WO2001004981A1 - Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle - Google Patents
Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle Download PDFInfo
- Publication number
- WO2001004981A1 WO2001004981A1 PCT/DE2000/002071 DE0002071W WO0104981A1 WO 2001004981 A1 WO2001004981 A1 WO 2001004981A1 DE 0002071 W DE0002071 W DE 0002071W WO 0104981 A1 WO0104981 A1 WO 0104981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- network
- nickel
- cell according
- oxidation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0236—Glass; Ceramics; Cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0297—Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a fuel cell or a fuel cell stack with the further features of the preamble of patent claim 1.
- Fuel cells result in a fuel cell stack (also referred to in the technical literature as a fuel cell stack), which in sequence consists of an interconnector plate, a protective layer, a contact layer, a cathode, an electrolyte, an anode, a further contact layer and a further interconnector plate.
- the interconnector plate with the sprayed-on protective and contact layer forms a unit.
- Cathode, electrolyte and anode form the electrolyte electrode unit.
- the corresponding units are layered parallel to each other and repeated several times in the same order.
- the cathode, electrolyte and anode form an electrolyte-electrode unit.
- an electrolyte electrode unit lying between adjacent interconnector plates forms a high-temperature fuel cell with the contact and protective layers directly adjacent to the electrolyte electrode unit on both sides, to which the sides of each of the protective layers and contact layers also lie belong to both interconnector plates.
- the interconnector plates usually consist of CrFe5 with 1% Y-oxide, a so-called ODS alloy.
- Gas channels are introduced into the interconnector plate, through which the fuel gas, for example hydrogen or methane (natural gas), and oxygen or air are passed becomes.
- the hydrogen is directed to the anode side, the oxygen or air to the cathode side.
- These gases are passed through with a relatively low overpressure of less than 1 bar.
- the planar concept of the high-temperature fuel cell requires that the electrodes be contacted as fully as possible in both gas spaces.
- contacting of the electrode is ensured by a contact layer made of La Perovskite, for example LasSrOo, 2 Mn ⁇ 3 .
- This perovskite is stable in air.
- contacting the electrode i.e. the anode
- complete contacting of the anode is necessary because of the low transverse conductivity of the anode.
- the anode is produced in the screen printing process and is therefore not flat over the entire surface, which is why flexible contacting is required which is very good electrical conductivity and whose resistance must be guaranteed over an operating period of approximately 40,000 hours
- the prior art provides for the use of nickel networks as flexible contacts. For example, a finely meshed and a coarsely meshed nickel mesh are placed on top of one another, spot-welded to one another, so that a flexible intermediate layer with good contact is created.
- a disadvantage of the prior art has turned out to be that when the fuel cell stack is soldered and when the fuel cell or the fuel cell stack is operated in the direct contact area of nickel network / CrFe5, an oxide layer that waxes out of Cr 2 ⁇ 3 in the non-material contact (Cr ⁇ O ⁇ ) and probably in material contact
- NiO nickel-II-oxide
- the nickel wires sinter together, so that there is a reduction in the desired flexibility as well as a reduction in the thickness, which is undesirable.
- the reduction in thickness can also lead to contact breaks, which can cause component damage.
- the invention is based on the object of developing a fuel cell or a fuel cell stack with the features of the preamble of patent claim 1 in such a way that the reduction in the thickness and the flexibility of the Nikkeinetze (s) is avoided, so that the most complete possible contact the anode and the interconnector plate is possible.
- At least one metallic network which is protected against oxidation, is inserted for flexible contacting between the anode and the interconnector plate.
- Such networks as a contact layer have the advantage that they can no longer oxidize, so that the increase in thickness is also eliminated. Since no oxidation has taken place, there is also no need to reduce the metallic nets and the associated disadvantages, such as, for example, contact breaks during the thickness reduction or loss of flexibility, do not arise. Due to the fact that the oxidation / reduction change process does not take place, the original thickness and flexibility of the networks protected against oxidation are retained, so that a good contacting contact layer is created between the anode and the interconnector. In addition, a reduction in the thickness of the metallic networks is prevented with an ongoing operating period.
- the metallic nets are expediently coated with an oxidation-resistant protective layer.
- the metallic networks e.g. Nickel networks remain unaffected both in their composition and in their mechanical and electrical properties, i.e. et al they remain largely flexible, do not cause any change in thickness and essentially retain their advantageous properties. It is advantageous that the metallic nets are subjected to the coating process before being introduced as a flexible contact layer. The assembly with the other components as well as the soldering must then be carried out in the usual way.
- Coated nickel nets can be provided as metallic nets.
- the nickel networks meet the requirements with regard to flexibility as well as electrical conductivity.
- Coated stainless steel nets can also be provided as metallic nets, which have the property that they only oxidize to a depth of approx.
- the stainless steel nets are also coated with an oxidation-resistant protective layer.
- Another advantage of Stainless steel networks consist in that their thermal expansion coefficient is well adapted to the thermal behavior of the components of the fuel stack. This property is of considerable advantage especially when the fuel cell is operated at high temperatures.
- the protective layer advantageously contains chromium and is therefore matched to the chemical composition of the interconnector plate.
- the protective layer advantageously consists of chromium carbide, which is highly electrically conductive and adheres very well to the metallic network.
- a chromium carbide layer is also very corrosion-resistant against corresponding partial oxygen pressures on the fuel gas side. Furthermore, these are
- Layers are stable using methane or coal-derived gases, which are later used media on the fuel gas side of the high-temperature fuel cell.
- Another advantage of coating with chromium carbide is that when using carbon-derived gases which are passed through the gas channels on the anode side of the interconnect plates, small amounts of the protective layers are reworked by the carbon-derived gases.
- the chromium carbide layer is therefore particularly thermodynamically favorable.
- C 3 C 2 , CrC, Cr7C3 or Cr23C6 can be used as chromium carbide.
- the protective layer of the metallic mesh may consist of chromium nitride.
- the protective layer expediently has a thickness d of 0.1-10 ⁇ m, so that, on the one hand, there is sufficient protection against oxidation and, on the other hand, the flexibility of the metallic networks is hardly restricted.
- FIG. 1 shows a schematic cross-sectional representation of the layers of a fuel cell
- FIG. 2 shows an enlarged, schematic cross-sectional representation of a coated nickel mesh.
- the fuel cell stack of the fuel cell 1 consists of an interconnector plate 5 ', a protective layer 8, a contact layer 9, a cathode 2, an electrolyte 3, an anode 4, two nickel meshes 6, 6' lying on top of one another and an interconnector plate 5 , wherein these components are arranged in layers parallel to each other.
- the nickel mesh 6 is thinner than the nickel mesh 6 '.
- the nickel nets 6, 6 ' are protected against oxidation in order to avoid an oxidation of these nets, which usually occurs when the entire fuel stack is soldered.
- the oxidation of the nickel mesh is linked to an increase in thickness, the original thickness of the mesh packet being generated again in the subsequent reduction process. This can lead to contact breaks, which can cause component damage.
- the nickel wires sinter together after the reduction, so that a reduction in the desired flexibility results.
- the oxidation-protected networks accordingly avoid the oxidation / reduction process of the network packet and the associated disadvantages.
- the original flexibility and the thickness of the nets can be retained, so that full-surface contacting of the anode 4 and the contact layer of the nickel nets 6, 6 'and the interconnector plate 5 is created.
- the nickel networks 6, 6 ′ are coated with an oxidation-resistant protective layer 7. This coating can be done before assembling the individual components.
- stainless steel networks can also be provided, which have the advantage that their thermal expansion coefficient is adapted to the components of the high-temperature fuel cell.
- the protective layer 7 consists of chromium carbide, which has the advantage that when using carbon-derived gases which are introduced through the gas channels on the anode side of the interconnector plates 5, 5 ', vanishing constituents from the protective layers are improved again by the carbon-derived gases.
- C3C 2 CrC, Cr 7 C3 or Cr 2 3C ⁇ or similar chromium carbides with different valences can be used as chromium carbides.
- the protective layer 7 has a thickness d of 0.1-10 ⁇ m in order to reliably prevent oxidation and to hardly influence the flexibility of the nickel networks 6, 6 '.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002378384A CA2378384A1 (en) | 1999-07-09 | 2000-06-26 | Electrical bonding protected against oxidation on the gas combustion side of a high temperature fuel cell |
EP00949131A EP1206807A1 (de) | 1999-07-09 | 2000-06-26 | Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle |
AU62606/00A AU6260600A (en) | 1999-07-09 | 2000-06-26 | Electrical bonding protected against oxidation on the gas combustion side of a high temperature fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19932192.2 | 1999-07-09 | ||
DE19932192 | 1999-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001004981A1 true WO2001004981A1 (de) | 2001-01-18 |
Family
ID=7914289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/002071 WO2001004981A1 (de) | 1999-07-09 | 2000-06-26 | Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1206807A1 (de) |
AU (1) | AU6260600A (de) |
CA (1) | CA2378384A1 (de) |
WO (1) | WO2001004981A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002005368A1 (de) * | 2000-07-12 | 2002-01-17 | Forschungszentrum Jülich GmbH | Hochtemperaturbrennstoffzelle |
WO2005008816A3 (en) * | 2003-07-18 | 2006-01-26 | Versa Power Systems Ltd | Electrically conductive fuel cell contact material |
WO2006099830A1 (de) * | 2005-03-23 | 2006-09-28 | Forschungszentrum Jülich GmbH | Interkonnektor für hochtemperaturbrennstoffzellen |
EP2154742A1 (de) * | 2008-08-07 | 2010-02-17 | ElringKlinger AG | Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190568B2 (en) * | 2004-11-16 | 2007-03-13 | Versa Power Systems Ltd. | Electrically conductive fuel cell contact materials |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338823A1 (de) * | 1988-04-21 | 1989-10-25 | Toa Nenryo Kogyo Kabushiki Kaisha | Brennstoffzellen mit festen Elektrolyten |
DE4016157A1 (de) * | 1989-06-08 | 1990-12-13 | Asea Brown Boveri | Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen |
US5064734A (en) * | 1989-10-27 | 1991-11-12 | Asea Brown Boveri Ltd. | Current-transmitting components for stacked high-temperature fuel cells and method of producing them |
DE4237602A1 (de) * | 1992-11-06 | 1994-05-11 | Siemens Ag | Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung |
DE19517443A1 (de) * | 1995-05-12 | 1996-11-14 | Mtu Friedrichshafen Gmbh | Korrosionsbeständiger Stromkollektor und Verfahren zur Herstellung eines solchen |
WO1999013522A1 (en) * | 1997-09-05 | 1999-03-18 | Ceramic Fuel Cells Limited | Electrical conductivity in a fuel cell assembly |
DE29802444U1 (de) * | 1998-02-12 | 1999-04-01 | Siemens AG, 80333 München | Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel |
DE19836352A1 (de) * | 1998-08-11 | 2000-02-17 | Siemens Ag | Hochtemperatur-Brennstoffzelle mit Nickelnetz und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle |
-
2000
- 2000-06-26 CA CA002378384A patent/CA2378384A1/en not_active Abandoned
- 2000-06-26 AU AU62606/00A patent/AU6260600A/en not_active Abandoned
- 2000-06-26 EP EP00949131A patent/EP1206807A1/de not_active Withdrawn
- 2000-06-26 WO PCT/DE2000/002071 patent/WO2001004981A1/de not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338823A1 (de) * | 1988-04-21 | 1989-10-25 | Toa Nenryo Kogyo Kabushiki Kaisha | Brennstoffzellen mit festen Elektrolyten |
DE4016157A1 (de) * | 1989-06-08 | 1990-12-13 | Asea Brown Boveri | Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen |
US5064734A (en) * | 1989-10-27 | 1991-11-12 | Asea Brown Boveri Ltd. | Current-transmitting components for stacked high-temperature fuel cells and method of producing them |
DE4237602A1 (de) * | 1992-11-06 | 1994-05-11 | Siemens Ag | Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung |
DE19517443A1 (de) * | 1995-05-12 | 1996-11-14 | Mtu Friedrichshafen Gmbh | Korrosionsbeständiger Stromkollektor und Verfahren zur Herstellung eines solchen |
WO1999013522A1 (en) * | 1997-09-05 | 1999-03-18 | Ceramic Fuel Cells Limited | Electrical conductivity in a fuel cell assembly |
DE29802444U1 (de) * | 1998-02-12 | 1999-04-01 | Siemens AG, 80333 München | Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzellenstapel |
DE19836352A1 (de) * | 1998-08-11 | 2000-02-17 | Siemens Ag | Hochtemperatur-Brennstoffzelle mit Nickelnetz und Hochtemperatur-Brennstoffzellenstapel mit einer solchen Zelle |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002005368A1 (de) * | 2000-07-12 | 2002-01-17 | Forschungszentrum Jülich GmbH | Hochtemperaturbrennstoffzelle |
WO2005008816A3 (en) * | 2003-07-18 | 2006-01-26 | Versa Power Systems Ltd | Electrically conductive fuel cell contact material |
WO2006099830A1 (de) * | 2005-03-23 | 2006-09-28 | Forschungszentrum Jülich GmbH | Interkonnektor für hochtemperaturbrennstoffzellen |
DE102005014077B4 (de) * | 2005-03-23 | 2012-05-24 | Forschungszentrum Jülich GmbH | Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle |
EP2154742A1 (de) * | 2008-08-07 | 2010-02-17 | ElringKlinger AG | Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte |
Also Published As
Publication number | Publication date |
---|---|
AU6260600A (en) | 2001-01-30 |
EP1206807A1 (de) | 2002-05-22 |
CA2378384A1 (en) | 2001-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69838679T2 (de) | Elektrische leitfähigkeit in einer brennstoffzellen-anordnung | |
EP1662596B1 (de) | Dichtungsanordnung für einen Hochtemperatur Brennstoffzellenstapel und Verfahren zum Herstellen dieses Brennstoffzellenstapels | |
EP0696386B1 (de) | Hochtemperaturbrennstoffzelle mit verbesserter festelektrolyt/elektroden-grenzfläche und verfahren zur herstellung der grenzfläche | |
DE60316301T2 (de) | Gasdurchlässiges substrat und seine verwendung in einer festoxid-brennstoffzelle | |
EP1738428B1 (de) | Elektrisch leitfähiger stahl-keramik-verbund sowie dessen herstellung | |
EP1923944B1 (de) | Silberbasislot mit Titanzusatz beinhaltende Dichtungsanordnung für eine Hochtemperaturbrennstoffzelle und Verfahren zur Herstellung eines Brennstoffzellenstapels | |
DE102006016001B4 (de) | Brennstoffzellenstapel | |
DE4237602A1 (de) | Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung | |
WO2001091215A1 (de) | Hochtemperaturwerkstoff | |
WO1998036464A1 (de) | Interkonnektor für sofc-brennstoffzellenstapel | |
EP1844513B1 (de) | Interkonnektor für hochtemperaturbrennstoffzellen | |
DE102008036847A1 (de) | Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte | |
EP2025025A1 (de) | Interkonnektor für einen brennstoff zellenstapel und verfahren zur herstellung | |
EP1314217B1 (de) | Hochtemperaturbrennstoffzelle | |
DE4422624B4 (de) | Verfahren zum Aufbringen einer Schutzschicht auf einen metallischen chromhaltigen Körper | |
DE19841919A1 (de) | Brennstoffzellen-Modul und Verfahren zu dessen Herstellung | |
DE10050010A1 (de) | Interkonnektor für eine Hochtemperatur-Brennstoffzelle | |
DE19532791A1 (de) | Kathodenstromkollektor für eine Brennstoffzelle | |
DE4120359C2 (de) | Verfahren zur Herstellung einer elektrochemischen Zelle und deren Verwendung | |
EP1206807A1 (de) | Oxidationsgeschützte elektrische kontaktierung auf der brenngasseite der hochtemperatur-brennstoffzelle | |
DE102008036848A1 (de) | Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte sowie Brennstoffzelleneinheit | |
DE69923789T2 (de) | Elektrisch leitende keramikschichten | |
DE10342691A1 (de) | Stapelbare Hochtemperaturbrennstoffzelle | |
WO1999041795A1 (de) | Hochtemperatur-brennstoffzelle und hochtemperatur-brennstoffzellenstapel | |
DE102008036849A1 (de) | Bipolarplattenanordnung für eine Brennstoffzelleneinheit und Verfahren zum Herstellen einer Bipolarplattenanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000949131 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2378384 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10031125 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2000949131 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000949131 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |