferentially) within the mixing zone 11 can increase the speed and thus an improved mixing of hot gas. 5 and fuel 3 / supporting air 4 can be achieved. This is also advantageous in combination with the internals mentioned, since with the targeted feeding of different sectors by the jets 7, the fuel 3 can be transported at the same pressure in different sectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

  • Bei der Erfindung handelt es sich um eine Brennkammer gemäss dem Oberbegriff des Anspruchs 1 bzw. um ein Verfahren zum Betrieb der Brennkammer gemäss Anspruch 8. Ein solches Verfahren und eine solche Vorrichtung sind aus Dokument US-A-5 431 018 schon bekannt.
  • Aus der Offenlegungsschrift DE-A1-44 17 538 ist eine Brennkammer mit Selbstzündung bekannt. In dieser Brennkammer werden durch eine Brennstofflanze Brennstoff und Stützluft in einen Heissgasstrom eingeführt, dort vermischt und die Mischung in einer nachgeschalteten Verbrennungszone verbrannt. Die Brennstofflanze befindet sich in einer Mischzone und ist dort zentral angeordnet. Sie ist für etwa 10% des Gesamtvolumenstroms durch den Kanal dimensioniert, wobei der Brennstoff quer oder auch in Richtung zur Strömung eingedüst werden kann. Der eingedüste Brennstoff wird in Verbindung mit einem Anteil Stützluft über mehrere, radiale Öffnungen von den stromauf injizierten Wirbeln mitgerissen und mit der Hauptströmung vermischt. Der eingedüste Brennstoff folgt dem schraubenförmigen Verlauf der Wirbel und wird stromab in der Kammer gleichmässig verteilt. Hierdurch reduziert sich die Gefahr von Aufprallstrahlen an der gegenüberliegenden Kanalwand sowie die Bildung von "hot spots", wie dies bei einer unverwirbelten Strömung der Fall ist.
  • Die Vorteile der zentralen Brennstoffeindüsung werden mit einer relativ schwierig zu kühlenden Brennstofflanzenoberfläche im Heissgasstrom erkauft. Zudem beeinflusst dieser Einbau die Strömung der Heissgase nicht unerheblich. Aus strömungstechnischen Gründen ist eine minimale Lanzenlänge erforderlich. Diese Lanzenlänge bedingt zudem, dass die Brennstofflanze zu Montagezwecken durch ein entsprechendes Langloch in den Brenner eingeführt wird. Dabei entsteht zwischen der Brennerwand und der Brennstofflanze ein relativ grosser Spalt, der relativ schwierig abzudichten ist. Entsprechend unregelmässige Luftleckagen beeinflussen das gesamte Verhalten des Brenners negativ.
  • DARSTELLUNG DER ERFINDUNG
  • Es ist Ziel dieser Erfindung, die genannten Nachteile zu vermeiden. Die Erfindung löst die Aufgabe, eine Brennkammer und ein Verfahren zum Betrieb dieser Brennkammer zu schaffen, mit welchem es möglich ist, die Störung der Heissgasströmung in der Mischzone der Brennkammer zu minimieren. Dies soll bei gleichzeitig geringerer Kühlung der Brennstofflanze geschehen und es soll ein verbessertes Verhalten der Brennkammer in allen Lastbereichen erreichen werden.
  • Erfindungsgemäss wird dies bei einem Vorrichtung gemäss dem Oberbegriff des Anspruchs 1 dadurch erreicht, dass der Brennstoff von mindestens einer Seitenwand der Mischzone der Brennkammer eingedüst wird wobei die Brennstofflanze die Form einer Kugel oder eines Ellipsoiden hat und in den Inneraum der Mischzone ragt und es wird bei dem Verfahren gemäss Anspruch 8 dadurch erreicht, dass die mindestens eine Brennstofflanze in eine Seitenwand der Mischzone der Brennkammer eingelassen ist. wobei die Brennstofflanze die Form einer Kugel oder eines Ellipsoiden hat und in den Inneraum der Mischzone ragt. Selbstverständlich ist es denkbar, dass ebenfalls Stützluft durch diese Brennstofflanze eingedüst wird.
  • Ein Vorteil einer solchen seitlichen, asymmetrischen Eindüsung des Brennstoffs liegt insbesondere darin, dass durch die Brennstofflanze nur eine geringe Störung der Strömung verursacht wird, wobei sich diese Störung lediglich an der Seitenwand der Mischzone und nicht mehr zentral in der Hauptströmung befindet. Die mindestens eine Brennstofflanze hat die Form einer Kugel oder eines sich in Hauptströmungsrichtung erstreckenden Ellipsoiden und ist in die Seitenwand der Brennkammer eingelassen und ragt in den Innenraum der Mischzone der Brennkammer. Durch die Ausgestaltung der Mischzone als Venturikanal bzw. evtl. zusätzlich vorhandene Einbauten (radial oder in Umfangsrichtung) kann eine Erhöhung der Geschwindigkeit und damit eine verbesserte Vermischung von Heissgas und Brennstoff/Stützluft erreicht werden. Nachlaufgebiete hinter der Brennstofflanze, in welchen sich Brennstoff ansammeln kann, sind durch diese Art der Anordnung praktisch ausgeschlossen.
  • Durch eine verkleinerte Fläche der Kontaktstelle zwischen der Brennstofflanze und der Heissgasströmung kann die Kühlung der Brennstofflanze vorteilhaft minimiert werden. Der Bereich der Abdichtung zwischen Seitenwand der Mischzone und Brennstofflanze wird ebenfalls vorteilhaft klein und in vorteilhafter Form gehalten.
  • Eine vorteilhafte Ausführungsform des erfindungsgemässen Verfahrens liegt darin, dass der Brennstoff und die eventuell vorhandene Stützluft in verschiedenen Brennstoff/Stützluft-Gemisch-Strahlen in die Mischzone der Brennkammer eingedüst werden, wobei die verschiedenen Brennstoff/Stützluft-Gemisch-Strahlen in verschiedene Richtungen bzw. in verschiedene Sektoren innerhalb der Mischzone der Brennkammer gerichtet sind. Diese Ausführungsform ist deshalb besonders vorteilhaft, da je nach Auslastung der Brennkammer Strahlen zu- oder abgeschaltet werden können. Dies ist auch in Kombination mit den oben erwähnten Einbauten deshalb vorteilhaft, da mit der gezielten Anspeisung von verschiedenen Sektoren durch die Strahlen, der Brennstoff bei gleichem Druck in verschiedene Bereiche innerhalb der Mischzone transportiert werden kann.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung wird anhand den beigefügten Figuren näher bezeichnet, wobei
  • Fig. 1
    schematisch einen Schnitt durch eine Ringbrennkammer gemäss der Erfindung darstellt,
    Fig. 2
    einen Schnitt gemäss der Linie II-II in der Figur 1 und
    Fig. 3
    den Ausschnitt III der Figur 2.
  • Es werden nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente werden in unterschiedlichen Figuren gleich bezeichnet.
  • WEG ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Figur 1 zeigt eine erfindungsgemässe Brennkammer 1, welche als eine um eine Wellenachse 9 angeordnete Ringbrennkammer ausgeführt ist. Die Brennkammer 1 besteht aus einem Wirbelerzeuger 14, einer Mischzone 11 und aus einer Verbrennungszone 12. Solche Ringbrennerkammern eignen sich sehr gut, um als selbstzündende Brennkammer 1 betrieben zu werden, wobei die Brennkammer 1 dann zwischen zwei, in der einzigen Figur nicht dargestellten Turbinen plaziert ist. Ein Heissgasstrom 5, welcher aus einer ersten, nicht dargestellten Turbine kommt, strömt durch den Wirbelerzeuger 14 in die Mischzone 11, wird dort mit einem Brennstoff 3 vermischt, entzündet sich von selbst in der Verbrennungszone 12 und wird daraufhin in einer zweiten, ebenfalls nicht dargestellten Turbine entspannt. Wird eine solche Brennkammer 1 aufgrund von Selbstzündung betrieben, so ist die stromauf wirkende Turbine nur auf eine Teilentspannung der Heissgase 5 ausgelegt, wobei die Heissgase 5 dann noch mit einer recht hohen Temperatur in den Wirbelerzeuger 14 und die Mischzone 11 der Brennkammer 1 strömen. Die Temperatur der Selbstzündung ist selbstverständlich brennstoffabhängig. Zwischen der Mischzone 11 und der Verbrennungszone 12 befindet sich eine sprunghafte Querschnittserweiterung 13. In der Ebene der Querschnittserweiterung 13 stellt sich die Flammenfront ein.
  • Die Mischzone 11, wie sie in der Figur 1 dargestellt ist, ist als Venturikanal ausgestaltet. Selbstverständlich kann eine andere Form von Querschnittsänderungen gewählt werden, solange dies der verbesserten Beschleunigung und Vermischung von Brennstoff 4 und Heissgasen 5 dient. Im Bereich der engsten Stelle befindet sich eine Brennstofflanze 2, mit welcher Brennstoff 3 und zusätzliche Stützluft 4 in die Heissgase 5 eingedüst werden. Erfindungsgemäss ist die Brennstofflanze 2 in eine Seitenwand 6 der Mischzone 11 eingelassen. Die Verteilung des Brennstoffs 3 und der Stützluft 2 erfolgt somit asymmetrisch in bezug auf den Querschnitt der Mischzone 11.
  • Ein Vorteil einer solchen seitlichen, asymmetrischen Eindüsung des Brennstoffs 3 liegt insbesondere darin, dass die Brennstofflanze 2 nur eine geringe Störung der Strömung darstellt, wobei sich diese Störung lediglich an der Seitenwand 6 der Mischzone 11 und nicht mehr wie bisher zentral in der Hauptströmung befindet. Erfindungsgemäß ist die Brennstofflanze 2 in Form einer Kugel oder eines sich in Hauptströmungsrichtung des Heissgases 5 erstreckenden Ellipsoiden in die Seitenwand 6 der Brennkammer 1 eingelassen und ragt in den Innenraum der Mischzone 11 der Brennkammer 1. Durch eine verkleinerte Fläche der Kontaktstelle zwischen der Brennstofflanze 2 und der Heissgasströmung kann sowohl die Kühlung der Brennstofflanze 2 vorteilhaft minimiert als auch die Festigkeit der Brennkammer 1 insgesamt erhöht werden. In der Praxis bedeutet dies, dass die verkleinerte Oberfläche der Brennstofflanze 2 einfach zu kühlen ist. Eine verbesserte Abdichtung zur Vermeidung von Leckagen wird dadurch erreicht, dass der Durchbruch anstelle eines bisher bekannten Langlochs entsprechend kleiner, d.h. kreisrund oder ellipsenförmig, ausgeführt werden kann, was insgesamt eine Reduktion der Leckagemenge bedeutet.
  • Eine vorteilhafte Ausführungsform des erfindungsgemässen Verfahrens liegt darin, dass der Brennstoff 3 und die eventuell vorhandene Stützluft 4 in verschiedenen Brennstoff/Stützluft-Gemisch-Strahlen 7 in die Mischzone 11 der Brennkammer 1 eingedüst werden, wobei die verschiedenen Brennstoff/Stützluft-Gemisch-Strahlen 7 in verschiedene Sektoren bzw. in verschiedene Zielräume innerhalb der Mischzone 11 der Brennkammer 1 gerichtet sind. Die Figur 2 zeigt einen Schnitt gemäss der Linie II-II der Figur 1. Dort ist die Ausrichtung der Strahlen 7 in verschiedene Bereiche der Mischzone 11 gut sichtbar. Die Figur 3 zeigt weiter den Ausschnitt III der Figur 2 näher. Durch eine Anordnung von mehreren Kanälen nebeneinander ist die Eindüsung von Brennstoff 3 und Stützluft 4 möglich. Die Stützluft 4 umgibt den Brennstoff 3 mantelförmig, wobei die Brennstoffstrahlen als Plain-Jet in die Mischzone eingedüst werden. Durch die Wahl von verschiedenen Kanälen können verschiedene Brennstoffarten (gasförmig / flüssig) verwendet werden. Ein derartiges Eindüsungprinzip ist im Prinzip aus der Offenlegungsschrift EP-A1-1, 030, 109 bekannt.
  • Der Einsatz von unterschiedlichen Düsengeometrien ist für diesen Zweck geeignet. Die Ausführungsform der Strahlen 7 ist deshalb besonders vorteilhaft, da je nach Auslastung der Brennkammer Strahlen 7 zu- oder abgeschaltet werden können. Dies bedeutet, dass die Strahlen 7 einzeln angespiesen werden. Insgesamt kann der gesamte Betriebsbereich von minimaler zu maximaler Brennstoffmenge vergrössert werden. Somit wird ein verbessertes Teillastverhalten erreicht, was sich in bezug auf Schadstoffverhalten, also Bildung von CO, NOx, UHC u.s.w. positiv auswirkt. Daneben ist es ebenso möglich, alle Brennstoff/Stützluft-Gemisch-Strahlen 7 einer Brennstofflanze 2 gemeinsam zu- oder abzuschalten.
  • Die erfindungsgemässe Anordnung der Brennstofflanzen 2 ist auch deshalb vorteilhaft, da Nachlaufgebiete hinter der Brennstofflanze 2, in welchen sich Brennstoff 3 ansammeln kann, praktisch vollständig ausgeschlossen sind.
  • Durch eine Querschnittsänderung der Mischzone 11 beispielsweise als Venturikanal bzw. evtl. zusätzlich vorhandene Einbauten (radial oder in Umfangsrichtung) innerhalb der Mischzone 11 kann eine Erhöhung der Geschwindigkeit und damit eine verbesserte Vermischung von Heissgas 5 und Brennstoff 3 / Stützluft 4 erreicht werden. Dies ist auch in Kombination mit den erwähnten Einbauten deshalb vorteilhaft, da mit der gezielten Anspeisung von verschiedenen Sektoren durch die Strahlen 7, der Brennstoff 3 bei gleichem Druck in verschiedene Sektoren transportiert werden kann.
  • BEZUGSZEICHENLISTE
  • 1
    Brennkammer
    2
    Brennstofflanze
    3
    Brennstoff
    4
    Stützluft
    5
    Heissgasstrom
    6
    Seitenwand des Brenners 1
    7
    Brennstoff/Luft-Gemisch-Strahl
    8
    Abdichtung
    9
    Wellenachse
    10
    Abgase
    11
    Mischzone
    12
    Verbrennungszone
    13
    Querschnittserweiterung
    14
    Wirbelerzeuger

Claims (9)

  1. Brennkammer im wesentlichen bestehend aus einer Mischzone (11) und einer nachgeschalteten Verbrennungszone (12), wobei die Mischzone (11) mindestens eine Brennstofflanze (2) aufweist, welche mit einem Brennstoff (3) und einer Stützluft (4) betreibbar ist, wobei die Brennstofflanze (2) in eine Seitenwand (6) der Mischzone (11) eingelassen ist; dadurch gekennzeichnet, dass die Brennstofflanze die Form einer Kugel oder eines Ellipsoiden hat und in den Innenraum der Mischzone (11) ragt.
  2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass stromauf der Mischzone ein Wirbelerzeuger (14) angeordnet ist.
  3. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Brennstofflanze (2) verschiedene Öffnungen (7) zur Eindüsung eines Brennstoff/Stützluft-Gemisches aufweist, und dass die Öffnungen (7) in verschiedene Richtungen innerhalb der Mischzone (11) gerichtet sind.
  4. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass sich zwischen der Brennstofflanze (2) und der Seitenwand (6) eine Abdichtung (89 befindet.
  5. Brennkammer nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Brennkammer (1) als Ringbrennkammer ausgebildet ist.
  6. Brennkammer nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass zwischen Mischzone (11) und Verbrennungszone (12) eine Querschnittserweiterung (13) vorhanden ist.
  7. Brennkammer nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass die Mischzone (11) als Venturikanal ausgebildet ist.
  8. Verfahren zum Betreiben einer Brennkammer nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass die Verbrennung des Brennstoff/Stützluft-Gemisches durch Selbstzündung erfolgt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass in Abhängigkeit des Lastverhaltens der Brennkammer die Öffnungen (7) zur Eindüsung des Brennstoff/Stützluft-Gemisches zu- und abgeschaltet werden.
EP01126841A 2000-11-14 2001-11-12 Brennkammer und Verfahren zum Betrieb dieser Brennkammer Expired - Lifetime EP1207350B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10056243 2000-11-14
DE10056243A DE10056243A1 (de) 2000-11-14 2000-11-14 Brennkammer und Verfahren zum Betrieb dieser Brennkammer

Publications (3)

Publication Number Publication Date
EP1207350A2 EP1207350A2 (de) 2002-05-22
EP1207350A3 EP1207350A3 (de) 2002-07-24
EP1207350B1 true EP1207350B1 (de) 2008-08-06

Family

ID=7663158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01126841A Expired - Lifetime EP1207350B1 (de) 2000-11-14 2001-11-12 Brennkammer und Verfahren zum Betrieb dieser Brennkammer

Country Status (4)

Country Link
US (1) US6688111B2 (de)
EP (1) EP1207350B1 (de)
JP (1) JP2002162037A (de)
DE (2) DE10056243A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394471A1 (de) 2002-09-02 2004-03-03 Siemens Aktiengesellschaft Brenner
DE60228085D1 (de) * 2002-09-20 2008-09-18 Siemens Ag Vormischbrenner mit profilierter Luftmassenströmung
DE10340826A1 (de) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Homogene Gemischbildung durch verdrallte Einspritzung des Kraftstoffs
DE10348604A1 (de) * 2003-10-20 2005-07-28 Rolls-Royce Deutschland Ltd & Co Kg Kraftstoffeinspritzdüse mit filmartiger Kraftstoffplatzierung
WO2005095863A1 (de) * 2004-03-31 2005-10-13 Alstom Technology Ltd Brenner
EP1828684A1 (de) * 2004-12-23 2007-09-05 Alstom Technology Ltd Vormischbrenner mit mischstrecke
DE102006051286A1 (de) * 2006-10-26 2008-04-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennervorrichtung
NO326633B1 (no) * 2006-12-28 2009-01-26 Age Jorgen Skomsvold Fremgangsmate og anordning for motor- og kompresjonsprosess
DE102007043626A1 (de) 2007-09-13 2009-03-19 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenmagerbrenner mit Kraftstoffdüse mit kontrollierter Kraftstoffinhomogenität
WO2009109448A1 (de) * 2008-03-07 2009-09-11 Alstom Technology Ltd Brenneranordnung sowie anwendung einer solchen brenner-anordnung
EP2116767B1 (de) * 2008-05-09 2015-11-18 Alstom Technology Ltd Brenner mit Lanze
EP2211110B1 (de) * 2009-01-23 2019-05-01 Ansaldo Energia Switzerland AG Brenner für eine gasturbine
US8667800B2 (en) * 2009-05-13 2014-03-11 Delavan Inc. Flameless combustion systems for gas turbine engines
ES2462974T3 (es) 2010-08-16 2014-05-27 Alstom Technology Ltd Quemador de recalentamiento
EP2828581B1 (de) * 2012-03-23 2020-05-27 Ansaldo Energia IP UK Limited Verbrennungsvorrichtung
US9677766B2 (en) 2012-11-28 2017-06-13 General Electric Company Fuel nozzle for use in a turbine engine and method of assembly
US9599343B2 (en) 2012-11-28 2017-03-21 General Electric Company Fuel nozzle for use in a turbine engine and method of assembly
CA2968521A1 (en) 2014-12-02 2016-06-09 Carrier Corporation Capturing user intent when interacting with multiple access controls
EP3228105B1 (de) 2014-12-02 2022-07-20 Carrier Corporation Zugangskontrollsystem mit automatischer übergabe eines mobilen berechtigungsnachweisdienstes
MX2017007288A (es) 2014-12-02 2017-08-25 Carrier Corp Sistema de control de acceso con datos de tarjeta virtual.
CN115899763A (zh) * 2022-11-30 2023-04-04 南京航空航天大学 一种加力或冲压燃烧室尾缘剪切强化火焰稳定器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012415B (en) * 1978-01-04 1982-03-03 Secr Defence Fuel mixers
US4420929A (en) * 1979-01-12 1983-12-20 General Electric Company Dual stage-dual mode low emission gas turbine combustion system
DE68923413T2 (de) * 1988-09-07 1996-04-04 Hitachi Ltd Kraftstoff-Luftvormischvorrichtung für eine Gasturbine.
US5109671A (en) * 1989-12-05 1992-05-05 Allied-Signal Inc. Combustion apparatus and method for a turbine engine
US5097666A (en) * 1989-12-11 1992-03-24 Sundstrand Corporation Combustor fuel injection system
EP0577862B1 (de) * 1992-07-03 1997-03-12 Abb Research Ltd. Nachbrenner
CH687269A5 (de) * 1993-04-08 1996-10-31 Abb Management Ag Gasturbogruppe.
DE4316474A1 (de) * 1993-05-17 1994-11-24 Abb Management Ag Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
GB9321505D0 (en) * 1993-10-19 1993-12-08 Europ Gas Turbines Ltd Fuel injector
DE4408256A1 (de) * 1994-03-11 1995-09-14 Abb Management Ag Verfahren und Vorrichtung zur Flammenstabilisation von Vormischbrennern
DE4417538A1 (de) * 1994-05-19 1995-11-23 Abb Management Ag Brennkammer mit Selbstzündung
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
DE19510743A1 (de) * 1995-02-20 1996-09-26 Abb Management Ag Brennkammer mit Zweistufenverbrennung
DE19527453B4 (de) * 1995-07-27 2009-05-07 Alstom Vormischbrenner
DE19651882A1 (de) * 1996-12-13 1998-06-18 Asea Brown Boveri Verfahren zur Frequenzstützung beim Betrieb einer Kraftwerksanlage
US5970715A (en) * 1997-03-26 1999-10-26 San Diego State University Foundation Fuel/air mixing device for jet engines
US5850732A (en) * 1997-05-13 1998-12-22 Capstone Turbine Corporation Low emissions combustion system for a gas turbine engine
EP0919768B1 (de) * 1997-11-25 2003-02-05 Alstom Brenner zum Betrieb eines Wärmeerzeugers
DE19859829A1 (de) * 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Brenner zum Betrieb eines Wärmeerzeugers
DE19905996A1 (de) 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer

Also Published As

Publication number Publication date
US20030093997A1 (en) 2003-05-22
DE10056243A1 (de) 2002-05-23
JP2002162037A (ja) 2002-06-07
EP1207350A2 (de) 2002-05-22
DE50114185D1 (de) 2008-09-18
US6688111B2 (en) 2004-02-10
EP1207350A3 (de) 2002-07-24

Similar Documents

Publication Publication Date Title
EP1207350B1 (de) Brennkammer und Verfahren zum Betrieb dieser Brennkammer
EP0781967B1 (de) Gasturbinenringbrennkammer
DE4426351B4 (de) Brennkammer für eine Gasturbine
DE102005024062B4 (de) Brennerrohr und Verfahren zum Mischen von Luft und Gas in einem Gasturbinentriebwerk
EP1802915B1 (de) Brenner für gasturbine
EP0675322B1 (de) Vormischbrenner
DE102007004864B4 (de) Brennkammer einer Gasturbine und Verbrennungssteuerverfahren für eine Gasturbine
EP1801504B1 (de) Magervormischbrenner mit einer Zerstäuberlippe
DE69828916T2 (de) Emissionsarmes Verbrennungssystem für Gasturbinentriebwerke
EP1141628B1 (de) Brenner zum betrieb eines wärmeerzeugers
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP0718558B1 (de) Brennkammer
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
CH703657A1 (de) Verfahren zum betrieb einer brenneranordnung sowie brenneranordnung zur durchführung des verfahrens.
DE4415315A1 (de) Kraftwerksanlage
DE4417538A1 (de) Brennkammer mit Selbstzündung
EP0718561A2 (de) Brennkammer
EP0724114A2 (de) Brenner
EP0775869B1 (de) Vormischbrenner
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
EP2507557B1 (de) Brenneranordnung
WO2012016748A2 (de) Gasturbinenbrennkammer
EP2171354B1 (de) Brenner
DE4412315B4 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23R 3/10 A, 7F 23R 3/34 B, 7F 23D 11/40 B, 7F 23R 3/28 B, 7F 23D 14/64 B

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20030109

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20070907

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50114185

Country of ref document: DE

Date of ref document: 20080918

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20090506

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20110520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50114185

Country of ref document: DE

Effective date: 20110520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50114185

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50114185

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50114185

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161121

Year of fee payment: 16

Ref country code: GB

Payment date: 20161122

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50114185

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50114185

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114185

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171112