EP1200652A1 - Nitrures iii-v dopes au magnesium et procedes - Google Patents

Nitrures iii-v dopes au magnesium et procedes

Info

Publication number
EP1200652A1
EP1200652A1 EP00922232A EP00922232A EP1200652A1 EP 1200652 A1 EP1200652 A1 EP 1200652A1 EP 00922232 A EP00922232 A EP 00922232A EP 00922232 A EP00922232 A EP 00922232A EP 1200652 A1 EP1200652 A1 EP 1200652A1
Authority
EP
European Patent Office
Prior art keywords
nitride layer
group iii
metal
type nitride
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00922232A
Other languages
German (de)
English (en)
Inventor
Glenn S. Solomon
David J. Miller
Tetsuzo Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
CBL Technologies Inc
Original Assignee
Matsushita Electric Industrial Co Ltd
CBL Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd, CBL Technologies Inc filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP1200652A1 publication Critical patent/EP1200652A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to magnesium-doped metal
  • the invention also relates to methods for growing
  • III-V nitrides Due to the nature of their band-gaps, III-V nitrides (nitrides
  • GaN nitride
  • III nitrides
  • electronegative ligands include
  • group III metal nitride is Ga ] __ x _yAl x InyN ] __ a _ ⁇ D _ c P a As] D Sb c
  • concentration level is still around 10 18 cm “3 , and ohmic contact
  • III-V semiconductor e.g. GaAs
  • MOCVD metal organic chemical vapor deposition
  • magnesium dopant in the resultant p-GaN is passivated with
  • atoms from the metal organic sources may be incorporated in the
  • MOCVD systems are complicated and expensive, due in part to the
  • HVPE vapor phase epitaxy
  • the dopants is expected, especially in the case of p-GaN.
  • the present invention provides an improved HVPE system for
  • component may be provided by passing HCl source gas over a
  • group III/Mg metal mixture is referred to as a group III/Mg metal mixture.
  • resultant reagent gas e.g., GaCl
  • p-GaN substrates can be obtained by removing the p-
  • GaN layer after HVPE growth GaN layer after HVPE growth.
  • nitrogen is used as carrier gas.
  • III-V nitrides used in light emitting devices.
  • One feature of the invention is that it provides a method for
  • Another advantage of the invention is to provide a metal nitride layer.
  • nitride layer including the steps of: a) providing a HVPE
  • system including a reactor; b) arranging a substrate in the
  • the p-type nitride layer including: a
  • group III nitride doped with magnesium the p-type nitride
  • Fig. 1 schematically represents an MOCVD growth system of the
  • Fig. 2 schematically represents a HVPE growth system of the
  • Fig. 3A schematically represents a HVPE system suitable for
  • Fig. 3B schematically represents a HVPE system suitable for
  • FIG. 4 schematically represents a series of steps involved in a
  • HVPE III-V nitrides
  • FIG. 1 schematically represents
  • furnace coils 22 situated around a reactor or
  • a substrate 5 e.g.,
  • Gallium is supplied from a gallium
  • organo-metallic compound 7 such as trimethylgallium
  • TMGa TMGa
  • Ammonia 2 is supplied as a reagent gas via
  • Hydrogen 3 is also used as a carrier
  • the wafer is annealed
  • layer (12) is up to 10 18 cm “3 .
  • Fig. 2 schematically
  • system 30 includes a first furnace 32a surrounding a reactor or
  • Reactor 34 has first and second reactor
  • Production chamber 35 houses a supply of liquid group III metal
  • Reagent gas (ammonia 2)
  • reagent gas such as GaCl
  • a source of magnesium dopant is in the form of
  • FIG. 3A schematically represents a
  • HVPE system 40 suitable for growing Mg-doped p-type nitride
  • First inlet 46a is a first inlet 46a
  • Production chamber 48 houses a supply of a group III metal (Ga,
  • the group III may also be a chloride of magnesium.
  • the group III may also be a chloride of magnesium.
  • the magnesium is a relatively minor component of mixture 11; more preferably the magnesium component of mixture 11 is in the
  • Mixture 11 is heated by furnace
  • HCl 4 is introduced into chamber 48 via first inlet 46a, where
  • first reagent gas component is composed primarily of a chloride
  • Ga, In, or Al such as GaCl, with lesser amounts of Mg .
  • reagent gas component ammonia 2
  • type nitride layer 12' e.g., of GaN, which is deposited on
  • layer 12' As a relatively thick film, e.g.,
  • layer 12 ' may be removed from sapphire
  • Layer 12' may be
  • system 40 may be used for the cost-
  • Such layers are formed in the absence of
  • Fig. 3B schematically represents a HVPE system 40' suitable for
  • System 40' is
  • resultant p-type film 12 ' ' shows lower resistivity than films 12, 12' grown according to systems and methods which use
  • FIG. 4 schematically represents a series of steps involved in a
  • a HVPE system provided in
  • step 50 may be, for example, either of the systems 40, 40'
  • Step 52 involves arranging a substrate in the
  • reactor in step 52 is preferably a sapphire substrate.
  • Step 54 involves passing a source gas including HCl over liquid
  • magnesium 54 includes magnesium or a magnesium source (such as a
  • the magnesium is
  • group III/Mg metal mixture present in relatively trace amounts, e.g., 100 pmm, but may be in any range between 1 ppb
  • the group III/Mg metal mixture is heated to a
  • Step 54 results in the range of 650 °C to 900 °C.
  • This first reagent gas in the formation of a first reagent gas.
  • gas component includes magnesium and a chloride of a group III
  • Step 56 involves introducing reagent gases into the HVPE
  • Reagent gases introduced into the reactor include the
  • the second reagent gas component preferably a second reagent gas component.
  • the second reagent preferably a second reagent gas component.
  • the second reagent gas component is ammonia.
  • the second reagent gas component is ammonia.
  • carrier gas for introduction of ammonia is preferably nitrogen
  • nitrogen is preferred over hydrogen as
  • Step 58 involves growing the group III nitride layer on the
  • nitride layer may be a Mg-doped GaN layer formed by reaction of
  • Step 58 may involve growing the group III nitride
  • step 60 For example, by polishing the backside
  • the sapphire substrate may be removed.
  • the method of Fig. 4 provides a Mg-doped p-type group III
  • the temperature of the group-III/Mg is preferable that the temperature of the group-III/Mg
  • mixture 11 of systems 40 and 40* be maintained at a temperature
  • III-V nitride semiconductors gallium, aluminum, and
  • indium having melting points of 29.8 °C, 660.45 °C, 156.6 °C,
  • the common group-III/Mg mixture 11 is in the liquid phase at a
  • undesirable alloys such as Mg 3 Ga 2 .

Abstract

L'invention concerne des couches de nitrures III-V de grande qualité, dopés au magnésium, et leurs procédés de fabrication. On peut produire une couche de nitrure de gallium de type p, de nitrure d'indium ou de nitrure d'aluminium (12') sur un substrat en saphir (5), par un procédé d'épitaxie en phase vapeur hybride, en utilisant un mélange d'apport métallique comprenant du magnésium et un métal de groupe III (Ga, In, Al) (11). On peut enlever du substrat en saphir la couche de nitrure de gallium, de nitrure d'indium ou de nitrure d'aluminium, pour produire un substrat de nitrure III-V dopé au Mg, présentant une densité des dislocations faible et pouvant être utilisé dans la fabrication de dispositifs, comme des dispositifs électroluminescents.
EP00922232A 1999-05-07 2000-04-13 Nitrures iii-v dopes au magnesium et procedes Withdrawn EP1200652A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30729999A 1999-05-07 1999-05-07
US307299 1999-05-07
PCT/US2000/010150 WO2000068470A1 (fr) 1999-05-07 2000-04-13 Nitrures iii-v dopes au magnesium et procedes

Publications (1)

Publication Number Publication Date
EP1200652A1 true EP1200652A1 (fr) 2002-05-02

Family

ID=23189118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00922232A Withdrawn EP1200652A1 (fr) 1999-05-07 2000-04-13 Nitrures iii-v dopes au magnesium et procedes

Country Status (5)

Country Link
EP (1) EP1200652A1 (fr)
JP (1) JP2003517721A (fr)
CN (1) CN1409778A (fr)
TW (1) TW555897B (fr)
WO (1) WO2000068470A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647435B1 (en) 2006-10-11 2014-02-11 Ostendo Technologies, Inc. HVPE apparatus and methods for growth of p-type single crystal group III nitride materials

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP3803788B2 (ja) * 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
CN1316567C (zh) * 2003-04-16 2007-05-16 方大集团股份有限公司 采用多量子阱制备GaN基绿发光二极管外延片生长方法
WO2006013957A1 (fr) * 2004-08-06 2006-02-09 Mitsubishi Chemical Corporation SEMI-CONDUCTEUR MONOCRISTAL AU NITRURE COMPRENANT Ga, MÉTHODE POUR LE FABRIQUER, ET SUBSTRAT ET DISPOSITIF UTILISANT LE CRISTAL
JP4833616B2 (ja) 2004-09-13 2011-12-07 昭和電工株式会社 Iii族窒化物半導体の製造方法
DE102004050806A1 (de) * 2004-10-16 2006-11-16 Azzurro Semiconductors Ag Verfahren zur Herstellung von (AI,Ga)N Einkristallen
KR100809243B1 (ko) * 2006-04-27 2008-02-29 삼성전기주식회사 질화물막 제조방법 및 질화물 구조
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
CN108118390A (zh) * 2017-12-19 2018-06-05 东莞市中镓半导体科技有限公司 一种提高hvpe中iii-氮化物材料掺杂效率的方法和装置
US11869767B2 (en) 2020-02-14 2024-01-09 National University Corporation Tokai National Higher Education And Research System Gallium nitride vapor phase epitaxy apparatus used in vapor phase epitaxy not using organic metal as a gallium raw material and manufacturing method therefor
CN111681958A (zh) * 2020-05-29 2020-09-18 华南理工大学 一种新型异质结构镁扩散制备常关型hemt器件的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL275516A (fr) * 1961-03-02
FR2116194B1 (fr) * 1970-02-27 1974-09-06 Labo Electronique Physique
US3888705A (en) * 1973-12-19 1975-06-10 Nasa Vapor phase growth of groups iii-v compounds by hydrogen chloride transport of the elements
CA1071068A (fr) * 1975-03-19 1980-02-05 Guy-Michel Jacob Methode de fabrication de cristaux simples par croissance a partir de la phase gazeuse
JPH08335555A (ja) * 1995-06-06 1996-12-17 Mitsubishi Chem Corp エピタキシャルウエハの製造方法
US6001172A (en) * 1997-08-05 1999-12-14 Advanced Technology Materials, Inc. Apparatus and method for the in-situ generation of dopants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0068470A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647435B1 (en) 2006-10-11 2014-02-11 Ostendo Technologies, Inc. HVPE apparatus and methods for growth of p-type single crystal group III nitride materials
US9416464B1 (en) 2006-10-11 2016-08-16 Ostendo Technologies, Inc. Apparatus and methods for controlling gas flows in a HVPE reactor

Also Published As

Publication number Publication date
JP2003517721A (ja) 2003-05-27
CN1409778A (zh) 2003-04-09
WO2000068470A1 (fr) 2000-11-16
TW555897B (en) 2003-10-01

Similar Documents

Publication Publication Date Title
US5432808A (en) Compound semicondutor light-emitting device
EP0881666B1 (fr) Composé semiconducteur contenant de l'azote et procédé de sa fabrication
US5926726A (en) In-situ acceptor activation in group III-v nitride compound semiconductors
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
EP0403293B1 (fr) Méthode de fabrication d'un élément semiconducteur en composé du groupe III-V
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
EP0497350A1 (fr) Méthode de croissance cristalline pour un composé semiconducteur à base de nitrure de gallium
US6218269B1 (en) Process for producing III-V nitride pn junctions and p-i-n junctions
JPH06232451A (ja) p型窒化ガリウムの成長方法
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US6476420B2 (en) P-N homojunction-based structures utilizing HVPE growth III-V compound layers
EP1200652A1 (fr) Nitrures iii-v dopes au magnesium et procedes
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
US6559467B2 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
US6911079B2 (en) Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
JP3700283B2 (ja) 窒化物化合物半導体素子
US6388323B1 (en) Electrode material and electrode for III-V group compound semiconductor
JPH06283760A (ja) 半導体発光装置及びその製造方法
KR100710007B1 (ko) 에이치브이피이법을 이용하여 제조된 피-형 반도체 및 그제조방법
US20070254445A1 (en) Method of forming nitride film and nitride structure
JPH1070082A (ja) p型窒化物系III−V族化合物半導体層の作製方法
US20020047135A1 (en) P-N junction-based structures utilizing HVPE grown III-V compound layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040519