TW555897B - Magnesium-doped III-V nitrides and methods - Google Patents

Magnesium-doped III-V nitrides and methods Download PDF

Info

Publication number
TW555897B
TW555897B TW89107301A TW89107301A TW555897B TW 555897 B TW555897 B TW 555897B TW 89107301 A TW89107301 A TW 89107301A TW 89107301 A TW89107301 A TW 89107301A TW 555897 B TW555897 B TW 555897B
Authority
TW
Taiwan
Prior art keywords
magnesium
group
nitride layer
patent application
type nitride
Prior art date
Application number
TW89107301A
Other languages
Chinese (zh)
Inventor
Tetsuzo Ueda
Glenn S Solomon
David J Miller
Original Assignee
Cbl Technologies Inc
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cbl Technologies Inc, Matsushita Electric Ind Co Ltd filed Critical Cbl Technologies Inc
Application granted granted Critical
Publication of TW555897B publication Critical patent/TW555897B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Magnesium-doped high quality III-V nitride layers, and methods for making the same. A p-type gallium nitride, indium nitride, or aluminum nitride layer may be produced on a sapphire substrate by a hydride vapor-phase epitaxy (HVPE) process using a metal supply mixture which includes magnesium and a group III metal (Ga, In, Al). The gallium nitride, indium nitride, or aluminum nitride layer may be removed from the sapphire substrate to provide a Mg-doped p-type III-V nitride substrate having low dislocation densities, and being suitable for use in fabrication of, e.g., light-emitting devices.

Description

555897 A7 ___ B7 五、發明說明(1 ) 發明之範園 本發明係關於滲鎂之金屬氮化物。本發明也關係到生 長滲鎂之P型瓜一 V族氮化物。本發明還關係到利用 HV P E生長滲鎂之第m族金屬氮化物基質。 發明之背景 由於彼之能帶間隙之本性,m - v族氮化物(氮化鎵 、銦、及鋁,及彼之合金)顯現製造可見光譜短波發光裝 置之強大能力。舉例來說,氮化鎵(G a N )係時下用於 藍色發光二極體之製造,而氮化物藍紫光雷射已證實爲原 型。”第m族氮化物”該詞意指以一種或多種第m族金屬(其 包括鋁、鎵及銦)爲正電性原子以氮原子爲某部份或全部 負電性配位基(其他的負電性配位基包括憐、砷或銻)配 位而組成之化合物。第in族金屬氮化物之典型化學式係 G 3 1-x-yA 1 X I nyNl-a-b-cP aA SbSbc [ Q < (x,x,a,b,c)<l〕。 無論如何,低阻抗P型GaN (p — GaN)之生長 已證實有問題,其利用先前技藝之方法及材料。甚至具有 最淺受體能階之鎂滲入G a N中亦將造成高阻抗材料。在 過去十年間,後期退火及電子束輻射技術能夠得到較低電 阻係數之滲鎂P — G a N之製造,藉著由滲入的鎂釋放出 氫原子。無論如何,載運濃度依然維持在1 ^ 8 e m - 3 _ 近,而且歐姆接觸電阻不夠低而甚至無法配合傳,铳m _ v 族半導體(例如G a A s )裝置之能階。這個高歐姆接觸 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -4 - (請先閱讀背面之注意事項再填寫本頁) 裝 ----訂--------- 經濟部智慧財產局員工消費合作杜印製 經濟部智慧財產局員工消費合作杜印製 555897 Α7 ___ Β7 五、發明說明(2 ) 電阻造成ρ η連結爲主之發光二極體或雷射二極體之高串 聯電阻。由此,這些裝置之低電壓操作變得極爲困難。尤 其在雷射二極體的例子中,這將導致更高的操作電流及更 短的操作壽命。 根據先前技藝之方法,Ρ型G aN通常藉由金屬有機 化學物氣相沉積(MOCVD)生長在藍寶石基質上,其 中雙環戊二烯鎂(C p2Mg )當作鎂摻雜物之來源。因爲 鎂摻雜物在最後的P — G a N會被氫原子鈍化,因此ρ -G a N在氮氣中之後期退火必須釋放出鈍化氫以達到大約 1 018cm_3之載運濃度。再回顧先前技藝之MOCVD 技術來自金屬有機來源之碳原子可以摻入ρ - G a N薄膜 中,使得碳的較深能階傾向降低P型載運濃度。另外,先 前技藝利用M〇CVD生長之ρ — G a N層具有高的位錯 密度(在藍寶石基質上大約109cm — 2)。再者,先前 技藝之Μ〇C V D系統係複雜並且昂貴的,部份由於複雜 的氣體處理系統故,高成本與金屬有機物及該金屬有機來 源用之昂貴恒溫槽有關。 生長ρ - G a Ν用之另一個先前技藝技術係氫化物氣 相磊晶(HVPE) °HVPE具有比MOCVD更好的 優點,在於低位錯密度(大約1 0 7 c m - 2 )可以使用較 簡單、低成本系統藉由高成長速率之”塊狀生長”而達成。更 低的位錯密度能得到更可靠並且更高性能裝置之製造,例 如具有較長壽命之低閾電流雷射二極體。Η V Ρ E的另一 個優點係來源材料中沒有碳,可以預期得到更高.的活化效 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)-5 _ --ί---HI — — ^ - I I I I--I — — — — — — I (請先閱讀背面之注意事項再填寫本頁) 555897 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(3 ) 率,尤其在p_G a N的例子中。 與先前技藝之裝備及方法比起來’本發明提供了一種 用於生長滲鎂之P型m — V族氮化物之改良H V p E系統 ,在一個更有效率的情況下並且利用較簡單的設備。 發明總結 根據本發明其中之一觀點’提供一種簡單的並且符合 成本效益的生長滲鎂之P型瓜- V族氮化物層或基質之方 法。初始試劑氣體成份可以藉著將H C 1原始氣體通過第 ΠΙ族金屬(鎵,Ga ;銦,In;或鋁’Α1)及鎂( M g )之混合物而獲得。此型之金屬混合物指的是第皿族 /鎂金屬混合物。最終的試劑氣體(例如,G a C 1 )與 氨在HV P E系統中反應型成一層P型!H — V族氮化物層 ,後者沉積於適當之基質上。利用此方法,與利用先前技 藝方法形成之層作比較時,P - G a N層得以形成其具有 較低位錯密度及摻雜較少的碳原子。希望由較低的位錯密 度得到鎂摻雜物較高的活化效率。再者,利用本發明之技 術,p - G a N基質得以藉由經HVPE生長後移除p — G a N層獲得。 雖然氫或氮在實現本發明時可以用作載運氣體,根據 一個現有之較佳體系,氮係用作載運氣體。避免用氫當作 載運氣體理論的解釋在於氫載運氣體之氫原子可能會使已 長成DI - V族氮化物薄膜中的鎂鈍化,藉以得到氮化物層 之較低p型載運濃度。這對於用於發光裝置之第m族氮化 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)-6 - ------;-----裝!!1 訂--------- (請先閱讀背面之注意事項再填寫本頁) 555897 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(4 ) 物係有益的。 根據本發明之較佳體系,第m族/鎂金屬混合物之溫 度係大於6 6 1 °C。 本發明之一個特徵在於其提供了 一種藉著氫化物氣相 聶晶形成滲鎂之p型第in族金屬氮化物層之方法。本發之 另一個特徵在於其提供了一種滲鎂之p型第m族金屬氮化 物層’其中鎂摻雜物係藉著將η c 1通過鎂元素衍化而成 〇 本發明之優點在於其提供了一種簡單的並且具成本效 益的形成滲鎂之Ρ型m-v族氮化物層之方法。本發明之 另一個優點在於其提供了一種形成p型氮化物層之方法其 中鎂摻雜物之氫原子鈍化係避免。 這些及其他目的,優點及特徵悉都藉著製造p型氮化 物層之方法之提供而完成,其包括的步驟有:a )提供一 個HVP E系統其包含一個反應器在內;b )將基質安置 於反應器中;c )將H C 1通過一種金屬混合物以製成初 始試劑氣體成份,該金屬混合物包括鎂金屬在內;d )將 氨及初始試劑氣體引入反應器;以及e )在基質上生長滲 鎂之P型氮化物層。 這些及其他目的,優點及特徵悉都藉著HV P E長在 基質上之P型氮化物層之提供而完成,該P型氮化物層包 括:滲入鎂之第m族氮化物,藉著使初始試劑氣體成份與 氨反應而形成之P型氮化物層,藉著將H C 1通過第ΠΙ金 屬及鎂金屬而製成之初始氣體成份。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)-7 - ---Τ I J —Γ 裝·! !| 訂·!-- (請先閱讀背面之注意事項再填寫本頁) 555897 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(1 2 3 4 5 6 7 8 ) 本發明之這些及其他目的,優點及特徵經由以下之檢 查’有部份將在說明當中而有部份對於在此技藝具有一般 技術之士將係顯而易見的,或者可以從本發明之實現而學 得。本發明之優點可以理解並且獲得而特別於追加申請專 利範圍中提出。 -------------裝 -------訂--------- (請先閱讀背面之注意事項再填寫本頁) 1 形之簡要說明 圖1圖示一個先前技藝之Μ〇C VD生長系統; 圖2圖示一個先前技藝之HVPE生長系統; 圖3 Α圖示一個適合生長滲ρ型氮化物層之HV ρ ε 系統,根據本發明之一個體系; 圖3 B圖示一個適合生長滲p型氮化物層之HV p e 系統,根據本發明之另一個體系;以及 圖4圖示涉及製造p型金屬氮化物層之方法的〜連串 步驟,根據本發明之另一個體系。 主要元件對照表 2 氨 3 氫 4 氯化氫 5 基質 6 氮氣 7 有機金屬化合物 8 雙環戊二烯鎂 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -8 - 經濟部智慧財產局員工消費合作社印製 555897 A7 B7 五、發明說明(6 ) 9 一個液態第π族金屬之存量 10 鎂金屬 11 第三族/鎂金屬混合物 12 P型氮化鎵層 12’ p型氮化物層 12” 最後的p型薄膜 2 0 一個金屬有機化學物氣相沉積磊晶生長系統 22 爐體線圈 24 反應器或生長管 26 反應器入口 26a 上面的附屬入口 26b 下面的附屬入口 28a 第一噴水器 28b 第二噴水器 3 0 氫化物氣相磊晶系統 3 2a 第一爐體 3 2b 第二爐體 3 4 反應器 3 5 生產室 36a 第一反應器入口 36b 第二反應器入口 38 摻雜物室 4 0 氫化物氣相嘉晶系統 4〇’氫化物氣相磊晶系統 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) · 9 - —-----;-----41^ 裝--------訂--------- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 555897 A7 B7_____ 五、發明說明(7 ) 4 2 爐體 . 4 4 反應器 4 6a 第一入口 4 6b 弟—·入口 4 8 生產室 適當體系之詳細敘述 爲圖示故,本發明將特別強調在p型G a N上 Η V P E生長之說明。無論如何,本發明也能應用於其他 利用Η V Ρ Ε之1[一 V族氮化物之沉積。 現在參照各圖形,圖1圖示一個先前技藝之 Μ〇C V D磊晶生長系統。系統2 0包括爐體線圈2 2環 繞於反應器或生長管2 4周圍,以及一個反應器入口 2 6 。一種基質5,例如,藍寶石,係置於反應器2 4內。試 劑及載運氣體係經由管道系統之錯綜排列,如以下,而成 供應至反應器2 4。鎵係由含有機金屬化合物7,例如三 甲基鎵(TMGa),存放於第一噴水器28a中,利用 載運氣體例如氫3來供應。氨2係經由一個下面的附屬入 口 2 6 b供作試劑氣體。氫3也係用作包含於第二噴水器 2 8 b內之鎂化物其含化合物8,例如雙環戊二烯鎂( C p 2 M g ),之載運氣體。化合物8提供了鎂摻雜物需求 的鎂。還要注要氫3也經由上面的附屬入口 2 6 a供應至 反應器2 4。流量計係用以控制氣體流率。將T M G a 7 、氨2及C p 2 M g 8供應至反應器2 4的結果’ P 一 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -10 - ---------------裝 -------^-1111111 «Aw. (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 555897 « A7 ___ B7 五、發明說明(8 ) G a N 1 2係於基質5上長成一片晶圓。接著,該晶圓係 於氮氣環境下退火從滲入之鎂脫附氫原子。在p - G a N 層(1 2 )內之最終孔洞濃度高達1 〇 1 8 c m — 3。 另一個先前技藝用於形成P型m - V族氮化物層之方 法係利用Η V P E系統之鎂滲入。圖2圖示一個先前技藝 之Η V Ρ Ε系統。簡單的說,系統3 0包括一個第一爐體 3 2 a其環繞於一個反應器或生長管3 4四周。反應器 34分別含有第一及第二反應器入口,36a、36b, 以及一個生產室3 5。生產室3 5內含一個液態第m族金 屬9 (Ga、In或A 1 ,或彼之合金)之存量。試劑氣 體(氨2 )及載運氣體(氫3 )係經由第二入口 3 6 b供 應至反應器3 4。H C 1 (前驅物或原始氣體)4係經由 第一入口 36a供應至室35,其中HC14與金屬9反 應形成試劑氣體,例如G a C 1。 在系統3 0中,鎂摻雜物來源係以鎂金屬1 〇之形式 含於摻雜物室3 8內。摻雜物室3 8及鎂1 0係藉由第二 爐體3 2 b加熱。系統3 0以一個獨立爐用於鎂1 0 ;因 此摻雜物室3 8,在這一側,之溫度及反應器3 4及生產 室3 5,在另一側,之溫度可以單獨控制。無論如何,經 此安排的結果,系統3 0變得更複雜同樣更高成本。 綜觀以上,可淸楚看到一個改良的系統及Η V Ρ E生 長ρ型ΠΙ — V族氮化物層之方法係必需的。圖3 a圖示一 個適用於生長滲鎂之P型氮化物層之HVP E系統,根據 本發明之一個體系。系統4 0包括一個爐體4 2環繞著一 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -11- ------J----IAW ^-------—訂—------ (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 555897 A7 —_____B7 五、發明說明(9 ) 個分別含有桌一及桌一入口 4 6 a、4 6 b之反應器4 4 。第一入口 4 6 a導向生產室4 8。一種基質,例如藍寶 石’係置於反應器4 4內。 生產室4 8含有一個第]π族金屬(鎵、銦及鋁)與元 素(金屬)鎂在一起的存量,但也可能係鎂之氯化物。較 佳地’第ΙΠ族金屬及鎂來源係結合形成一種第m族/鎂金 屬混合物1 1。混合物1 1之鎂成份當作系統4 〇中鎂摻 雜物之來源。較佳地鎂係混合物1 1之較少成份;更佳地 混合物1 1之鎂成份係用於1 〇 p p m至1〇,0 0 0 P P m。混合物1 1係藉由爐體4 2加熱至溫度達5 0〇 至1 0〇〇°C之溫度範圍內;更佳地在6 0 0至9 0 0°C 範圍內;而最佳者宜爲溫度6 5 0至7 5 Ot。 HC 1 4係經由第一入口 4 6 a引入室4 8中,其中 H C 1與混合物1 1反應製成第一試劑氣體成份其係運到 反應器4 4中。較佳地,該第一試劑氣體成份主要係G a 、I η或A 1之氯化物,例如G a C 1 ,及少量的鎂組成 。根據圖3 A中所示之體系,第二試劑氣體成份,氨2, 係經由第二入口 4 6 b使用氫當作載運氣體供應至反應器 4 4。第一及第二試劑氣體成份在反應器4 4中反應形成 P型氮化物層1 2 ’,例如,G a N,其係沉積於基質5上 〇 在層1 2’之生長成較厚薄膜,例如,成爲p — G a N 之薄膜之後,層1 2’可以從藍寶石基質5上移除製成一層 p-Ga N基質。層1 2’可以長到5微米至5 0 0微米之 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -12- - -----T!! 裝 ---SI 訂--- ---- (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 555897 A7 B7 五、發明說明(10) 間的厚度;更佳者至1 0 0微米之厚度。 根據本發明,系統4 0可以用於滲鎂之P型第m族氮 化物(例如,p - G a N )層之成本效益生產。這樣的層 係形成於無有機化合物之下,因此沒有碳摻入氮化物層中 。碳較深層之能量阱會降低載運濃度。因此,沒有碳代表 明顯優於先前技藝之Μ〇C V D技術,其中其可以得到較 高的載運濃度。 圖3 Β圖不一個HVP Ε系統’適用於生長渗錶之ρ 型I[[- V族氮化物層,根據本發明之另一個體系。系統 4 0 ’大體上相似於系統4 0,上文參考圖3 Α來說明。無 論如何,在系統4 0’入口 4 6 b處氮氣6係用作氨2之載 運氣體,代替氫3 (圖3A)。藉著使用氮氣6當作載運 氣體而排除氫3,p — G a N薄膜12”中鎂原子被氫原子 鈍化部份將大大地降低。由此,在無氫3載運氣體之下, 鈍化將限於由氨及H C 1分解期間相對痕量氫而造成。最 後的Ρ型薄膜1 2 ”展示出較低於薄膜1 2之電阻,1 2 ’根 據系統及方法其使用氫當作載運氣體(圖1、2、3 A ) 而生長。 圖4圖示製造滲鎂之ρ型金屬氮化物層之方法所牽涉 的一連串步驟,根據本發明之另一個體系,其中步驟5〇 可能係,舉例來說,各別上文參考圖3 A及3 B說明之系 統4 0、4 0 ’其中之一的。步驟5 2牽涉到在安置 HVP E系統之反應器中的基質。在步驟5 2之反應器中 安置之基質宜爲藍寶石基質。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -13- --I---7 — — 裝------— —訂 ---I---- (請先閱讀背面之注意事項再填寫本頁) 555897 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(11) 步驟5 4牽涉到使其含H C 1在內之來源氣體通過液 體金屬。在步驟5 4中該液體金屬被HC 1通過者包括鎂 或鎂來源(例如氯化鎂),以及選自G a、I η、A 1及 Ga、In及A 1之合金之第m族金屬。根據現有的較佳 體系,元素(金屬)鎂及第m族金屬係組合形成第ΠΙ族/ 鎂金屬混合物,而H C 1則通過第ΙΠ族/鎂金屬混合物。 通常,鎂會以相對痕量,例如,1 0 0 p p m,出現於第 m族/鎂金屬混合物中,但是可能介於1 p p b (十億分 之一)至10,000 ppm (百萬分之一)任何範圍內 。較佳地,第ΠΙ族/鎂金屬混合物係加熱至6 5 0至 9〇〇°C之溫度範圍內。步驟5 4造成第一試劑氣體之形 成。此第一試劑氣體成份包括鎂及第瓜族金屬之氯化物, 例如,G a C 1或I n C 1在內。 步驟5 6牽涉到將試劑氣體引入Η V Ρ Ε反應器中。 被引入反應器之試劑氣體包括步驟5 4最後形成之第一試 劑氣體成份,以及第二試劑氣體成份。較佳地,第二試劑 氣體成份係氨。第二試劑氣體成份係藉由載運氣體引入反 應器中。用於引入氨之載運氣體宜爲氮氣,雖然其他氣體 例如氫也可以使用。如上文提到的’氮氣比氫適合當作載 運氣體,因爲氫將導致氮化物層中鎂摻雜物之鈍化。 步驟5 8牽涉到將第瓜族氮化物層長在基質上。步驟 5 8中長成之第瓜族氮化物層導致氨及第一試劑氣體成份 之氣相反應。舉例來說,第E氮化物層可能係藉由氨與 G a C 1在少量鎂存在之下反應形成的滲鎂氮化鎵層。步 本紙張尺度適用中國國家標準(CNS)A4規格(210x297公釐)~-14' -------------裝 -----訂·!--I (請先閱讀背面之注意事項再填寫本頁) 555897 A7 五、發明說明(12) (請先閱讀背面之注意事項再填寫本頁) 驟5 8可能牽涉到使第m族氮化物層生長到厚達3 0 〇微 米或更厚。步驟5 8中長成之第瓜族氮化物層之想要厚度 將視因素例如該層想要應用之用途而定。在第瓜族氮化物 層已經長到想要的厚度以後,步驟6 0中可以自藍寶石基 質移開。舉例來說,藉著磨擦該結構之背面,就可移開藍 寶石。 圖4之方法提供了 一種含有低位錯密度及高載運濃度 之滲鎂P型第ΠΙ族氮化物基質。參考圖4說明之前置步驟 提供了一種較簡單的並且具成本效益的形成滲鎂之p型m - V族氮化物之方法。在圖4的方法中沒有使用無機素材 。因此,與Μ〇C V D形成之相似材料比起來,預期可得 到摻雜物之較高活化效率,尤其在ρ - G a Ν之例子中。 較佳者係系統4 0及4 0 ’之第m族/鎂混合物1 1之 溫度係保持於高於大約6 6 0 . 4 5 °C之溫度。規定此溫 度之理論根據如下。通常用於m - V族氮化物半導體之第 m金屬係鎵、鋁及銦,其熔點分別爲2 9 · 8 t、 ν·., 經濟部智慧財產局員工消費合作社印製 66〇· 45°C、156 · 6°C。因爲鎂之熔點係650 C ’普通弟ΙΠ族/錶混合物1 1在溫度筒於6 6 0 · 4 5 °C時係處於液相。在此溫度(6 6 0 · 4 5 °C )時,足量 的鎂可以摻入薄膜1 2 ’/ 1 2 ”以達到低阻抗ρ型瓜一 ν族 氮化物,因爲沒有不想要的合金(例如M g 3 G a 2 )係出 現於第m族/鎂金屬之供應當中。 前述的體系僅係示範性的並且不得解釋爲限制本發明 。本教旨可以應用到其他類型裝置及方法。本發明之說明 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -15- 555897 A7 _B7_ 五、發明說明(13 ) 係企圖示例,而非想要限制追加申請專利之範圍。許多替 代物、改質及變數對熟於此藝之士係顯而易見的。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -16-555897 A7 ___ B7 V. Description of the Invention (1) The Model Garden of the Invention The present invention relates to a metal nitride that is magnified. The present invention also relates to P-type melons-V-nitrides that grow and infiltrate. The invention also relates to the use of HV P E to grow a group m metal nitride matrix of magnesium infiltration. BACKGROUND OF THE INVENTION Due to their band gap nature, m-v group nitrides (gallium nitride, indium, and aluminum, and their alloys) have shown a powerful ability to make short-wave light-emitting devices in the visible spectrum. For example, gallium nitride (G a N) is currently used in the manufacture of blue light-emitting diodes, and nitride blue-violet lasers have proven to be prototypes. The term "group m nitride" means that one or more group m metals (including aluminum, gallium, and indium) are positively charged atoms, and a nitrogen atom is part or all of negatively charged ligands (other Negatively charged ligands include compounds consisting of phosphonium, arsenic, or antimony). The typical chemical formula of the Group in metal nitride is G 3 1-x-yA 1 X I nyNl-a-b-cP aA SbSbc [Q < (x, x, a, b, c) < l]. Regardless, the growth of low-resistance P-type GaN (p-GaN) has proven problematic, using methods and materials from previous techniques. Even the penetration of magnesium with the shallowest acceptor level into GaN will result in a high impedance material. During the past ten years, post-annealing and electron beam radiation technology have been able to obtain a low-resistance Mg-doped P—G a N, which releases hydrogen atoms from the infiltrated Mg. In any case, the carrier concentration is still maintained near 1 ^ 8 e m-3 _, and the ohmic contact resistance is not low enough to even cooperate with the energy level of a 铳 m _ v group semiconductor (such as G a A s) device. This high ohmic contact paper size applies to Chinese National Standard (CNS) A4 (210 X 297 mm) -4-(Please read the precautions on the back before filling this page) ---- Consumption cooperation by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by 555897 Α7 ___ Β7 V. Description of the invention (2) Resistance caused by ρ η to be connected to the light-emitting diode or High series resistance of laser diodes. As a result, low-voltage operation of these devices becomes extremely difficult. Especially in the case of laser diodes, this will lead to higher operating currents and shorter operating life. According to prior art methods, P-type G aN is usually grown on a sapphire substrate by metal organic chemical vapor deposition (MOCVD), in which dicyclopentadiene magnesium (C p2Mg) is used as a source of magnesium dopants. Because the magnesium dopant will be passivated by hydrogen atoms in the final P—G a N, ρ -G a N must release the passivated hydrogen in the subsequent annealing in nitrogen to reach a transport concentration of about 1 018 cm 3. Recalling the previous technique of MOCVD technology, carbon atoms from metal organic sources can be incorporated into the ρ-G a N thin film, so that the deeper energy levels of carbon tend to reduce the P-type carrier concentration. In addition, the p-G a N layer grown by MOCVD in the prior art has a high dislocation density (approximately 109 cm-2 on a sapphire substrate). Furthermore, the prior art MV V D system is complicated and expensive, partly due to the complex gas processing system, and the high cost is related to the expensive constant temperature baths used for metal organics and the metal organic sources. Another prior art technique used for growing ρ-G a Ν is hydride vapor phase epitaxy (HVPE) ° HVPE has a better advantage than MOCVD in that low dislocation density (about 107 cm-2) can be used more easily The low-cost system is achieved by "block growth" with a high growth rate. Lower dislocation densities enable more reliable and higher performance devices to be manufactured, such as low threshold current laser diodes with longer lifetimes. Η V Ρ E Another advantage is that there is no carbon in the source material, which can be expected to be higher. The activation efficiency of this paper is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -5 _ --ί- --HI — — ^-III I--I — — — — — — I (Please read the notes on the back before filling out this page) 555897 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention ( 3) rate, especially in the case of p_G a N. Compared with the equipment and methods of the prior art, the present invention provides an improved HV p E system for growing P-type m-V group nitrides of magnesium infiltration, in a more efficient situation and using simpler equipment . Summary of the Invention According to one of the aspects of the present invention ', a simple and cost-effective method of growing a P-type melon-V-nitride layer or matrix is provided. The initial reagent gas composition can be obtained by passing the H C 1 original gas through a mixture of a Group II metal (gallium, Ga; indium, In; or aluminum'Al) and magnesium (Mg). This type of metal mixture refers to the Group D / Mg metal mixture. The final reagent gas (for example, G a C 1) reacts with ammonia in the HV PE system to form a layer of P type! H-V nitride layer, which is deposited on a suitable substrate. Using this method, the P-G a N layer was able to form a carbon layer with a lower dislocation density and less doping when compared with a layer formed using a prior art method. It is desirable to obtain a higher activation efficiency of the magnesium dopant from the lower dislocation density. Furthermore, using the technology of the present invention, the p-G a N matrix can be obtained by removing the p-G a N layer after growing by HVPE. Although hydrogen or nitrogen can be used as a carrier gas in carrying out the present invention, according to an existing preferred system, a nitrogen system is used as a carrier gas. The explanation for avoiding the use of hydrogen as a carrier gas is that the hydrogen atoms of the hydrogen carrier gas may passivate magnesium that has grown into a DI-V nitride film, thereby obtaining a lower p-type carrier concentration of the nitride layer. This is applicable to Group m nitrides used in light-emitting devices. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -6-------; ----- installed! !! 1 Order --------- (Please read the notes on the back before filling out this page) 555897 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Α7 Β7 V. Description of Invention (4) The system is beneficial. According to a preferred system of the present invention, the temperature of the group m / magnesium metal mixture is greater than 66 1 ° C. A feature of the present invention is that it provides a method for forming a p-type Group In metal nitride layer of magnesium by infiltrating a hydride vapor phase. Another feature of the present invention is that it provides a p-type group m metal nitride layer of magnesium infiltration, wherein the magnesium dopant is formed by deriving η c 1 through the magnesium element. A simple and cost-effective method for forming a p-type mv group nitride layer of magnesium infiltration. Another advantage of the present invention is that it provides a method for forming a p-type nitride layer in which hydrogen atom passivation of a magnesium dopant is avoided. These and other objectives, advantages, and characteristics are all accomplished by providing a method for manufacturing a p-type nitride layer, which includes the steps of: a) providing an HVP E system including a reactor; b) providing a substrate Placed in the reactor; c) passing HC1 through a metal mixture to make the initial reagent gas composition, the metal mixture including magnesium metal; d) introducing ammonia and the initial reagent gas into the reactor; and e) on the substrate A magnesium nitride-doped P-type nitride layer is grown. These and other objectives, advantages, and characteristics are all accomplished by the provision of a P-type nitride layer grown on the substrate by HV PE. The P-type nitride layer includes: a group m nitride infiltrated with magnesium, by making the initial The initial gas composition of the P-type nitride layer formed by the reaction of the reagent gas component with ammonia, by passing HC 1 through the III metal and the magnesium metal. This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) -7---- T I J —Γ !! | Order ·! -(Please read the notes on the back before filling out this page) 555897 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (1 2 3 4 5 6 7 8) These and other purposes of the invention, The advantages and features are checked through the following sections. Some of them will be explained in the description and some of them will be obvious to those skilled in the art, or they can be learned from the implementation of the present invention. The advantages of the present invention can be understood and obtained, and particularly presented in the scope of the patent application for additional applications. ------------- Install ------- Order --------- (Please read the precautions on the back before filling in this page) 1 illustrates a prior art MOC VD growth system; FIG. 2 illustrates a prior art HVPE growth system; FIG. 3A illustrates a HV ρ ε system suitable for growing a p-type nitride layer, according to the present invention. A system; FIG. 3B illustrates a HV pe system suitable for growing a p-type nitride layer, according to another system of the present invention; and FIG. 4 illustrates a series of steps related to a method of manufacturing a p-type metal nitride layer According to another system of the present invention. Comparison Table of Main Components 2 Ammonia 3 Hydrogen 4 Hydrogen Chloride 5 Substrate 6 Nitrogen 7 Organometallic Compounds 8 Dicyclopentadiene Magnesium This paper applies to China National Standard (CNS) A4 (210 X 297 mm) -8-Intellectual Property of the Ministry of Economic Affairs Printed by the Consumer Cooperative of the Bureau 555897 A7 B7 V. Description of the invention (6) 9 Stock of a liquid Group π metal 10 Magnesium metal 11 Group III / Mg metal mixture 12 P-type gallium nitride layer 12 'p-type nitride layer 12 ”final p-type film 2 0 a metal organic chemical vapor deposition epitaxial growth system 22 furnace coil 24 reactor or growth tube 26 reactor inlet 26a accessory inlet 26b above accessory inlet 28a first sprinkler 28b second water sprayer 3 0 hydride vapor phase epitaxy system 3 2a first furnace body 3 2b second furnace body 3 4 reactor 3 5 production chamber 36a first reactor inlet 36b second reactor inlet 38 dopant Chamber 40 0 Hydride vapor phase Jiajing system 40 'Hydride vapor phase epitaxy system The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) · 9-—-----;- ---- 41 ^ Outfit -------- Order ------ --- (Please read the notes on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 555897 A7 B7_____ V. Description of the invention (7) 4 2 Furnace. 4 4 Reactor 4 6a First entrance 4 6b — · Entrance 4 8 The detailed description of the appropriate system of the production room is for illustration. Therefore, the present invention will particularly emphasize the description of VPE growth on p-type G a N. In any case, the present invention can also be applied to other uses. V Ρ Ε 1 [a deposit of Group V nitrides. Referring now to the figures, Figure 1 illustrates a prior art MOCVD epitaxial growth system. System 20 includes a furnace coil 22 and surrounds the reactor or grows. Around the tube 24 and a reactor inlet 26. A substrate 5, such as sapphire, is placed inside the reactor 24. The reagents and carrier gas system are arranged through a piping system, as follows, to supply the reaction Device 2. 4. The gallium series is composed of organic metal compounds 7, such as trimethylgallium (TMGa), stored in the first water sprayer 28a, and is supplied using a carrier gas such as hydrogen 3. The ammonia 2 series is provided through an auxiliary inlet 2 below 6 b for reagent Hydrogen 3 is also used as a carrier gas for the magnesium compound contained in the second water sprayer 2 8 b, which contains compound 8, such as dicyclopentadiene magnesium (C p 2 M g). Compound 8 provides magnesium doping The magnesium required for the debris. It is also noted that hydrogen 3 is also supplied to the reactor 24 through the above-mentioned auxiliary inlet 2 6 a. The flow meter is used to control the gas flow rate. Results of supplying TMG a 7, ammonia 2 and C p 2 M g 8 to reactor 2 4 'P One paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) -10---- ------------ Equipment ------- ^-1111111 «Aw. (Please read the precautions on the back before filling out this page) Printed by the Employee Consumption Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs «A7 ___ B7 V. Description of the invention (8) G a N 1 2 is grown on the substrate 5 to form a wafer. The wafer was then annealed in a nitrogen atmosphere to desorb hydrogen atoms from the infiltrated magnesium. The final hole concentration in the p-G a N layer (1 2) is as high as 108 cm-3. Another prior art method for forming a p-type m-V group nitride layer is the magnesium infiltration of the ΗVPE system. Figure 2 illustrates a prior art VPE system. Briefly, the system 30 includes a first furnace body 3 2 a which surrounds a reactor or growth tube 3 4. The reactor 34 contains first and second reactor inlets, 36a, 36b, and a production chamber 35, respectively. The production room 3 5 contains a liquid Group m metal 9 (Ga, In or A 1, or an alloy thereof). The reagent gas (ammonia 2) and the carrier gas (hydrogen 3) are supplied to the reactor 34 through the second inlet 36b. H C 1 (precursor or original gas) 4 is supplied to the chamber 35 via the first inlet 36a, where HC 14 reacts with metal 9 to form a reagent gas, such as G a C 1. In system 30, the source of the magnesium dopant is contained in the form of magnesium metal 10 in the dopant chamber 38. The dopant chamber 38 and the magnesium 10 are heated by the second furnace body 3 2 b. The system 30 uses a separate furnace for magnesium 10; therefore, the temperature of the dopant chamber 38 and the reactor 34 and the production chamber 35 are controlled separately on the other side. Regardless, as a result of this arrangement, the system 30 becomes more complex and more expensive. Looking at the above, it can be seen that an improved system and a method for growing V p E to grow p-type III-V nitride layers are necessary. Fig. 3a illustrates an HVP E system suitable for growing a p-type nitride layer of magnesium infiltration, a system according to the present invention. The system 4 0 includes a furnace body 4 2 and surrounds a paper. Applicable to China National Standard (CNS) A4 specification (210 X 297 mm) -11- ------ J ---- IAW ^ --- ----— Order —------ (Please read the precautions on the back before filling out this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Consumption Cooperative 555897 A7 —_____ B7 V. Invention Description (9) Each contains Reactors 4 4 of table 1 and table 1 inlets 4 6 a, 4 6 b. The first entrance 4 6 a leads to the production room 48. A substrate such as sapphire is placed in the reactor 44. The production chamber 48 contains a stock of metals of group [π] (gallium, indium, and aluminum) together with elemental (metal) magnesium, but may also be a chloride of magnesium. Preferably, the group III metal and magnesium source are combined to form a group m / magnesium metal mixture. The magnesium component of Mixture 11 was used as the source of the magnesium admixture in System 40. Preferably, the magnesium component of the mixture 11 is less; more preferably, the magnesium component of the mixture 11 is used for 10 p p to 10,000 P p m. The mixture 1 1 is heated by the furnace body 4 2 to a temperature range of 500 to 100 ° C; more preferably, it is in the range of 600 to 900 ° C; and the best is The temperature is 6 5 0 to 7 5 Ot. HC 1 4 is introduced into the chamber 4 8 through the first inlet 4 6 a, where H C 1 reacts with the mixture 11 to make a first reagent gas component, which is transported to the reactor 4 4. Preferably, the first reagent gas component is mainly a chloride of Ga, Iη, or A1, such as GaC1, and a small amount of magnesium. According to the system shown in Fig. 3A, the second reagent gas component, ammonia 2, is supplied to the reactor 44 through the second inlet 4 6 b using hydrogen as a carrier gas. The first and second reagent gas components react in the reactor 44 to form a P-type nitride layer 1 2 ′, for example, G a N, which is deposited on the substrate 5. A thick film is grown on the layer 12 ′. For example, after becoming a thin film of p-G a N, the layer 12 'can be removed from the sapphire substrate 5 to form a p-Ga N substrate. Layer 1 2 'can grow to 5 micrometers to 500 micrometers. The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) -12------- T !! Packing --- SI Order --- ---- (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 555897 A7 B7 V. The thickness of the description of the invention (10); 100 micron thickness. According to the present invention, the system 40 can be used for the cost-effective production of magnesium type p-type group m nitrides (e.g., p-G a N) layers. Such a layer is formed under the absence of organic compounds, so no carbon is incorporated into the nitride layer. Deeper carbon energy traps reduce the carrier concentration. Therefore, the absence of carbon represents a significant advantage over the MOC V D technology of the prior art, where it can achieve a higher carrier concentration. FIG. 3B illustrates an HVP E system, which is suitable for growing a p-type I [[-V group nitride layer, which is another system according to the present invention. System 40 'is substantially similar to system 40, as explained above with reference to Figure 3A. Regardless, at the inlet 4 6 b of the system 40 ', nitrogen 6 is used as a carrier gas for ammonia 2 instead of hydrogen 3 (Fig. 3A). By using nitrogen 6 as the carrier gas to eliminate hydrogen 3, the passivation portion of the magnesium atoms in the p—G a N thin film 12 ”by hydrogen atoms will be greatly reduced. Therefore, under the hydrogen-free 3 carrier gas, the passivation will be reduced. Limited to the relatively small amount of hydrogen during the decomposition of ammonia and HC 1. The final P-type thin film 1 2 ”exhibits a lower resistance than the thin film 12, which according to the system and method uses hydrogen as a carrier gas (Figure 1, 2, 3 A). FIG. 4 illustrates a series of steps involved in a method of manufacturing a p-type metal nitride layer with magnesium infiltration. According to another system of the present invention, step 50 may be, for example, referring to FIG. 3A and 3 B illustrates one of the systems 40, 40 '. Step 52 involves the substrate in the reactor in which the HVP E system is placed. The substrate placed in the reactor of step 52 is preferably a sapphire substrate. This paper size applies to China National Standard (CNS) A4 specification (210 X 297 mm) -13- --I --- 7 — —----order --- I ---- ( (Please read the notes on the back before filling this page) 555897 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (11) Step 5 4 involves passing the source gas containing HC 1 through the liquid metal . The liquid metal passed by HC 1 in step 54 includes magnesium or a source of magnesium (for example, magnesium chloride), and a group m metal selected from the group consisting of Ga, I η, A 1 and an alloy of Ga, In, and A 1. According to the presently preferred system, the element (metal) magnesium and the group m metal system are combined to form a group III / magnesium metal mixture, and H C 1 passes through the group III / magnesium metal mixture. Generally, magnesium occurs in relative trace amounts, for example, 100 ppm, in Group m / Mg metal mixtures, but may be between 1 ppb (parts per billion) to 10,000 ppm (parts per million) A) Any range. Preferably, the Group III / Mg metal mixture is heated to a temperature range of 650 to 900 ° C. Step 54 causes the formation of the first reagent gas. The first reagent gas component includes magnesium and chlorides of Group III metals, such as Ga C 1 or In C 1. Step 56 involves introducing a reagent gas into the VPPE reactor. The reagent gas introduced into the reactor includes the first reagent gas component and the second reagent gas component finally formed in step 54. Preferably, the second reagent gas component is ammonia. The second reagent gas component is introduced into the reactor by a carrier gas. The carrier gas used to introduce ammonia is preferably nitrogen, although other gases such as hydrogen may be used. As mentioned above, 'nitrogen is better than hydrogen as the carrier gas because hydrogen will cause passivation of the magnesium dopants in the nitride layer. Step 58 involves growing a Group Gua nitride layer on the substrate. The group III nitride layer formed in step 58 causes a gas phase reaction of ammonia and the first reagent gas component. For example, the E-nitride layer may be a magnesium-doped gallium nitride layer formed by reacting ammonia with G a C 1 in the presence of a small amount of magnesium. The paper size is applicable to China National Standard (CNS) A4 specification (210x297 mm) ~ -14 '------------- install ----- order ·!-I (please first Read the notes on the back and fill in this page) 555897 A7 V. Description of the invention (12) (Please read the notes on the back and fill in this page) Step 5 8 may involve growing the m-th nitride layer to a thickness of 3 0 μm or more. The desired thickness of the Group III nitride layer grown in step 58 will depend on factors such as the intended use of the layer. After the Group I nitride layer has grown to the desired thickness, step 60 can be removed from the sapphire substrate. For example, sapphire can be removed by rubbing the back of the structure. The method of FIG. 4 provides a magnesium-type p-type Group III nitride matrix containing low dislocation density and high carrier concentration. The previous steps described with reference to FIG. 4 provide a simpler and cost-effective method for forming p-type m-V nitrides of magnesium. No inorganic material is used in the method of FIG. 4. Therefore, it is expected that higher activation efficiencies of the dopants can be obtained compared to similar materials formed by MC V D, especially in the case of p-G a N. Preferably, the temperature of the group m / magnesium mixture 1 1 of the systems 40 and 40 'is maintained at a temperature above about 66.4.5 ° C. The theoretical basis for specifying this temperature is as follows. The m-th metal gallium, aluminum, and indium commonly used in m-V nitride semiconductors have melting points of 2 9 · 8 t, ν ·., Printed by the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 66 ° 45 ° C, 156 · 6 ° C. Because the melting point of magnesium is 650 C 'common group III / epoxy mixture 1 1 is in the liquid phase at a temperature of 6 60 · 45 ° C. At this temperature (660 ° · 45 ° C), a sufficient amount of magnesium can be incorporated into the film 1 2 '/ 1 2 "to achieve a low-resistance p-type gua-v-nitride because there are no unwanted alloys ( For example, M g 3 G a 2) appears in the supply of group m / magnesium metals. The foregoing system is only exemplary and should not be construed as limiting the invention. The teachings can be applied to other types of devices and methods. Explanation of the invention This paper is in accordance with the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -15- 555897 A7 _B7_ V. The description of the invention (13) is an attempt to illustrate, not to limit the scope of additional patent applications. Many alternatives, modifications and variables are obvious to those who are familiar with the art. (Please read the notes on the back before filling out this page.) The paper printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs applies Chinese national standards ( CNS) A4 size (210 X 297 mm) -16-

Claims (1)

A8A8 555897 六、申請專利範圍 附件2A: 第89107301號專利申請案 中文申請專利範圍替換赛瓜替:j奐本1 民_ 92.年4朋22围-正 _______________一~----一--------------------------- 1.一種製造Ρ型氮化物層之方法,其包含的步驟有 a) 提供一個含有一個反應器之氫化物氣相磊晶系統 b) 將基質置於反應器中;並且 c )將試劑氣體引入反應器,其中該試劑氣體包括第 一試劑氣體成份,該第一試劑氣體成份藉著使氯化氫通過 第m族金屬及鎂而製成。 2 ·如申請專利範圍第1項之方法,其中第π族金屬 包含鎵、銦、鋁或一種彼之合金。 3 ·如申請專利範圍第1項之方法,其中第瓜族金屬 及鎂在氯化氫通過第m金屬及鎂之前係組合生成一種第in 族/鎂金屬混合物。 4 ·如申請專利範圍第3項之方法,其中第m族/鎂 金屬混合物中的鎂係元素鎂。 5 ·如申請專利範圍第3項之方法,其中第m族/鎂 金屬混合物基本上由一種以上之第m金屬及元素鎂組成。 6 ·如申請專利範圍第3項之方法,其中第m族/鎂 金屬混合物包含十億分之一至1 0 ’ 0 〇 〇份百萬分之一 的鎂金屬。 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇Χ297公釐) - '> . 訂 (請先閲«背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 555897 A8 B8 C8 D8六、申請專利範圍 7 ·如申請專利範圍第1項之方法,其中該試劑氣體 還包括氨,而氨係藉由載運氣體載運至反應器。 8 .如申請專利範圍第7項之方法,其中載運氣體不 含氫。 9 .如申請專利範圍第7項之方法,其中載運氣體係 選自氮及氦之氣體。 1 0 .如申請專利範圍第1項之方法,其中第一試劑 氣體成份包含一種第m族金屬之氯化物及鎂。 1 1 ·如申請專利範圍第1 0項之方法,其中第一試 劑氣體成份還包含鎂之氯化物。 1 2 ·如申請專利範圍第3項之方法,其中第m族/ 鎂金屬混合物係加熱至6 6 0至9 0 Ot之溫度。 1 3 ·如申請專利範圍第3項之方法,其中該氫化物 氣相磊晶系統還包括一個生產室,第m族/鎂金屬混合物 係含·於生產室中,而氯化氫則通入生產室並且越過第瓜族 /鎂金屬混合物。 請 先 閲 讀 背 之 注 意 事 項 再 奢 經濟部智慧財產局員工消費合作社印製 物鈍 化.子 氮原 SL氨 P被 中少 其極 ’ 則 法份 方成 之鎂 項之 1—I 層 第物 圍化 範氮 利型 專 P 請而 申 , 如鎂 •入 4 滲 1 係 層 化 C 第 驟及 步氨 該中_ 中其 其·, , 器 法應 方反 之入 項引 第成 圍體 範氣 利劑 專試 請 一 申第 如及 .氨 5 將 1 含 包 族 化 m 氮 第 型 型 P P 中 之 其 鎂 , 滲 法 種 方 一 之 成 項 生 1 應 第 反 圍 上 範 質 利 基 專 在 請 份 申 成。如 體物· 氣化 6 劑氮 1 試屬 1 金 紙 本 準 標 家 國 國 中 用 適 I釐 公 7 9 2 555897 A8 B8 C8 _______ m 六、申請專利範圍 物層具有一個小於1 〇 7 / c m 2之位錯密度及一個小於 0.1歐姆·公分之電阻率。 1 7 ·如申請專利範圍第1項之方法,其中p型氮化 物層係形成於基質上達5 0微米至5 0 0微米之厚度。 1 8 .如申請專利範圍第1項之方法,其中p型氮化 物層含有滲鎂之P型氮化鎵。 1 9 ·如申請專利範圍第1項之方法,其包含之步驟 -±=r 參 迷有· d )在該步驟c )之後,將p型氮化物層自該步驟b )放置之基質上移開。 2 0 . —種利用氫化物氣相磊晶長在基質上之P型氮 化物層,該P型氮化物層含有:一種滲鎂之第m族氮化物 ,P型氮化物層藉著使第一試劑氣體成份與氨反應形成, 。第一試劑氣體成份藉著將氯化氫通過第m族金屬及鎂金 屬製成。 2 1 ·如申請專利範圍第2 0項之p型氮化物層,其 中第m族金屬包含鎵、銦、鋁或彼之合金之一。 2 2 ·如申請專利範圍第2 0項之p型氮化物層,其 中第m族金屬及鎂包含第m族/鎂金屬混合物。 2 3 ·如申請專利範圍第2 2 ·項之p型氮化物層,其 中第m族/鎂金屬混合物包含十億分之一至1 〇,〇 〇 〇 份百萬分之一的鎂金屬。 2 4 ·如申請專利範圍第2 0項之p型氮化物層,其 中第m族/鎂金屬混合物包含十億分之一至1 〇,〇〇〇 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) :~ ; -- (請先閲讀背面之注意事項再填寫本頁) 、1Τ 經濟部智慧財產局員工消費合作社印製 555897 A8 B8 C8 D8 夂、申請專利範圍 份百萬分之一的鎂金屬。 2 5 ·如申請專利範圍第2 0項之p型氮化物層,其 (請先閲·«背面之注意事項再填寫本頁) 中第m族/鎂金屬混合物基本上由一種以上之第m族金屬 及元素鎂組成。 2 6 ·如申請專利範圍第2 0項之p型氮化物層,其 中第一試劑氣體成份包含一種第m族金屬之氯化物及鎂。 2 7 ·如申請專利範圍第2 6項之P型氮化物層,其 中第一試劑氣體成份還包含一種鎂之氯化物。 2 8 ·如申請專利範圍第2 2項之p型氮化物層,其 中第Π[族/鎂金屬混合物係加熱至6 6 0至9 0 0 °C之溫 度。 2 9 ·如申請專利範圍第2 0項之ρ型氮化物層,其 中P型氮化物層之鎂成份極少被氫原子所鈍化。 3 〇 ·如申請專利範圍第2 0項之ρ型氮化物層,其 中P型氮化物層擁有的位錯密度小於1 0 7 / c m 2而且電 阻率則小於〇 · 1歐姆.公分。 3 1 ·如申請專利範圍第2 0項之ρ型氮化物層,其 經濟部智慧財產局員工消費合作社印製 中P型氮化物層係生成於基質上達5 0微米至5 0 0微米 之厚度。 3 2如申請專利範圍第2 0項之ρ型氮化物層,其中 P型氮化物層包含滲鎂之P型氮化鎵。 3 3 · —種製造P型氮化物層之方法,其包含的步驟 有: . a )提供一個含有一個反應器之氫化物氣相磊晶系統 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公釐) -4 - 555897 A8 B8 C8 D8 、申請專利範圍 b )將基質置於反應器中; C )使氯化氫通過一種金屬混合物而得到第一試劑氣 體成份’其中該金屬混合物包含元素鎂及一種第m族金屬 ’該第m族金屬係選自鎵、銦及鋁; d) 將氨及第一試劑氣體成份引入反應器;並且 e) 在基質上生長一種滲鎂之p型氮化物層。 3 4 ·如申請專利範圍第3 3項之方法,其中第m族 /鎂金屬混合物包含十億分之一至1 0,〇 〇 〇份百萬分 之~的鎂金屬。 如申請專利範圍第3 3項之方法,其包含的步 驟還有: )在該步驟e )之後,將p型氮化物層自基質上移 開。 ------^--------0^-- (請先閱讀背面之注意事項再填寫本頁) 訂 i# 經濟部智慧財產局員工消費合作社印^ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 5-555897 VI.Appendix 2A: Patent Application No. 89107301 Chinese Patent Application Replacement Saiguati: j 奂 本 1 民 _ 92. Year 4 Peng 22 Wai-Positive _______________ One ~ ---- One- -------------------------- 1. A method for manufacturing a P-type nitride layer, comprising the steps of a) providing a reaction containing a Hydride vapor phase epitaxy system of the reactor b) placing the substrate in the reactor; and c) introducing a reagent gas into the reactor, wherein the reagent gas includes a first reagent gas component, which is caused by hydrogen chloride It is made of a group m metal and magnesium. 2. The method according to item 1 of the patent application, wherein the group π metal comprises gallium, indium, aluminum, or an alloy thereof. 3. The method according to item 1 of the patent application, wherein the Group Gu metal and magnesium are combined to form a Group in / Mg metal mixture before hydrogen chloride passes through the m metal and Mg. 4. The method of claim 3, wherein the magnesium in the m / magnesium metal mixture is a magnesium element. 5. The method of claim 3, wherein the m group / magnesium metal mixture consists essentially of more than one m group metal and elemental magnesium. 6. The method of claim 3, wherein the group m / magnesium metal mixture contains from one billion to 100 parts per million of magnesium metal. This paper size applies the Chinese National Standard (CNS) A4 specification (21〇 × 297 mm)-'>. Order (please read the «Notes on the back before filling this page first) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 555897 A8 B8 C8 D8 VI. Patent Application Range 7 • The method of the first patent application range, wherein the reagent gas also includes ammonia, and ammonia is carried to the reactor by a carrier gas. 8. The method according to item 7 of the patent application, wherein the carrier gas does not contain hydrogen. 9. The method of claim 7 in which the carrier gas system is selected from the group consisting of nitrogen and helium. 10. The method according to item 1 of the scope of patent application, wherein the first reagent gas component comprises a chloride of a group m metal and magnesium. 1 1 · The method according to item 10 of the patent application range, wherein the first reagent gas component further comprises magnesium chloride. 1 2 · The method according to item 3 of the patent application range, wherein the m group / magnesium metal mixture is heated to a temperature of 660 to 90 Ot. 1 3 · The method according to item 3 of the patent application scope, wherein the hydride vapor phase epitaxy system further includes a production chamber, and the m / magnesium metal mixture is contained in the production chamber, and hydrogen chloride is passed into the production chamber. And cross the Tigua / Mg metal mixture. Please read the precautions first, and then passivate the printed matter of the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Application of chemical nitrogen nitrogen type P, please apply, such as magnesium • infiltration 4 infiltration 1 system stratification C step and step ammonia _ in which of them,, the device method should be entered in the opposite direction to lead into the surrounding body style For the special agent test, please apply as soon as possible. Ammonia 5 will contain the magnesium in the nitrogen group type PP, and the infiltration method will be the first item. Apply now. For example, body gasification, 6 agent nitrogen, 1 test genus, 1 gold standard on paper, suitable for national and national use, 7 centimeters, 7 9 2 555897, A8, B8, C8, _______ m 6. Application scope for patents. The material layer has a size of less than 1.07 / cm. Dislocation density of 2 and a resistivity of less than 0.1 ohm · cm. 17 · The method according to item 1 of the patent application, wherein the p-type nitride layer is formed on the substrate to a thickness of 50 to 500 microns. 18. The method according to item 1 of the patent application, wherein the p-type nitride layer contains magnesium-doped p-type gallium nitride. 19 · The method according to item 1 of the scope of patent application, which includes the step-± = r. See also d) After this step c), move the p-type nitride layer from the substrate placed in step b). open. 2 0. A P-type nitride layer grown on a substrate by hydride vapor phase epitaxy, the P-type nitride layer contains: a group m nitride of magnesium infiltration, the P-type nitride layer by A reagent gas component reacts with ammonia to form. The first reagent gas component is made by passing hydrogen chloride through a group m metal and a magnesium metal. 2 1 · The p-type nitride layer according to item 20 of the patent application, wherein the group m metal comprises gallium, indium, aluminum or one of its alloys. 2 2 · The p-type nitride layer according to item 20 of the patent application, wherein the group m metal and magnesium include a group m / magnesium metal mixture. 2 3. The p-type nitride layer according to item 22 of the patent application range, wherein the m group / magnesium metal mixture contains from one billion to 100,000 parts of magnesium metal. 2 4 · If the p-type nitride layer is in the scope of patent application No. 20, in which the m group / magnesium metal mixture contains one billionth to 10,000. This paper size applies Chinese National Standard (CNS) A4 Specifications (210X297 mm): ~;-(Please read the notes on the back before filling out this page), 1T printed by the Intellectual Property Bureau Employee Consumer Cooperative of the Ministry of Economic Affairs 555897 A8 B8 C8 D8 One of the magnesium metals. 2 5 · If the p-type nitride layer in the scope of application for the patent No. 20, (please read the "Notes on the back side before filling out this page") the m group / magnesium metal mixture basically consists of more than one m Group metals and elemental magnesium. 26. The p-type nitride layer according to item 20 of the patent application range, wherein the first reagent gas component includes a group m metal chloride and magnesium. 27. The P-type nitride layer according to item 26 of the patent application, wherein the first reagent gas component further contains a magnesium chloride. 2 8 · The p-type nitride layer according to item 22 of the patent application range, in which the Π [group / magnesium metal mixture is heated to a temperature of 660 to 900 ° C. 29. For example, the p-type nitride layer in the scope of patent application No. 20, wherein the magnesium component of the p-type nitride layer is rarely passivated by hydrogen atoms. 30. For example, the p-type nitride layer of the 20th patent application range, wherein the p-type nitride layer has a dislocation density of less than 107 / cm2 and a resistivity of less than 0.1 ohm.cm. 3 1 · If the p-type nitride layer in the scope of patent application No. 20, the P-type nitride layer printed by the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is formed on the substrate to a thickness of 50 microns to 500 microns . 32. The p-type nitride layer according to item 20 of the patent application scope, wherein the p-type nitride layer comprises magnesium-doped p-type gallium nitride. 3 3 · —A method for manufacturing a P-type nitride layer, comprising the steps of: a) Provide a hydride vapor phase epitaxy system containing a reactor. This paper uses Chinese National Standard (CNS) A4 specifications. (210X297 mm) -4-555897 A8 B8 C8 D8, patent application scope b) Place the substrate in the reactor; C) Pass hydrogen chloride through a metal mixture to get the first reagent gas component 'wherein the metal mixture contains elemental magnesium And a group m metal. The group m metal is selected from gallium, indium, and aluminum; d) introducing ammonia and a first reagent gas component into the reactor; and e) growing a magnesium-doped p-type nitride on the substrate Floor. 34. The method according to item 33 of the scope of patent application, wherein the m group / magnesium metal mixture contains 1 to 100 million parts of magnesium metal. For example, the method according to item 33 of the patent application includes the following steps:) After step e), the p-type nitride layer is removed from the substrate. ------ ^ -------- 0 ^-(Please read the notes on the back before filling out this page) Order i # Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ^ This paper size applies to China National Standard (CNS) A4 Specification (210X297 mm) 5-
TW89107301A 1999-05-07 2000-04-18 Magnesium-doped III-V nitrides and methods TW555897B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30729999A 1999-05-07 1999-05-07

Publications (1)

Publication Number Publication Date
TW555897B true TW555897B (en) 2003-10-01

Family

ID=23189118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89107301A TW555897B (en) 1999-05-07 2000-04-18 Magnesium-doped III-V nitrides and methods

Country Status (5)

Country Link
EP (1) EP1200652A1 (en)
JP (1) JP2003517721A (en)
CN (1) CN1409778A (en)
TW (1) TW555897B (en)
WO (1) WO2000068470A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP3803788B2 (en) 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Vapor phase growth method of Al III-V compound semiconductor, Al III-V compound semiconductor manufacturing method and manufacturing apparatus
CN1316567C (en) * 2003-04-16 2007-05-16 方大集团股份有限公司 Preparation f green light fallium nitride base LED epitaxial wafer by adopting multiquantum well
US8142566B2 (en) 2004-08-06 2012-03-27 Mitsubishi Chemical Corporation Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate
JP4833616B2 (en) 2004-09-13 2011-12-07 昭和電工株式会社 Method for producing group III nitride semiconductor
DE102004050806A1 (en) * 2004-10-16 2006-11-16 Azzurro Semiconductors Ag Process for the preparation of (Al, Ga) N single crystals
KR100809243B1 (en) 2006-04-27 2008-02-29 삼성전기주식회사 Method of producing a nitride film and nitride structure produced by the same
US8778078B2 (en) 2006-08-09 2014-07-15 Freiberger Compound Materials Gmbh Process for the manufacture of a doped III-N bulk crystal and a free-standing III-N substrate, and doped III-N bulk crystal and free-standing III-N substrate as such
US9416464B1 (en) 2006-10-11 2016-08-16 Ostendo Technologies, Inc. Apparatus and methods for controlling gas flows in a HVPE reactor
CN108118390A (en) * 2017-12-19 2018-06-05 东莞市中镓半导体科技有限公司 A kind of method and apparatus for improving III- nitride material doping efficiencies in HVPE
WO2021161613A1 (en) * 2020-02-14 2021-08-19 国立大学法人東海国立大学機構 Vapor-phase epitaxy device and production method for gallium nitride
CN111681958A (en) * 2020-05-29 2020-09-18 华南理工大学 Method for preparing normally-off HEMT device by novel heterostructure magnesium diffusion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL275516A (en) * 1961-03-02
FR2116194B1 (en) * 1970-02-27 1974-09-06 Labo Electronique Physique
US3888705A (en) * 1973-12-19 1975-06-10 Nasa Vapor phase growth of groups iii-v compounds by hydrogen chloride transport of the elements
CA1071068A (en) * 1975-03-19 1980-02-05 Guy-Michel Jacob Method of manufacturing single crystals by growth from the vapour phase
JPH08335555A (en) * 1995-06-06 1996-12-17 Mitsubishi Chem Corp Fabrication of epitaxial wafer
US6001172A (en) * 1997-08-05 1999-12-14 Advanced Technology Materials, Inc. Apparatus and method for the in-situ generation of dopants

Also Published As

Publication number Publication date
WO2000068470A1 (en) 2000-11-16
EP1200652A1 (en) 2002-05-02
CN1409778A (en) 2003-04-09
JP2003517721A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
US5926726A (en) In-situ acceptor activation in group III-v nitride compound semiconductors
US8882910B2 (en) AlGaN substrate and production method thereof
EP0497350B1 (en) Crystal growth method for gallium nitride-based compound semiconductor
US7709284B2 (en) Method for deposition of magnesium doped (Al, In, Ga, B)N layers
US6440823B1 (en) Low defect density (Ga, Al, In)N and HVPE process for making same
US5902393A (en) Method for growing p-type gallium nitride based compound semiconductors by vapor phase epitaxy
TW555897B (en) Magnesium-doped III-V nitrides and methods
US5888886A (en) Method of doping gan layers p-type for device fabrication
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
Dupuis Epitaxial growth of III–V nitride semiconductors by metalorganic chemical vapor deposition
US20040026704A1 (en) III-V compound semiconductor device with an AIxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
JP2002170776A (en) Low-dislocation buffer, its method of manufacture and device provided therewith
US7601979B2 (en) Gallium nitride-based compound semiconductor multilayer structure and production method thereof
KR20060085662A (en) Method for manufacturing p-type group iii nitride semiconductor, and group iii niride semiconductor light-emitting device
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
WO2002017369A1 (en) Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
Pearton et al. The incorporation of hydrogen into III-V nitrides during processing
US20050133798A1 (en) Nitride semiconductor template for light emitting diode and preparation thereof
WO2003090274A2 (en) Method for reducing the resistivity of p-type ii-vi and iii-v semiconductors
JP3152170B2 (en) Compound semiconductor light emitting device
Kamp et al. GaN homoepitaxy for device applications
TW201015757A (en) Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
JP3555512B2 (en) Method for producing p-type gallium nitride-based compound semiconductor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees