EP1203830A2 - Toles laminées pour les poulie-freins sans gauchissement et un poulie-frein fabrique d'une tole laminée - Google Patents

Toles laminées pour les poulie-freins sans gauchissement et un poulie-frein fabrique d'une tole laminée Download PDF

Info

Publication number
EP1203830A2
EP1203830A2 EP01126005A EP01126005A EP1203830A2 EP 1203830 A2 EP1203830 A2 EP 1203830A2 EP 01126005 A EP01126005 A EP 01126005A EP 01126005 A EP01126005 A EP 01126005A EP 1203830 A2 EP1203830 A2 EP 1203830A2
Authority
EP
European Patent Office
Prior art keywords
disk
steel sheet
warp
brake
disk brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01126005A
Other languages
German (de)
English (en)
Other versions
EP1203830A3 (fr
EP1203830B1 (fr
Inventor
Naoto c/o Stainless Steel Div. Hiramatsu
Kouki c/o Stainless Steel Div. Tomimura
Naohito c/o Stainless Steel Div. Kumano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Publication of EP1203830A2 publication Critical patent/EP1203830A2/fr
Publication of EP1203830A3 publication Critical patent/EP1203830A3/fr
Application granted granted Critical
Publication of EP1203830B1 publication Critical patent/EP1203830B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • F16D2200/0017Ferro corrosion-resistant

Definitions

  • This invention relates to a martensitic stainless steel for disk brakes, particularly to a steel sheet with improved resistance to warp (anti-warp property) and a disk made from the steel sheet.
  • Martensitic stainless steels such as SUS420J1 (C : approx. 0.16 - 0.25%) and SUS420J2 (C : approx. 0.26 - 0.40%) have been used for the disks used in the disk brakes of two-wheeled vehicles and the like. Steels of this type are transformed to substantially martensite single phase by quenching from the high-temperature austenite single phase region centered on 1,000 °C and then anneal to impart toughness.
  • JPA-10-152760 teaches a martensitic stainless steel for disk brakes having reduced C content.
  • JPA-10-152760 eliminates the need for a tempering step after quenching by lowering the C content to 0.10% or less and, by enhancing the austenite balance, obtains an amount of martensite after quenching of a level sufficient to avoid strength degradation owing to the reduction of C content.
  • Cu By addition of Cu to the steel, it also improves resistance to softening by braking heat.
  • JPA-10-152760 overcomes various problems associated with high-carbon martensitic stainless steels and, as such, has helped to improve disk brake performance.
  • the object of the present invention is therefore to provide a steel sheet for disk brakes that is a low-carbon martensitic stainless steel capable of inhibiting warp occurrence and a brake disk utilizing the steel sheet.
  • the present invention was accomplished based on this knowledge.
  • steel sheet for disk brake is meant a steel sheet that enables a disk brake disk to be obtained by punching or other means and may be in the form of either steel strip or cut sheet.
  • the present invention also provides a steel sheet for disk brake of the foregoing composition further comprising not more than 0.50% of Ti, not more than 0.2% of Al, not more than 0.015% of B, and/or one or more of not more than 0.2% of REM, not more than 0.2% of Y, not more than 0.1% of Ca and not more than 0.1% of Mg. These added elements may be selected in any desired combination.
  • These steel sheets provided by the present invention are particularly suitable for a disk brake of a two-wheeled vehicle.
  • the present invention further provides a quenched brake disk obtained from any of the foregoing steel sheets, which brake disk exhibits excellent anti-warp property of keeping disk periphery warp height within 0.3 mm when the disk is subjected to 500 cycles of repeated heating/cooling each consisting of [Temperature increase at a rate of 5 - 20 °C/sec up to 600 °C ⁇ Maintaining at 600 °C during 10 sec ⁇ Water cooling.]
  • Punching can be adopted as typical way of obtaining a brake disk from the steel sheet.
  • quenched brake disk is meant a brake disk not subjected to tempering or other heat treatment after quenching.
  • the following procedure is used to determine the warp height of the disk periphery: the disk is placed on a horizontal plate having a flat surface used as a reference plane, the height of the peripheral portion of the disk from the reference plane is measured at a minimum of twelve locations regularly spaced over the entire peripheral portion, the value of the largest difference between the measured values and the initial-state height value (uniform thickness) of the peripheral portion designated by the brake disk design specifications is noted, the measurement is repeated for the other side of the disk by turning over it and the largest difference noted, and the larger of the two noted values is defined as the warp height.
  • the measurement is made for both sides of the disk because disk warp is ordinarily toward one side over the entire disk periphery and accurate warp determination is impossible when this side face downward.
  • a brake disk product has a very high degree of flatness in its initial state (before use).
  • the present invention provides a disk brake of such a high degree of flatness whose material is defined as being capable of keeping warp height within 0.3 mm when the disk is subjected to the aforesaid cold-hot thermal cycle test.
  • This invention provides a steel sheet and disk made thereof that are capable of ensuring maintenance of the initial flat shape of the disk stably over a long period even when the disk brake is repeatedly subjected to severe use.
  • this invention provides a steel sheet and disk made thereof that exhibit improved anti-warp property.
  • it is necessary to achieve resistance to high-temperature softening, toughness, anticorrosion property and other performance capabilities that are equal to or better than those of conventional steels. It is also necessary to ensure compatibility with simplified processing that does not involve a tempering step after quenching.
  • the symbol % designating the content of the different elements means mass percent.
  • C (carbon) is an austenite-forming element that is extremely effective for suppressing generation of ⁇ ferrite at high temperature and strengthening the martensite phase generated when the steel cools during quenching.
  • the precipitated carbides it generates when the temperature of the disk brake is elevated by braking heat contribute to preservation of high-temperature strength. Based on the result of their research, the inventors consider that these carbides work effectively to improve anti-warp property. Through various studies it was determined that a C content of not less than 0.05% is required to secure these effects sufficiently. However, this invention sets an upper limit of C content of 0.15% in order to secure adequate toughness by a process that omits tempering after quenching and to prevent carbide-induced degradation of corrosion resistance.
  • Si silicon is used for the purpose of deoxidization.
  • Si is a ferrite-forming element, however, excessive inclusion degrades hardness by causing generation of ⁇ ferrite at high temperature.
  • Si content is therefore limited to not more than 1.0%. More preferably, Si content is restricted to between an upper limit of 1.0% and a lower limit of 0.2%.
  • Mn manganese
  • Mn content is set at 2.0%. More preferably, Mn content is restricted to between an upper limit of 1.5% and a lower limit of 0.2%.
  • Ni nickel
  • Mn manganese
  • the upper limit of Ni content is set at 1.0%.
  • Cr chromium
  • Cr content is an element that is required for its contribution to corrosion resistance. Cr content of not less than 9.0% is needed to ensure the corrosion resistance required of a disk brake. As Cr is a ferrite-forming element, however, excessive inclusion leads to generation of a large amount of ⁇ phase, which in turn necessitates addition of austenite forming elements (C, N, Ni Mn, Cu etc.) in corresponding amounts for adjusting the amount of ⁇ phase. Excessive addition of these austenite forming elements tends to increase the amount of residual austenite remaining after quenching, making it hard to achieve high strength. The upper limit of Cr content is therefore set at 15.0%
  • Cu copper is an element that stabilizes austenite. It promotes generation of an austenite phase texture in the heating temperature region during quenching and thus promotes generation of martensite phase, which contributes to hardness.
  • Cu forms Cu-system precipitates that work to maintain high-temperature strength and effectively enhance anti-warp property.
  • excessive inclusion of Cu degrades hot workability and becomes a cause of cracking. Based on various studies made in light of the disk brake use environment, therefore, the range of Cu content is defined as 0.5 - 4.0%.
  • Mo mobdenum
  • Mo is an element that effectively improves the corrosion resistance of a steel containing copper and, in this invention, is also very important for improving the anti-warp property of the brake disk. Specifically, it was found that in the use environment of a disk brake, Mo exhibits an effect of finely dispersing carbides and/or nitrides during disk temperature rise. It also exhibits an effect of inhibiting rapid strain release at high temperature. Based on the results of research, the inventors consider that these effects of Mo operate synergistically with the effects of Nb explained below to impart excellent anti-warp property to the brake disk. Excessive inclusion of Mo is unfavorable, however, since it promotes generation of ⁇ ferrite phase at high temperature. Through various studies it was therefore concluded that the Mo content of a steel sheet for disk brake intended for use under high load should best be in the range of 0.10 - 2.0%. A still more preferable lower limit of Mo content is 0.3%.
  • N nitrogen
  • austenite forming element that is also highly effective for hardening martensite phase.
  • N content is limited to not more than 0.10%.
  • Nb (Niobium), together with Mo, is a highly important added element for improving brake disk anti-warp property. Specifically, it was discovered that in the use environment of a disk brake Nb forms precipitates that contribute to strength during disk temperature increase. It was also found that Nb exhibits an effect of inhibiting recovery in the martensite phase. From the results of research, the inventors consider that these effects not merely contribute to increased hardness but also markedly improve brake disk anti-warp property by operating synergistically with the aforesaid effects of Mo. A Nb content of not less that 0.05% is preferable for thoroughly realizing these effects. However, as addition of too much Nb raises high-temperature strength excessively and thus degrades hot workability, the upper limit of Nb content must be set at 1.0%. A still more preferable upper limit of Nb content is 0.8%.
  • Ti titanium forms precipitates at high temperature and is effective for enhancing hardness and improving anti-warp property, but is a cause of product surface flaws when added to excess.
  • its content range is preferably set at not more than 0.50%.
  • Al (aluminum) is an effective element for deoxidation during steelmaking and exhibits an effect of sharply reducing A 2 -type inclusions that cause a problem during the punching of brake disks.
  • Al is added in excess of 0.2%, however, its positive effects saturate and, still worse, negative effects, such as increase in number of surface defects, appear.
  • its content range is preferably set at not more than 0.2%.
  • B boron
  • B is an element that effectively suppresses edge cracking of the hot-rolled strip that occurs because of the difference in deformation resistance between ⁇ ferrite phase and austenite phase in the hot-rolling temperature region.
  • excessive inclusion of B degrades rather than improves hot-rolling workability because it leads to formation of low melting point borides.
  • its content range is preferably set at not more than 0.015%.
  • REMs rare earth metals/elements
  • Y yttrium
  • Ca calcium
  • Mg manganesium
  • the content range of REMs (La, Ce and Nd, for example) is set at a total of not more than 0.2%
  • the content range of Y at not more than 0.2%
  • the content range of Ca at not more than 0.1%
  • the content range of Mg at not more than 0.1%.
  • ⁇ max is a well-known index of austenite stability that corresponds to the maximum amount of austenite at high temperature.
  • the inventors learned that the amount of martensite after quenching markedly affects brake disk strength and anti-warp property and further learned that in order to obtain excellent anti-warp property it is preferable to use a steel transformed to a substantially martensite single phase texture by quenching.
  • the lower limit of ⁇ max is set at 80 so as to obtain a substantially martensite single phase texture after quenching.
  • the steel sheet for disk brake of the present invention is made from a steel of the aforesaid chemical composition and is particularly adapted to thoroughly respond to the needs of a two-wheel disk brake whose disks are required to withstand heavy loads and maintain an attractive appearance for a long period.
  • the disk of a disk brake is ordinarily fabricated by subjecting a disk punched from an annealed steel sheet to required processing and then subjecting it to heat treatment such as quenching to impart high strength.
  • the disk surface at the final stage of product manufacture is required to have high flatness.
  • a brake disk made from a conventional steel may have high flatness in the initial state (before use), it will in most cases display some amount of warp in the course of extended use. In other words, brake disks have ordinarily experienced progressive flatness degradation.
  • a brake disk (having heat radiation holes, outer diameter: 260 mm, thickness: 4.4 mm, mass: 1 kg) removed from a two-wheeled vehicle that had been driven about 3000 km was found to have a disk periphery warp height as defined earlier in this specification of 0.8 mm. Warp of this degree is undesirable because it results in loss of brake performance with passage of time and leads to an unsightly appearance.
  • This invention responds to these problems by providing a steel sheet for disk brake of the chemical composition explained in the foregoing.
  • This steel sheet has latent properties that are manifested as excellent anti-warp property in a product disk. Notwithstanding, a brake disk exhibiting excellent anti-warp property may not be obtained even when the invention steel sheet is used if heat treatment and processing are improperly conducted. From the viewpoint of quality control, therefore, it is desirable to establish a method for determining whether or not a manufactured brake disk will actually manifest excellent anti-warp property when put to use.
  • the inventors conducted an extensive study to determine the relationship between warping during actual use (flatness degradation over time) and accelerated laboratory testing. As a result, inventors learned that among quenched brake disks obtained from the invention steel sheet those that keep disk periphery warp height within 0.3 mm after the disk has been subjected to 500 cycles of repeated heating/cooling each consisting of [Temperature increase at a rate of 5 - 20 °C/sec up to 600 °C ⁇ Maintaining at 600 °C during 10 sec ⁇ Water cooling.] are capable of adequately inhibiting warp during actual use.
  • the reliability of quality control can therefore be enhanced by, for example, taking a sample from each lot of product disks manufactured under the same production conditions from the same steel strip made from the same melt charge, subjecting it to the foregoing cold-hot thermal cycle test, and measuring the warp height of the disk periphery. If the warp height remains within 0.3 mm, it can be concluded that the disks of the lot concerned have excellent anti-warp property.
  • a cold-hot thermal cycle test imparting 500 cycles of repeated heating/cooling each consisting of [Temperature increase at a rate of 10 °C/sec up to 600 °C ⁇ Maintaining at 600 °C during 10 sec ⁇ Water cooling.] was carried out on each test disk. Heating was conducted by the high-frequency induction method and the temperature increase rate and maintaining temperature were controlled while measuring the specimen temperature with a thermocouple attached to the test disk surface.
  • the invention examples using steel sheets having chemical compositions falling within the ranges prescribed in the foregoing all had disk periphery warp heights after the cold-hot thermal cycle test of less than 0.1 mm, i.e., exhibited excellent test results of a level at which substantially no warp could be observed.
  • the disks were free of carbide-induced rusting, maintained a surface hardness after cold-hot thermal cycle testing of not less than HV280, and were confirmed to exhibit corrosion resistance and strength properties sufficient for use in a disk brake.
  • the comparative example using the high C content steel No. 7 exhibited a high level of strength but experienced carbide-induced rusting. This is thought to be due to sensitization by heating during quenching.
  • This invention provides a solution to the problem of brake disk "warp" that has emerged as a new concern owing to the greater loads being placed on disk brakes as vehicles rise to higher performance levels.
  • the technology introduced by this invention also makes it possible to achieve the corrosion resistance and high-strength properties required of a steel for disk brake and to eliminate the need for tempering after quenching to thereby establish a process with fewer steps.
  • the invention facilitates product quality control by offering a method for identifying product disks that are capable of inhibiting warp in future use. The invention can therefore be expected to contribute to the realization of high performance vehicle disk brakes from the aspect of the material used in the disks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)
  • Heat Treatment Of Articles (AREA)
EP01126005A 2000-11-01 2001-10-31 Toles laminées pour les poulie-freins sans gauchissement et un poulie-frein fabrique d'une tole laminée Expired - Lifetime EP1203830B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000334133A JP2002146482A (ja) 2000-11-01 2000-11-01 耐反り性を改善したディスクブレーキ用鋼板およびディスク
JP2000334133 2000-11-01

Publications (3)

Publication Number Publication Date
EP1203830A2 true EP1203830A2 (fr) 2002-05-08
EP1203830A3 EP1203830A3 (fr) 2003-05-28
EP1203830B1 EP1203830B1 (fr) 2004-12-29

Family

ID=18810107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01126005A Expired - Lifetime EP1203830B1 (fr) 2000-11-01 2001-10-31 Toles laminées pour les poulie-freins sans gauchissement et un poulie-frein fabrique d'une tole laminée

Country Status (7)

Country Link
US (1) US20020084005A1 (fr)
EP (1) EP1203830B1 (fr)
JP (1) JP2002146482A (fr)
KR (1) KR100812107B1 (fr)
CN (1) CN1179062C (fr)
DE (1) DE60108049T2 (fr)
TW (1) TW555869B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521073A1 (fr) * 2003-10-02 2005-04-06 Sgl Carbon Ag Dispositif et procédé pour tester des disques de frein en céramique carboné
EP3360981A1 (fr) * 2017-02-10 2018-08-15 Outokumpu Oyj Acier pour la fabrication d'un composant par formage à chaud et utilisation dudit composant

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698395B1 (ko) 2003-04-28 2007-03-23 제이에프이 스틸 가부시키가이샤 디스크브레이크용 마르텐사이트계 스테인레스강
JP4832834B2 (ja) * 2005-09-05 2011-12-07 新日鐵住金ステンレス株式会社 焼き入れ性に優れた耐熱ディスクブレーキ用マルテンサイト系ステンレス鋼板
US8657971B2 (en) * 2006-10-05 2014-02-25 Jfe Steel Corporation Brake disk excellent in temper softening resistance and toughness
RU2447182C1 (ru) * 2011-04-29 2012-04-10 Юлия Алексеевна Щепочкина Сталь
JP5863785B2 (ja) * 2011-05-16 2016-02-17 新日鐵住金ステンレス株式会社 自転車のディスクブレーキロータ用マルテンサイト系ステンレス鋼板およびその製造方法
CN102400061A (zh) * 2011-10-20 2012-04-04 北京天宜上佳新材料有限公司 高速列车刹车制动盘的合金钢材料
CN107740829A (zh) * 2017-09-22 2018-02-27 北京天宜上佳新材料股份有限公司 具有降噪作用的阻尼钢背和具有其的摩擦块及制备方法
WO2021044889A1 (fr) * 2019-09-03 2021-03-11 日鉄ステンレス株式会社 Tôle d'acier inoxydable martensitique et élément en acier inoxydable martensitique
CN113883191A (zh) * 2021-09-24 2022-01-04 山东金麒麟股份有限公司 一种提高盘式刹车片装车强度的方法及刹车片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052562A (ja) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd デイスクブレ−キロ−タ用鋼
US4564392A (en) * 1983-07-20 1986-01-14 The Japan Steel Works Ltd. Heat resistant martensitic stainless steel containing 12 percent chromium
EP0496350A1 (fr) * 1991-01-24 1992-07-29 ARMCO Inc. Acier inoxydable martensitique
US5362337A (en) * 1993-09-28 1994-11-08 Crs Holdings, Inc. Free-machining martensitic stainless steel
JPH0860309A (ja) * 1994-08-24 1996-03-05 Nisshin Steel Co Ltd オートバイディスクブレーキ用鋼,及び該鋼の熱間圧延方法並びに該鋼を用いたオートバイディスクブレーキの製造方法
US5979614A (en) * 1996-09-25 1999-11-09 Nippon Steel Corporation Brake disc produced from martensitic stainless steel and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564392A (en) * 1983-07-20 1986-01-14 The Japan Steel Works Ltd. Heat resistant martensitic stainless steel containing 12 percent chromium
JPS6052562A (ja) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd デイスクブレ−キロ−タ用鋼
EP0496350A1 (fr) * 1991-01-24 1992-07-29 ARMCO Inc. Acier inoxydable martensitique
US5362337A (en) * 1993-09-28 1994-11-08 Crs Holdings, Inc. Free-machining martensitic stainless steel
JPH0860309A (ja) * 1994-08-24 1996-03-05 Nisshin Steel Co Ltd オートバイディスクブレーキ用鋼,及び該鋼の熱間圧延方法並びに該鋼を用いたオートバイディスクブレーキの製造方法
US5979614A (en) * 1996-09-25 1999-11-09 Nippon Steel Corporation Brake disc produced from martensitic stainless steel and process for producing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 184 (C-294), 30 July 1985 (1985-07-30) & JP 60 052562 A (SUMITOMO KINZOKU KOGYO KK), 25 March 1985 (1985-03-25) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 07, 31 July 1996 (1996-07-31) & JP 08 060309 A (NISSHIN STEEL CO LTD), 5 March 1996 (1996-03-05) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521073A1 (fr) * 2003-10-02 2005-04-06 Sgl Carbon Ag Dispositif et procédé pour tester des disques de frein en céramique carboné
EP3360981A1 (fr) * 2017-02-10 2018-08-15 Outokumpu Oyj Acier pour la fabrication d'un composant par formage à chaud et utilisation dudit composant
WO2018146050A1 (fr) * 2017-02-10 2018-08-16 Outokumpu Oyj Acier pour la fabrication d'un composant par formage à chaud et utilisation du composant
CN110382723A (zh) * 2017-02-10 2019-10-25 奥托库姆普联合股份公司 用于通过热成形制造部件的钢以及该部件的用途
CN110382723B (zh) * 2017-02-10 2022-05-10 奥托库姆普联合股份公司 用于通过热成形制造部件的钢以及该部件的用途
US11788176B2 (en) 2017-02-10 2023-10-17 Outokumpu Oyj Steel for manufacturing a component by hot forming and use of the component

Also Published As

Publication number Publication date
DE60108049D1 (de) 2005-02-03
TW555869B (en) 2003-10-01
EP1203830A3 (fr) 2003-05-28
EP1203830B1 (fr) 2004-12-29
US20020084005A1 (en) 2002-07-04
JP2002146482A (ja) 2002-05-22
KR20020034905A (ko) 2002-05-09
CN1351185A (zh) 2002-05-29
DE60108049T2 (de) 2005-12-08
KR100812107B1 (ko) 2008-03-12
CN1179062C (zh) 2004-12-08

Similar Documents

Publication Publication Date Title
US8607941B2 (en) Steel sheet for brake disc, and brake disc
US20150101898A1 (en) Stainless steel brake disc and method for production thereof
US8333849B2 (en) Low-carbon martensitic chromium-containing steel
EP2952599B1 (fr) Disque d'embrayage pour un embrayage humide à disques multiples et procédé de fabrication de ce dernier
JP5700172B2 (ja) ステンレス鋼板
WO2020213179A1 (fr) Tôle d'acier et procédé de fabrication associé, et article moulé
JP5618431B2 (ja) 冷延鋼板およびその製造方法
US20020084005A1 (en) Steel sheet for disk brake with improved anti-warp property and disk made thereof
TW201443247A (zh) 硬質冷軋鋼板及其製造方法
JP2017179596A (ja) 高炭素鋼板およびその製造方法
CN113802065B (zh) 热冲压成形构件、热冲压成形用钢板以及热冲压工艺
JP2003147485A (ja) 加工性に優れた高靭性高炭素鋼板およびその製造方法
WO2022176707A1 (fr) Plaque d'acier inoxydable martensitique pour rotor de disque de frein, rotor de disque de frein et procédé de fabrication de plaque d'acier inoxydable martensitique pour rotor de disque de frein
JPWO2018061101A1 (ja)
JP2005133204A (ja) 耐焼戻し軟化性に優れるブレーキディスクおよびその製造方法
JPWO2020213179A1 (ja) 鋼板及びその製造方法、並びに成形体
JP5316242B2 (ja) 熱処理用鋼材
JP6361279B2 (ja) 中高炭素鋼材
JP5633426B2 (ja) 熱処理用鋼材
JP2003147491A (ja) 耐反り性を改善したディスクブレーキ用鋼板およびディスク
JP5316058B2 (ja) 熱処理用鋼材
JP2016079414A (ja) 冷延鋼板およびその製造方法
US20170226607A1 (en) Cold-rolled steel plate and method of manufacturing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020701

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 16D 65/12 B

Ipc: 7F 16D 69/02 B

Ipc: 7C 22C 38/20 A

17Q First examination report despatched

Effective date: 20030709

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60108049

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091029

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091029

Year of fee payment: 9

Ref country code: GB

Payment date: 20091028

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60108049

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502