EP1206807A1 - Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature - Google Patents

Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature

Info

Publication number
EP1206807A1
EP1206807A1 EP00949131A EP00949131A EP1206807A1 EP 1206807 A1 EP1206807 A1 EP 1206807A1 EP 00949131 A EP00949131 A EP 00949131A EP 00949131 A EP00949131 A EP 00949131A EP 1206807 A1 EP1206807 A1 EP 1206807A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
network
nickel
cell according
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00949131A
Other languages
German (de)
English (en)
Inventor
Thomas Jansing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1206807A1 publication Critical patent/EP1206807A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell or a fuel cell stack with the further features of the preamble of patent claim 1.
  • Fuel cells result in a fuel cell stack (also referred to in the technical literature as a fuel cell stack), which in sequence consists of an interconnector plate, a protective layer, a contact layer, a cathode, an electrolyte, an anode, a further contact layer and a further interconnector plate.
  • the interconnector plate with the sprayed-on protective and contact layer forms a unit.
  • Cathode, electrolyte and anode form the electrolyte electrode unit.
  • the corresponding units are layered parallel to each other and repeated several times in the same order.
  • the cathode, electrolyte and anode form an electrolyte-electrode unit.
  • an electrolyte electrode unit lying between adjacent interconnector plates forms a high-temperature fuel cell with the contact and protective layers directly adjacent to the electrolyte electrode unit on both sides, to which the sides of each of the protective layers and contact layers also lie belong to both interconnector plates.
  • the interconnector plates usually consist of CrFe5 with 1% Y-oxide, a so-called ODS alloy.
  • Gas channels are introduced into the interconnector plate, through which the fuel gas, for example hydrogen or methane (natural gas), and oxygen or air are passed becomes.
  • the hydrogen is directed to the anode side, the oxygen or air to the cathode side.
  • These gases are passed through with a relatively low overpressure of less than 1 bar.
  • the planar concept of the high-temperature fuel cell requires that the electrodes be contacted as fully as possible in both gas spaces.
  • contacting of the electrode is ensured by a contact layer made of La Perovskite, for example LasSrOo, 2 Mn ⁇ 3 .
  • This perovskite is stable in air.
  • contacting the electrode i.e. the anode
  • complete contacting of the anode is necessary because of the low transverse conductivity of the anode.
  • the anode is produced in the screen printing process and is therefore not flat over the entire surface, which is why flexible contacting is required which is very good electrical conductivity and whose resistance must be guaranteed over an operating period of approximately 40,000 hours
  • the prior art provides for the use of nickel networks as flexible contacts. For example, a finely meshed and a coarsely meshed nickel mesh are placed on top of one another, spot-welded to one another, so that a flexible intermediate layer with good contact is created.
  • a disadvantage of the prior art has turned out to be that when the fuel cell stack is soldered and when the fuel cell or the fuel cell stack is operated in the direct contact area of nickel network / CrFe5, an oxide layer that waxes out of Cr 2 ⁇ 3 in the non-material contact (Cr ⁇ O ⁇ ) and probably in material contact
  • NiO nickel-II-oxide
  • the nickel wires sinter together, so that there is a reduction in the desired flexibility as well as a reduction in the thickness, which is undesirable.
  • the reduction in thickness can also lead to contact breaks, which can cause component damage.
  • the invention is based on the object of developing a fuel cell or a fuel cell stack with the features of the preamble of patent claim 1 in such a way that the reduction in the thickness and the flexibility of the Nikkeinetze (s) is avoided, so that the most complete possible contact the anode and the interconnector plate is possible.
  • At least one metallic network which is protected against oxidation, is inserted for flexible contacting between the anode and the interconnector plate.
  • Such networks as a contact layer have the advantage that they can no longer oxidize, so that the increase in thickness is also eliminated. Since no oxidation has taken place, there is also no need to reduce the metallic nets and the associated disadvantages, such as, for example, contact breaks during the thickness reduction or loss of flexibility, do not arise. Due to the fact that the oxidation / reduction change process does not take place, the original thickness and flexibility of the networks protected against oxidation are retained, so that a good contacting contact layer is created between the anode and the interconnector. In addition, a reduction in the thickness of the metallic networks is prevented with an ongoing operating period.
  • the metallic nets are expediently coated with an oxidation-resistant protective layer.
  • the metallic networks e.g. Nickel networks remain unaffected both in their composition and in their mechanical and electrical properties, i.e. et al they remain largely flexible, do not cause any change in thickness and essentially retain their advantageous properties. It is advantageous that the metallic nets are subjected to the coating process before being introduced as a flexible contact layer. The assembly with the other components as well as the soldering must then be carried out in the usual way.
  • Coated nickel nets can be provided as metallic nets.
  • the nickel networks meet the requirements with regard to flexibility as well as electrical conductivity.
  • Coated stainless steel nets can also be provided as metallic nets, which have the property that they only oxidize to a depth of approx.
  • the stainless steel nets are also coated with an oxidation-resistant protective layer.
  • Another advantage of Stainless steel networks consist in that their thermal expansion coefficient is well adapted to the thermal behavior of the components of the fuel stack. This property is of considerable advantage especially when the fuel cell is operated at high temperatures.
  • the protective layer advantageously contains chromium and is therefore matched to the chemical composition of the interconnector plate.
  • the protective layer advantageously consists of chromium carbide, which is highly electrically conductive and adheres very well to the metallic network.
  • a chromium carbide layer is also very corrosion-resistant against corresponding partial oxygen pressures on the fuel gas side. Furthermore, these are
  • Layers are stable using methane or coal-derived gases, which are later used media on the fuel gas side of the high-temperature fuel cell.
  • Another advantage of coating with chromium carbide is that when using carbon-derived gases which are passed through the gas channels on the anode side of the interconnect plates, small amounts of the protective layers are reworked by the carbon-derived gases.
  • the chromium carbide layer is therefore particularly thermodynamically favorable.
  • C 3 C 2 , CrC, Cr7C3 or Cr23C6 can be used as chromium carbide.
  • the protective layer of the metallic mesh may consist of chromium nitride.
  • the protective layer expediently has a thickness d of 0.1-10 ⁇ m, so that, on the one hand, there is sufficient protection against oxidation and, on the other hand, the flexibility of the metallic networks is hardly restricted.
  • FIG. 1 shows a schematic cross-sectional representation of the layers of a fuel cell
  • FIG. 2 shows an enlarged, schematic cross-sectional representation of a coated nickel mesh.
  • the fuel cell stack of the fuel cell 1 consists of an interconnector plate 5 ', a protective layer 8, a contact layer 9, a cathode 2, an electrolyte 3, an anode 4, two nickel meshes 6, 6' lying on top of one another and an interconnector plate 5 , wherein these components are arranged in layers parallel to each other.
  • the nickel mesh 6 is thinner than the nickel mesh 6 '.
  • the nickel nets 6, 6 ' are protected against oxidation in order to avoid an oxidation of these nets, which usually occurs when the entire fuel stack is soldered.
  • the oxidation of the nickel mesh is linked to an increase in thickness, the original thickness of the mesh packet being generated again in the subsequent reduction process. This can lead to contact breaks, which can cause component damage.
  • the nickel wires sinter together after the reduction, so that a reduction in the desired flexibility results.
  • the oxidation-protected networks accordingly avoid the oxidation / reduction process of the network packet and the associated disadvantages.
  • the original flexibility and the thickness of the nets can be retained, so that full-surface contacting of the anode 4 and the contact layer of the nickel nets 6, 6 'and the interconnector plate 5 is created.
  • the nickel networks 6, 6 ′ are coated with an oxidation-resistant protective layer 7. This coating can be done before assembling the individual components.
  • stainless steel networks can also be provided, which have the advantage that their thermal expansion coefficient is adapted to the components of the high-temperature fuel cell.
  • the protective layer 7 consists of chromium carbide, which has the advantage that when using carbon-derived gases which are introduced through the gas channels on the anode side of the interconnector plates 5, 5 ', vanishing constituents from the protective layers are improved again by the carbon-derived gases.
  • C3C 2 CrC, Cr 7 C3 or Cr 2 3C ⁇ or similar chromium carbides with different valences can be used as chromium carbides.
  • the protective layer 7 has a thickness d of 0.1-10 ⁇ m in order to reliably prevent oxidation and to hardly influence the flexibility of the nickel networks 6, 6 '.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une pile à combustible (1) ou un empilement de piles à combustible comportant des cathodes (2), des électrolytes (3), des anodes (4) et des plaques d'interconnexion (5, 5') disposés parallèlement en couches, ainsi qu'au moins un réseau métallique (6, 6') inséré entre l'anode (4) et la plaque d'interconnexion (5) pour une mise en contact souple. La pile à combustible selon l'invention est caractérisée en ce que le réseau métallique (6, 6') est protégé contre l'oxydation.
EP00949131A 1999-07-09 2000-06-26 Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature Withdrawn EP1206807A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19932192 1999-07-09
DE19932192 1999-07-09
PCT/DE2000/002071 WO2001004981A1 (fr) 1999-07-09 2000-06-26 Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature

Publications (1)

Publication Number Publication Date
EP1206807A1 true EP1206807A1 (fr) 2002-05-22

Family

ID=7914289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949131A Withdrawn EP1206807A1 (fr) 1999-07-09 2000-06-26 Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature

Country Status (4)

Country Link
EP (1) EP1206807A1 (fr)
AU (1) AU6260600A (fr)
CA (1) CA2378384A1 (fr)
WO (1) WO2001004981A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10033898B4 (de) * 2000-07-12 2009-06-18 Forschungszentrum Jülich GmbH Hochtemperaturbrennstoffzelle und Brennstoffzellenstapel
EP1647068B1 (fr) * 2003-07-18 2013-12-25 Versa Power Systems, Ltd. Materiau electro-conducteur pour contact de pile a combustible
US7190568B2 (en) * 2004-11-16 2007-03-13 Versa Power Systems Ltd. Electrically conductive fuel cell contact materials
DE102005014077B4 (de) * 2005-03-23 2012-05-24 Forschungszentrum Jülich GmbH Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
DE102008036847A1 (de) * 2008-08-07 2010-02-11 Elringklinger Ag Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950562A (en) * 1988-04-21 1990-08-21 Toa Nenryo Kogyo Kabushiki Kaisha Solid electrolyte type fuel cells
DE4016157A1 (de) * 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
EP0424732A1 (fr) * 1989-10-27 1991-05-02 Asea Brown Boveri Ag Elément de conduction du courant pour des cellules à combustible empilées fonctionnant à haute température et sa méthode de fabrication
DE4237602A1 (de) * 1992-11-06 1994-05-11 Siemens Ag Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
DE19517443C2 (de) * 1995-05-12 1997-07-10 Mtu Friedrichshafen Gmbh Korrosionsbeständiger Stromkollektor
AUPO897897A0 (en) * 1997-09-05 1997-09-25 Ceramic Fuel Cells Limited An interconnect device for a fuel cell assembly
DE29802444U1 (de) * 1998-02-12 1999-04-01 Siemens Ag Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel
DE19836352A1 (de) * 1998-08-11 2000-02-17 Siemens Ag Hochtemperatur-Brennstoffzelle mit Nickelnetz und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0104981A1 *

Also Published As

Publication number Publication date
WO2001004981A1 (fr) 2001-01-18
CA2378384A1 (fr) 2001-01-18
AU6260600A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
DE69838679T2 (de) Elektrische leitfähigkeit in einer brennstoffzellen-anordnung
DE19681750B4 (de) Elektrische Verbindungsvorrichtung für eine planare Brennstoffzelle und deren Verwendung
EP1662596B1 (fr) Ensemble d'étanchéité pour une empilement de piles à combustilble à haute temperature et procédé d'assemblage de cette empilement
EP0696386B1 (fr) Pile a combustible haute temperature a surface de contact electrolyte solide/electrodes amelioree et procede de realisation de la surface de contact
DE60316301T2 (de) Gasdurchlässiges substrat und seine verwendung in einer festoxid-brennstoffzelle
EP1738428B1 (fr) Liaison ceramique-acier electroconductrice et procede de production associe
EP1923944B1 (fr) Système d'étanchéité ayant une soudure en argent avec du titane pour une pile à combustible à haute température et procédé de fabrication d'un empilement de piles à combustible
DE102006016001B4 (de) Brennstoffzellenstapel
DE4237602A1 (de) Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
WO2001091215A1 (fr) Materiau pour hautes temperatures
WO1998036464A1 (fr) Interconnecteur pour piles a combustible sofc empilees
EP1844513B1 (fr) Dispositif d'interconnexion pour piles a combustible a haute temperature
DE102008036847A1 (de) Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte
EP2025025B1 (fr) Interconnecteur pour un empilement de cellules à combustible et procédé de fabrication
EP1314217B1 (fr) Pile a combustible haute temperature
DE4422624B4 (de) Verfahren zum Aufbringen einer Schutzschicht auf einen metallischen chromhaltigen Körper
DE19841919A1 (de) Brennstoffzellen-Modul und Verfahren zu dessen Herstellung
DE10050010A1 (de) Interkonnektor für eine Hochtemperatur-Brennstoffzelle
DE19532791A1 (de) Kathodenstromkollektor für eine Brennstoffzelle
DE4120359C2 (de) Verfahren zur Herstellung einer elektrochemischen Zelle und deren Verwendung
WO2001004981A1 (fr) Mise en contact electrique protegee contre l'oxydation du cote gaz de combustion d'une pile a combustible haute temperature
DE102008036848A1 (de) Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte sowie Brennstoffzelleneinheit
DE69923789T2 (de) Elektrisch leitende keramikschichten
DE10342691A1 (de) Stapelbare Hochtemperaturbrennstoffzelle
WO1999041795A1 (fr) Pile a combustible haute temperature et empilage de piles a combustible haute temperature

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020102

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021228