EP1189957A1 - Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliques - Google Patents
Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliquesInfo
- Publication number
- EP1189957A1 EP1189957A1 EP00927363A EP00927363A EP1189957A1 EP 1189957 A1 EP1189957 A1 EP 1189957A1 EP 00927363 A EP00927363 A EP 00927363A EP 00927363 A EP00927363 A EP 00927363A EP 1189957 A1 EP1189957 A1 EP 1189957A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acrylic
- polyamide
- vinyl
- water
- dispersions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/04—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
- C08G81/02—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C08G81/024—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
- C08G81/028—Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyamide sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J177/00—Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
Definitions
- the invention relates to the field of aqueous dispersions and in particular to aqueous dispersions based on polyamides and more particularly to dispersions based on polyamides and acrylic vinyl and / or styrenic polymers.
- aqueous dispersions find their interests in numerous applications.
- those relating to the surface treatment of different materials such as wood, metal, paper, leather and glass.
- Dispersions based on acrylic, vinyl and / or styrenic polymers give complete satisfaction. However, for particular applications, it is sometimes advantageous to have dispersions consisting either of a mixture of particles of acrylic, vinyl and / or styrenic polymers and of particles of polycondensates such as polyamides, polyesters or polyesteramides, or particles of acrylic, vinyl and / or styrenic polymers stabilized by polycondensates such as polyamides, polyesters or polyesteramides, playing the role of protective colloids.
- EP 292261 proposes the emulsion polymerization of unsaturated monomers in the presence of a predispersed polyester, WO 90/1 0665 describes a dispersion based on polyester grafted by the polymerization of vinyl monomers in the presence of an unsaturated organopolysiloxane . Likewise WO 97/281 98, WO 95/01 382 and EP 532961 describe a process based on the overpolymerization of a polyester.
- the polymerization of one or more monomers in the presence of already formed particles is designated by "overpolymerization”.
- US 5,277,978 describes in particular the use of a functionalized sulfate and sulfonate polyester as a protective colloid to stabilize a dispersion. It is recommended to use less than 0.5 to 10% of protective colloids compared to the monomers to obtain clear and transparent films.
- WO 98/03567 describes a process by overpolymerization from a water-dispersible polyamide. This does not contain unsaturated groups in the chains or at their ends. The overpolymerization of vinyl or styrenic acrylic monomers in the presence of these polyamide dispersions leads to an intimate mixture of two polymers containing at least 10% by weight of polyamides.
- polyamide as a protective colloid enables it to manufacture dispersions of acrylic, vinyl and / or styrenic polymers of small size, preferably less than 120 nm, stable to hydrolysis, with very little micromolecular surfactants.
- One of the objects of the invention is an aqueous dispersion of polymer particles with a diameter between 20 and 500 nm and preferably less than 1 20 nm consisting of: - 0.1 to 1 00% by weight of the total weight of the particles of water-dispersible polyamides and
- the dispersion of the invention can be obtained without a micromolecular surfactant, however the addition of this at a content lower than what is commonly used in this field can improve the stability of the dispersion.
- the polymer particles can represent up to 40% by weight of the dispersion. From 50 to 99% of polyamide chains are grafted by covalent bond to acrylic, vinyl and / or styrenic polymers. The cohesion between the polymers forming the dispersion is ensured by this type of bond. This prevents any phase separation at the time of implementation, thus allowing the application properties of the dispersion to be preserved and surface coatings having good mechanical strength to be obtained.
- the polyamides used to make the dispersion of the invention are water-dispersible (PAHD) and contain at the ends of 0.5 to 2 polymerizable double bonds per chain. They are designated below by PAHDI.
- PAHDI water-dispersible
- the hydrodispersibility of these polyamides is obtained thanks to the presence of a certain fraction of sulfonate groups (strong neutralized acid).
- the average level of sulfonate group per PAHD chain is from 0.5 to 49% by mole and preferably from 3 to 25% by mole.
- PAHDs are easily dispersed in water in the form of individualized particles relatively polydispersed in size with an average diameter of between 20 and 600 nm.
- the dispersions obtained in this invention exhibit great chemical stability (addition of salts, increase in ionic strength, addition of bases or acids), which distinguishes them from the conventionally obtained dispersions which contain weak acid groups on the surface and whose chemical stability is relatively weak. This property is useful in the paint formulation stages.
- the stability of these dispersions can be further increased in a conventional manner by using unsaturated monomers carrying weak acid groups.
- the dispersions of the invention can be obtained by the emulsion polymerization of at least one vinyl, acrylic and / or styrene monomer (A) in the presence of at least one water-dispersible polyamide having at the ends of 0.1 to 2 unsaturations by chain (PAHDI).
- PAHDI water-dispersible polyamide having at the ends of 0.1 to 2 unsaturations by chain
- PAHDI is prepared by polycondensation and functionalization using a chain limiter according to the procedure described later, then an aqueous dispersion is preferably prepared, from 0.1 to 40% by weight of the polyamide and introduced into the bottom of the reactor vessel.
- the temperature of the medium is brought to the usual temperatures for emulsion polymerizations (conventionally from 50 ° C to 80 ° C).
- the monomer (s) (A) or the mixture (s) of acrylic, vinyl and / or styrenic monomers is then poured at constant speed onto the dispersion according to the semi-continuous processes or sequences known from the skilled in the art.
- An initiator solution of the type of those conventionally used as an emulsion is poured in parallel into the reactor so as to initiate the radical polymerization of the monomer (s).
- a first pouring of hydrophilic monomers can be carried out before adding, in a second step, the mixture (s) of more hydrophobic monomers to promote a reverse core-shell mechanism and obtaining small particles.
- a weakly concentrated solution of micromolecular surfactant can also be poured.
- the monomer A is chosen from the group containing:
- Relatively hydrophilic monomers such as C-1 -C3 alkyl or hydroxyalkyl amides and esters of (meth) acrylic acids and other unsaturated acids, acrylic, methacrylic and itaconic acids, vinyl alcohol esters, acrylonitrile, methacrylonitrile, crotonaldehyde, (meth) acrylates carrying hydrophilic groups such as segments based on polyoxyethylene.
- Hydrophobic monomers such as:
- the C3-C1 2 '' alkyl (meth) acrylates are styrenic, vinyl, diene, (meth) acrylates containing a substituted nitrogen atom such as t-butyl aminoethyl methacrylate, diethyl methacrylate aminoethyl.
- the preferred monomer A is chosen from: acrylic acid methacrylic acid
- the polyamides used are obtained by polycondensation and functionalization using a chain limiter carrying an unsaturated group which can be polymerized by the radical route.
- polycondensation is carried out between a diacid and a diamine.
- the water dispersibility is obtained thanks to a monomer, in general a diacid containing the unit resulting from a salt of an alkali metal of 2 or 1-sulfoisophthalic acid, the salt being able to be a salt of sodium, potassium or lithium, or amine corresponding to the following formula:
- X - Na, K, Li As diacids, mention may be made of: isophthalic, adipic, azelaic, sebacic, dodecandioic, butane-dioic, 1,4-cyclohexyl dicarboxylic, terephthalic acids (fatty acids less than 12% by weight), fatty acids dimerized (these dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; they are marketed under the brand "PRIPOL” by the company "UNICHEMA", the the most interesting grades are the PRIPOL 1 008, the PRIPOL 1 009 and the PRIPOL 101 3 or under the Empol brand by the company HENKEL).
- diamines mention may be made of hexamethylenediamine, tetramethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine, 1, 5-diamino-hexane, 2,2,4-trimethyl-1, 6-diamino-hexane, piperazine , 3,3'-dimethyl-4,4'diaminodicyclohexylmethane, 4,4'-diamino-dicyclohexyl-methane, 2,2 '- (4,4'- diaminodicyclohexyD-propane, isophoronediamine, 1, 4-diamino-cyclohexane, meth-xylylene-diamine It is also possible to use polyol diamines sold under the name "Jeffamine" by the company Huntsman Corp. The preferred grades are Jeffamine D400 and Jeffamine D2000. polyethers in particular increase the hydrophilicity of
- Diacids and diamines can be replaced by amino acids or lactams such as caprolactam, enanthalactam, laurolactam, their open forms and 1 1 -amino-undecanoic acid.
- chain limiter one can use:
- acids or esters of unsaturated acids acrylic, methacrylic, cinnamic, crotonic, citraconic, itaconic, vinylacetic, undecylenic, maleic, fumaric, 5'-norbornene-2 acrylic, 3'-furanyl-2 acrylic, 3'-pyrrolyl-2 acrylic, N-allyl aminobezoic, N-acryloyl or N-methacryloyl p-aminophenylacetic, N-allyl amino-1 1 -undecanoic, and the like.
- Another type of unsaturated compound suitable for the process according to the invention, may be possible without being limited: acids and N-maleimido esters: hexanoic, p.benzoic, dodecanoic, etc. Mention may also be made of anhydrides and imides derived from anhydrides such as tetrahydrophthalic, p. Benzoic N-maleimido, p- (endo-cis-bicyclo (2,2, 1) -5 heptene-2,3 dicarboxylic).
- the dispersions obtained by this invention from 0.1 to 10% by weight of polyamide, have the advantage of having small sizes, preferably less than 1 00 nm and of containing only very small quantities of micromolecular surfactants and a majority proportion of surfactant of high mass which has the effect of limiting as much as possible species likely to migrate into movies.
- the grafting of the polyamide to the copolymer acrylic, vinyl and / or styrene described in the present invention completely suppresses the migration of this macromolecular surfactant out of the film. This property limits the deterioration of the films over time, in particular eliminating the phenomena of exudation, sensitivity to water and loss of adhesion to the substrates.
- polyamides initially water-dispersible, when they are used at more than 10% by weight on the total quantity of polymer, are capable of providing, by their particular structure, superior mechanical reinforcement of the films obtained when these latexes are formulated for different applications (paint, textile, paper, leather).
- the grafting increases the interactions between the acrylic, vinyl and / or styrene polymer and the polyamide and thus promotes synergies of physico-mechanical properties.
- the behavior of the dispersion with respect to the usually used mineral fillers can be improved by the presence at the periphery of the latex particles of a polyamide carrying an ionic and / or polar group.
- the grafting claimed in the invention can stabilize the interactions between mineral fillers and latex particles during the formation of the paint film, thus ensuring better cohesion and better resistance to abrasion, in particular to wet abrasion.
- the use of a water-dispersible polyamide carrying polymerizable unsaturated groups claimed in the invention promotes the adhesion of the films obtained on the substrates polyamide type.
- this same grafting promotes adhesion between the substrate and the film in applications such as nail varnishes and the treatment of nonwovens.
- the reactor is purged with nitrogen, then heated with all valves closed to 200 ° C material in 1 hour, the pressure is then 6.0 bar. Then, with stirring, the temperature rose in 1 hour to 240 ° C, the pressure is then 15 bars.
- the reaction is allowed to take place at 240 ° C. material for 4 hours, the pressure reaches at the end of the 4 hour plateau 18 bar and stabilizes, which means firstly that all the monomers react and secondly that the equilibrium of amide formation is achieved.
- the relaxation begins, which lasts 90 minutes, the material temperature at the end of the relaxation is 270 ° C.
- a stream of nitrogen of 30 l / h is passed through for 15 minutes and the PAHD is taken out of the reactor, collected in a cooled tray to ensure rapid solification.
- the product obtained is white, brittle, odorless.
- the average molecular weight in shade measured, by viscosimetry (inherent viscosity of 0.33) is 6500g / mole, the glass transition temperature (Tg) is 89 ° C (measured by DSC: 10K / min).
- PAHD is easily dispersible in water up to 40% by weight.
- the particle size of the dispersion is 1,00 nanometers. Examples according to the invention Example 1: Preparation of a water-dispersible unsaturated polyamide (PAHDI) monounsaturated with cinnamic acid.
- PAHDI water-dispersible unsaturated polyamide
- the procedure is identical to that of the comparative example except that the reagents introduced into the reactor are: 339.0g of lactam 6, ie 3.0 mole, 196.5g of AH salt (salt of adipic acid and hexamethylenediamine), or 0.75 mole, 1 87.34 g of hexamethylenediamine or 1.61 5 mole, 1 68.5 g of isophthalic acid or 1 .01 5 mole, 1 61 .0 of mono sodium salt of isophthalic acid is 0.6 mole, and 22.5 g of cinnamic acid or 0.1 52 mol which corresponds to one unit of cinnamic acid per PAHDI chain and 50 g of water.
- the reagents introduced into the reactor are: 339.0g of lactam 6, ie 3.0 mole, 196.5g of AH salt (salt of adipic acid and hexamethylenediamine), or 0.75 mole, 1 87.34 g
- the product obtained is slightly yellow, brittle, odorless.
- the number-average molecular mass measured by viscosimetry is 6650 g / mole.
- the Tg is 89 ° C (measured by DSC: 10K / min).
- PAHDI is easily dispersible in water up to 40% by weight.
- the particle size of the dispersion is 62 nanometers.
- Example 2 Preparation by introducing all the monomers from a mono unsaturated PAHDI functionalized with crotonic acid.
- Example 2 The procedure corresponds to that of Example 1, except that instead of cinnamic acid is charged 1 3.1 g of crotonic acid or 0.1 52 mole, which corresponds to one unit of crotonic acid per PAHDI chain.
- the product obtained is slightly yellow, brittle, odorless.
- the number-average molecular mass measured by viscosimetry is
- the Tg is 83 ° C (measured by DSC: 10K / min).
- PAHDI is easily dispersible in water up to 40% by weight.
- the particle size of the dispersion is 1 00 nanometers.
- Example 3 Preparation by introducing all the monomers from a PAHDI partially functionalized with 0.5 equivalents of crotonic acid per PAHD chain.
- the operating mode corresponds to that of Example 1, except that: 339.0g of lactam 6 or 3.0 mole, 1 96.5g of AH salt (adipic acid and hexamethylenediamine salt) or 0.75 mole, 205.3g of hexamethylenediamine or 1 .767 mole, 1 68.5g of isophthalic acid or 1 .01 5 mole, 1 61 .0 of mono sodium salt of isophthalic sulfo acid is 0.6 mole, and 6.5 of crotonic acid is 0.076 mole which corresponds to 0.5 unit of cinnamic acid per PAHDI chain and 50g of water.
- the product obtained is slightly yellow, brittle, odorless.
- the Mn (target) is 6600g / mole.
- the Tg is 90 ° C (measured by DSC: 10K / min).
- PAHD is easily dispersible in water up to 40% by weight.
- the particle size of the dispersion is 1,00 nanometers.
- reaction medium is maintained at 75 ° C. for 60 min, then cooled to room temperature and filtered through a 100 micrometer filter. The dry extract and the particle size were then determined (Table 1).
- Example 5 Preparation of dispersions according to the invention.
- Example 5.1 using the PAHDI of Example 1.
- a polyamide dispersion described in Example 1 of the invention, containing 5.0% of dry extract, are added.
- the reactor is purged with nitrogen and the temperature is brought to 75 ° C. at 150 rpm.
- 200g of the mixture of monomers consisting of 92.0g of methyl methacrylate, 104.0g of butyl acrylate and 4.0g of acrylic acid and a solution of 0.8g of initiator TBHP (Terbutylhydroperoxide) in 25 ml of water and a solution of 0.28 g of FORMOPON activator (sodium salt of formaldehyde sulfoxylate) in 25 ml of water are drained off in 300 min. After 90 min of polymerization, a solution of 1.23 g SDS in 25 ml of water is poured in 21 0 min.
- reaction medium is maintained at 75 ° C. for 60 min, then cooled to room temperature and filtered through a 100 micrometer filter. The dry extract and the particle size were then determined (Table 1).
- Example 5.2 Using the PAHDI of Example 2 in the Procedure of Example 5.1
- Example 5.3 using the PAHDI of Example 3 in the procedure of Example 5.1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Paints Or Removers (AREA)
- Graft Or Block Polymers (AREA)
Abstract
L'invention décrit des dispersions aqueuses contenant un polamide hydrodispersible et un polymère acrylique, vinylique et/ou styrènique. Les dispersions de l'invention peuvent être obtenues soit en mélangeant deux dispersions l'une contenant le polyamide et l'autre le polymère acrylique, vinylique et/ou styrènique, soit en préparant ce dernier en présence du polyamide. Quel que soit le mode de préparation de 50 à 99 % de chaînes de polyamides sont liés par une liaison covalente au polymère acrylique, vinylique et/ou styrènique.
Description
DISPERSIONS AQUEUSES DE POLYAMIDES ET DE POLYMERES VINYLIQUES ET/OU ACRYLIQUES
L'invention se rapporte au domaine des dispersions aqueuses et en particulier aux dispersions aqueuses à base de polyamides et plus particulièrement aux dispersions à base de polyamides et de polymères acryliques vinyliques et/ou styréniques.
De manière générale, les dispersions aqueuses trouvent leurs intérêts dans de nombreuses applications. En particulier celles relevant du traitement de surface de différents matériaux tels que bois, métal, papier, cuir et verre. A titre indicatif et non limitatif, on peut citer les peintures, les adhésifs, les vernis, les colles, etc.
Les dispersions à base de polymères acryliques, vinyliques et/ou styréniques donnent une entière satisfaction. Cependant, pour des applications particulières, il est parfois avantageux d'avoir des dispersions constituées soit d'un mélange de particules de polymères acryliques, vinyliques et/ou styréniques et de particules de polycondensats tels que les polyamides, les polyesters ou les polyesteramides, soit de particules de polymères acryliques, vinyliques et/ou styréniques stabilisées par des polycondensats tels que les polyamides, les polyesters ou les polyesteramides, jouant le rôle de colloïdes protecteurs.
Ces deux types de dispersions donnent naissance à des matériaux composites microstructurés dont les avantages sont : la résistance à l'hydrolyse, la filmification à basse température sans ajout de co-solvant ou plastifiant et sans collant superficiel (application peinture) ; l'obtention de matériaux répondant parfaitement au compromis souplesse/résistance mécanique qu'exigent des applications telles que par exemple les cosmétiques (vernis à ongle, laques capillaires).
Cependant, l'utilisation des polycondensats comme colloïdes protecteurs confèrent des propriétés supplémentaires aux dispersions : en particulier un meilleur contrôle de la taille des particules et de l'homogénéité du matériau composite permettant d'améliorer les qualités optiques
(brillance .et transparence) des films, une diminution importante de la quantité de tensioactifs utilisés en synthèse supprimant ainsi les problèmes liés à la migration de ceux-ci dans les films (sensibilité à l'eau, perte d'adhésion). Pour réaliser ce type de dispersions EP 292261 propose la polymérisation en émulsion de monomères insaturés en présence d'un polyester prédispersé, WO 90/1 0665 décrit une dispersion à base de polyester greffé par la polymérisation de monomères vinyliques en présence d'un organopolysiloxane insaturé. De même WO 97/281 98, WO 95/01 382 et EP 532961 décrivent un procédé basé sur la surpolymérisation d'un polyester.
De manière générale, la polymérisation d'un ou de plusieurs monomères en présence de particules déjà formées est désignée par "surpolymérisation" . US 5,277,978 décrit en particulier l'utilisation d'un polyester fonctionnalisé sulfate et sulfonate comme colloïde protecteur pour stabiliser une dispersion. Il est recommandé d'utiliser moins de 0,5 à 1 0% de colloïdes protecteurs par rapport aux monomères pour obtenir des films clairs et transparents. WO 98/03567 décrit un procédé par surpolymérisation à partir d'un polyamide hydrodispersible. Celui-ci ne comporte pas de groupements insaturés dans les chaînes ou à leurs extrémités. La surpolymérisation de monomères acryliques vinyliques ou styréniques en présence de ces dispersions de polyamides conduit à un mélange intime de deux polymères contenant au moins 1 0% en poids de polyamides.
On a constaté que dans un certain nombre d'applications telles que les revêtements, les adhésifs, la mise en oeuvre d'une dispersion constituée d'un mélange intime d'au moins deux polymères peut engendrer un problème de séparation de phases entre les deux polymères, ceci se traduisant par des propriétés applicatives médiocres et surtout une très mauvaise tenue mécanique du revêtement obtenu.
La demanderesse a trouvé qu'une solution à ce problème est de créer des interactions entre le polyamide et le polymère acrylique, vinylique et/ou styrènique. Ces interactions peuvent être de différentes natures et concerner toutes les chaînes de polyamide ou seulement une partie. Par ailleurs, on a constaté que dans un certain nombre d'applications telles que les revêtements (peinture, papier, textile, cuir) il était souhaitable d'utiliser des dispersions de polymère de taille fine, inférieure à 1 50 nm de préférence pour avoir de bonnes propriétés applicatives (filmification, brillance) sans employer un excès de tensioactifs micromoléculaires qui migrent dans les films et détériorent leurs propriétés : sensibilité à l'eau, perte d'adhésion sur le support.
La demanderesse a trouvé que l'utilisation de polyamide comme colloïde protecteur lui permet de fabriquer des dispersions de polymères acryliques, vinyliques et/ou styréniques de faible taille, de préférence inférieure à 1 20 nm, stables à l'hydrolyse, avec très peu de tensioactifs micromoléculaires.
Un des objets de l'invention est une dispersion aqueuse de particules de polymères de diamètre compris entre 20 et 500 nm et de préférence inférieur à 1 20 nm constitués de : - 0, 1 à 1 00 % en poids du poids total des particules de polyamides hydrodispersibles et de
- 0 à 99,9 % en poids du poids total des particules de polymères acryliques, vinyliques et/ou styréniques.
La dispersion de l'invention peut être obtenue sans tensioactif micromoléculaire, cependant l'addition de celui-ci à une teneur inférieure à ce qui est couramment utilisé dans ce domaine peut améliorer la stabilité de la dispersion.
Les particules de polymères peuvent représenter jusqu'à 40% en poids de la dispersion. De 50 à 99 % de chaînes de polyamides sont greffées par liaison covalentes aux polymères acryliques, vinyliques et/ou styréniques. La
cohésion entre les polymères formant la dispersion est assurée par ce type de liaison. Ceci empêche toute séparation de phase au moment de la mise en oeuvre permettant ainsi la conservation des propriétés applicatives de la dispersion et l'obtention de revêtements de surface ayant une bonne tenue mécanique.
Les polyamides utilisées pour réaliser la dispersion de l'invention sont hydrodispersibles ( PAHD ) et renferment aux extrémités de 0,5 à 2 doubles liaisons polymérisables par chaîne. Ils sont désignés ci-après par PAHDI . L'hydrodispersabilité de ces polyamides est obtenue grâce à la présence d'une certaine fraction de groupements sulfonates (acide fort neutralisé). Le taux moyen en groupe sulfonate par chaîne du PAHD est de 0,5 à 49% en mole et de préférence de 3 à 25% en mole.
Les PAHD se dispersent aisément dans l'eau sous la forme de particules individualisées relativement polydispersés en taille de diamètre moyen compris entre 20 et 600 nm.
De par la présence de groupements acides forts neutralisés (sulfate) sur les chaînes du copolyamide situés en périphérie des particules les dispersions obtenues dans cette invention présentent une grande stabilité chimique (addition de sels, augmentation de la force ionique, addition de bases ou d'acides), ce qui les distingue des dispersions obtenues classiquement qui comportent en surface des groupements acides faibles et dont la stabilité chimique est relativement faible. Cette propriété est utile dans les étapes de formulation des peintures. Cependant la stabilité de ces dispersions peut être encore accrue de manière classique en utilisant des monomères insaturés porteurs de groupements acides faibles.
Les dispersions de l'invention peuvent être obtenues par la polymérisation en émulsion d'au moins un monomère (A) vinylique, acrylique et/ou styrènique en présence d'au moins un polyamide hydrodispersible ayant aux extrémités de 0, 1 à 2 insaturations par chaîne (PAHDI) .
Pour préparer les dispersions de l'invention on procède de la manière suivante :
Dans un premier temps on prépare le PAHDI par polycondensation et fonctionnalisation à l'aide d'un limitateur de chaîne selon le mode opératoire décrit ultérieurement, ensuite on prépare une dispersion aqueuse de préférence de 0, 1 à 40% en poids du polyamide et on l'introduit en fond de cuve du réacteur. La température du milieu est portée aux températures habituelles pour les polymérisations en émulsion (classiquement de 50°C à 80°C) . Le(s) monomère(s) ( A ) ou le(s) mélange(s) de monomères acryliques, vinyliques et/ou styréniques est alors coulé à vitesse constante sur la dispersion suivant les procédés semi-continus ou séquences connus de l'homme du métier. Une solution d'amorceur du type de ceux utilisés classiquement en émulsion, est coulée parallèlement dans le réacteur de manière à initier la polymérisation radicalaire du ou des monomères. Eventuellement une première coulée de monomères hydrophiles peut être réalisée avant d'additionner, dans une seconde étape, le(s) mélange(s) de monomères plus hydrophobes pour favoriser un mécanisme de core-shell inverse et l'obtention de particules de faible taille. Une solution faiblement concentrée de tensioactif micromoléculaire peut également être coulée. Le monomère A est choisi dans le groupe contenant :
1 . Les monomères relativement hydrophiles tels que les amides et esters alkyl ou hydroxyalkyl en C-1 -C3 des acides (méth)acryliques et d'autres acides insaturés, les acides acrylique, méthacrylique et itaconique, les esters de l'alcool vinylique, l'acrylonitrile, le méthacrylonitrile, la crotonaldehyde, les (méth)acrylates porteurs de groupements hydrophiles tels que les segments à base de polyoxyéthylène.
2. Les monomères hydrophobes tels que :
Les (méth)acrylates d'alkyles en C3-C1 2' 'es styréniques, les vinyliques, les diéniques, les (méth)acrylates contenant un atome d'azote substitué tels que le méthacrylate de t-butyle aminoéthyle, le méthacrylate de diéthyle aminoéthyle.
Le monomère A préféré est choisi parmi : acide acrylique acide méthacrylique
(méth)acrylate substitué par des hydroxyalkyls (HEMA, etc..)
(méth)acrylates substitués par des alkyl Cn, n < 3 styrène acrylate de butyle acrylate d'éthyl hexyle
(méth)acrylate d'octyle.
Les polyamides utilisés sont obtenus par polycondensation et fonctionnalisation à l'aide d'un limiteur de chaîne porteur d'un groupement insaturé polymérisable par voie radicalaire.
De manière générale la polycondensation est réalisée entre un diacide et une diamine. L'hydrodispersabilité est obtenue grâce à un monomère, en général un diacide contenant le motif issu d'un sel d'un métal alcalin de l'acide 2 ou 1 -sulfo-isophtalique, le sel pouvant être un sel de sodium, de potassium ou de lithium, ou d'aminé répondant à la formule suivante :
X - Na, K, Li Comme diacides on peut citer : les acides isophtalique, adipique, azelaïque, sébacique, dodécandioïque, butane-dioïque, 1 ,4-cyclohexyl dicarboxylique, téréphtalique (taux inférieur à 1 2 % pond), les acides gras dimérisés (ces acides gras dimérisés ont de préférence une teneur en dimère d'au moins 98 % ; de préférence ils sont hydrogénés ; ils sont commercialisés sous la marque "PRIPOL" par la société "UNICHEMA", les
grades les plus intéressants sont les PRIPOL 1 008, le PRIPOL 1 009 et le PRIPOL 101 3 ou sous la marque Empol par la société HENKEL).
Comme diamines on peut citer l'hexaméthylènediamine, la tetraméthylènediamine, l'octaméthylènediamine, la décaméthylènediamine, la dodécaméthylènediamine, le 1 ,5-diamino-hexane, le 2,2,4-triméthyl-1 ,6- diamino-hexane, la pipérazine, le 3,3'-diméthyl-4,4'diaminodicyclohexyl- méthane, le 4,4'-diamino-dicyclohexyl-méthane, le 2,2'-(4,4'- diaminodicyclohexyD-propane, isophoronediamine, le 1 ,4-diamino- cyclohexane, la méth-xylylène-diamine. Il est également possible d'utiliser des polyols diamines commercialisées sous le nom "Jeffamine" par la société Huntsman Corp. Les grades préférés sont le Jeffamine D400 et le Jeffamine D2000. Ces chaînes polyéthers augmentent notamment l'hydrophilie des résines. Leur taux pondéral peut atteindre jusqu'à 60 % .
On peut remplacer les diacides et les diamines par les acides aminés ou les lactames tels que la caprolactame, l'énanthalactame, la laurolactame, leurs formes ouvertes et l'acide 1 1 -amino-undécanoïque.
Comme limiteur de chaîne on peut utiliser :
Les composés insaturés, porteurs des groupes susmentionnés, pouvant appartenir à différentes classes de composés organiques. Ils peuvent être notamment du type R1 R2C = CR3X (1 ) où les groupes ou les atomes R1 , R2, R3, semblables ou différents, sont : H, halogène, alkyle, aryle, en particulier phényle, et carboxyle, norbornyle, thiényle, pyrrolyle ou furanyle, tandis que le groupe actif X peut être :
-(CH2)nCOOH avec n = 0 à 1 7 ; -CH2NH(CH2)ι ι COOH ; - (OCH2CH2)kOH avec k = 20
-COO-glycidyl ;
Y-C6H4-(CH2)n , - COOR avec n' = 0 ou 1 , Y étant -COO, -CONH, R étant H, alkyle ou aryle ;
-CH2OH ; --(CH2)mIMH2 avec m = 0 à 1 8 ou -(OCH2CH2)OH. Ainsi, des exemples particulièrement favorables des composés selon formule (1 ) sont-ils : acides ou esters des acides non saturés, acrylique,
méthacrylique, cinnamique, crotonique, citraconique, itaconique, vinylacétique, undécylénique, maléique, fumarique, 5'-norbornène-2 acrylique, 3'-furanyl-2 acrylique, 3'-pyrrolyl-2 acrylique, N-allyl aminobezoïque, N-acryloyl ou N-méthacryloyl p-aminophénylacétique, N-allyl amino-1 1 -undécanoïque, et autres, similaires.
Un autre type de composés insaturés, convenant au procédé suivant l'invention, peuvent être possibles sans se limiter : les acides et les esters N-maléimido : hexanoïques, p.benzoïques, dodécanoïques, etc. On peut également citer les anhydrides et les imides dérivés des anhydrides tels que tétrahydrophtalique, p. N-maléimido benzoïque, p-(endo-cis-bicyclo(2,2, 1 )-5 heptène-2,3 dicarboxylique) .
Lors de la préparation des dispersions de l'invention il est nécessaire que le nombre de particules de PAHDI dans le réacteur soit suffisamment important pour que le monomère puisse être additionné et polymérisé à des vitesses élevées. Il existe, suivant la composition et les caractéristiques du copolyamide utilisé, une fenêtre optimale dans laquelle ces conditions sont obtenues (pour une valeur minimale de concentration de 0, 1 %) . Nous avons également observé que les interactions entre les monomères et le polyamide varient suivant la polarité des monomères utilisés. Il est donc nécessaire d'optimiser le procédé de synthèse (température, nature des amorceurs) suivant la nature du polyamide et des monomères vinyliques ou acryliques surpolymérisés.
Par rapport aux dispersions classiques obtenues par polymérisation et qui contiennent généralement de 1 à 3 parts de tensioactifs de faible masse qui peuvent diffuser hors des films de peinture, les dispersions obtenues par cette invention à partir de 0, 1 à 1 0% en poids de polyamide, présentent l'avantage d'avoir des faibles tailles, de préférence inférieures à 1 00 nm et de ne contenir que des quantités très faibles de tensioactifs micromoléculaires et une proportion majoritaire de tensioactif de masse élevée ce qui a pour effet de limiter au maximum les espèces susceptibles de migrer dans les films. De plus, le greffage du polyamide au copolymère
acrylique, vinylique et/ou styrènique décrit dans la présente invention supprime totalement la migration de ce tensioactif macromoléculaire hors du film. Cette propriété limite la détérioration des films dans le temps, supprimant en particulier les phénomènes d'exsudation, de sensibilité à l'eau et de perte d'adhésion sur les substrats.
Ces polyamides, initialement hydrodispersibles, lorsqu'ils sont utilisés à plus de 1 0% en poids sur la quantité totale de polymère, sont à même d'apporter de par leur structure particulière un renforcement mécanique supérieur des films obtenus lorsque ces latex sont formulés pour différentes applications (peinture, textile, papier, cuir). Le greffage accroît les interactions entre le polymère acrylique, vinylique et/ou styrènique et le polyamide et favorise ainsi les synergies de propriétés physico-mécanique.
Le comportement de la dispersion vis-à-vis des charges minérales utilisées habituellement peut être amélioré par la présence en périphérie des particules de latex d'un polyamide porteur de groupement ionique et/ou polaire. Le greffage revendiqué dans l'invention peut stabiliser les interactions entre charges minérales et particules de latex au cours de la formation du film de peinture, assurant ainsi une meilleure cohésion et une meilleure résistance à l'abrasion, en particulier à l'abrasion humide. Par ailleurs, de manière similaire aux dispersions de copolymères acryliques, vinyliques et/ou styréniques obtenues sur polyesters insaturés, l'emploi d'un polyamide hydrodispersible porteur de groupements insaturés polymérisables revendiqué dans l'invention favorise l'adhésion des films obtenus sur les substrats de type polyamides. De manière similaire, ce même greffage favorise l'adhésion entre le substrat et le film dans des applications telles que les vernis à ongle et le traitement des non-tissés.
Compte tenu de la littérature l'absence de liaisons de type ester dans le polyamide utilisé augmente, par rapport aux polyesters hydrodispersibles insaturés ou non décrits dans la littérature, la stabilité de cet agent dispersant au cours de l'étape de surpolymérisation et dans certaines applications nécessitant un traitement thermique.
Les exemples suivants illustrent l'invention sans en limiter la portée.
Exemple comparatif :
Préparation d'un PA hydrodispersible sans insaturation (PAHD).
On opère dans un réacteur de 4 litres de capacité, à trois tubulures : entrée de gaz, communication avec un système de distillation comprenant un condenseur relié à un récepteur de distillât, ainsi qu'un agitateur à ancre. Dans ce réacteur, on introduit :
339.0g de lactame 6 soit 3.0 mole, 1 96,5g de sel AH (sel d'acide adipique et d'hexaméthylènediamine) soit 0.75 mole, 205.3g d'hexaméthylènediamine soit 1 .767 mole, 1 68.5g d'acide isophtalique soit
1 .01 5 mole, 1 61 .0 de mono sel de sodium de l'acide sulfo isophtalique soit
0.6 mole et 50g d'eau.
Le réacteur est purgé à l'azote, puis chauffé toutes vannes fermées jusqu'à 200°C matière en 1 heure, la pression est alors de 6.0 bar. Ensuite, sous agitation, la température est montée en 1 heure à 240 °C, la pression est alors de 1 5 bars. On laisse la réaction se faire à 240°C matière pendant 4 heures, la pression atteint à la fin des 4 heures de palier 1 8 bar et se stabilise, ce qui veut dire premièrement que tous les monomères réagissent et deuxièmement que l'équilibre de formation des amides est atteint. On commence à ce moment la détente qui dure 90 minutes, la température matière à la fin de la détente est de 270°C. On fait passer un courant d'azote de 30l/h pendant 1 5 minutes et le PAHD est sorti du réacteur, recueilli dans un plateau refroidi pour assurer une solification rapide.
Le produit obtenu est blanc, friable, inodore. La masse moléculaire moyenne en ombre mesurée, par viscosimetrie (viscosité inhérente de 0.33) est de 6500g/mole , la température de transition vitreuse (Tg) est de 89 °C (mesuré par DSC : 1 0K/min) . Le PAHD est facilement dispersable dans l'eau jusqu'à 40% en poids. La taille des particules de la dispersion est de 1 00 nanomètre. Exemples selon l'invention
Exemple 1 : Préparation d'un polyamide hydrodispersible à insaturation (PAHDI) monoinsaturé par l'acide cinnamique. Le mode opératoire est identique à celui de l'exemple comparatif sauf que les réactifs introduits dans le réacteur sont : 339.0g de lactame 6 soit 3.0 mole, 1 96.5g de sel AH (sel d'acide adipique et d'hexaméthylènediamine) soit 0.75 mole, 1 87.34g d'hexaméthylènediamine soit 1 .61 5 mole, 1 68.5g d'acide isophtalique soit 1 .01 5 mole, 1 61 .0 de mono sel de sodium de l'acide sulfo isophtalique soit 0.6 mole, et 22.5g d'acide cinnamique soit 0.1 52 mole ce qui correspond à une unité d'acide cinnamique par chaîne PAHDI et 50g d'eau.
Le produit obtenu est légèrement jaune, friable, inodore. La masse moléculaire moyenne en nombre mesurée par viscosimetrie est de6650g/mole. La Tg est de 89°C (mesuré par DSC : 1 0K/min) . Le PAHDI est facilement dispersable dans l'eau jusqu'à 40% en poids. La taille des particules de la dispersion est de 62 nanomètres.
Exemple 2 : Préparation en introduisant tous les monomères au départ d'un PAHDI mono insaturé fonctionnalisé par l'acide crotonique.
Le mode opératoire correspond à celui de l'exemple 1 , sauf que au lieu de l'acide cinnamique on charge 1 3.1 g d'acide crotonique soit 0.1 52 mole, ce qui correspond à une unité d'acide crotonique par chaîne PAHDI.
Le produit obtenu est légèrement jaune, friable, inodore. La masse moléculaire moyenne en nombre mesurée par viscosimetrie est de
6600g/mole. La Tg est de 83 °C (mesuré par DSC : 10K/min). Le PAHDI est facilement dispersable dans l'eau jusqu'à 40% en poids. La taile des particules de la dispersion est de 1 00 nanomètres.
Exemple 3 : Préparation en introduisant tous les monomères au départ d'un PAHDI fonctionnalisé partiellement par 0.5 équivalents d'acide crotonique par chaîne PAHD.
Le mode opératoire correspond à celui de l'exemple 1 , sauf qu'on introduit :
339.0g de lactame 6 soit 3.0 mole, 1 96.5g de sel AH (sel d'acide adipique et d'hexaméthylènediamine) soit 0.75 mole, 205.3g d'hexaméthylènediamine soit 1 .767 mole, 1 68.5g d'acide isophtalique soit 1 .01 5 mole, 1 61 .0 de mono sel de sodium de l'acide sulfo isophtalique soit 0.6 mole, et 6.5 d'acide crotonique soit 0.076 mole ce qui correspond à 0.5 unité d'acide cinnamique par chaîne PAHDI et 50g d'eau.
Le produit obtenu est légèrement jaune, friable, inodore. La Mn (visée) est de 6600g/mole. La Tg est de 90°C (mesuré par DSC : 1 0K/min). Le PAHD est facilement dispersable à l'eau jusqu'à 40% en poids. La taille des particules de la dispersion est de 1 00 nanomètres.
Exemple 4 :
Dans un réacteur à double-enveloppe de 2 I équipé avec un condenseur et purgé à l'azote on ajoute 300g d'une dispersion de polyamide, décrit dans l'exemple comparatif, à 5.0% d'extrait sec. Le réacteur est purgé à l'azote et la température est portée à 75 °C sous 1 50tr/min. Quand la température est atteinte et stabilisée, 200g du mélange de monomètres constitué de 92.0g de méthacrylate de méthyle, 1 04.0g d'acrylate de butyle et 4.0g d'acide acrylique et une solution de 0.8g d'amorceur TBHP (Terbutylhydroperoxyde) dans 25 ml l'eau et une solution de 0.28g d'activateur FORMOPON (sel de sodium de formaldehyde sulfoxylate) dans 25 ml l'eau sont écoulés en 300 min. Après 90 min de polymérisation, une solution de 1 .23g SDS dans 25 ml l'eau est coulée en 21 0min.
Après la fin de l'addition le milieu réactionnel est maintenu à 75 °C pendant 60 min, puis refroidi à température ambiante et filtré sur un filtre de 1 00 micromètres. L'extrait sec et la taille des particules ont alors été déterminés (Tableau 1 ) .
Exemple 5 : Préparation de dispersions selon l'invention.
Exemple 5.1 utilisant le PAHDI de l'exemple 1 .
Dans un réacteur à double-enveloppe de 20 I équipé avec un condenseur et purgé à l'azote on ajoute 300g d'une dispersion de polyamide, décrit dans l'exemple 1 de l'invention, à 5.0% d'extrait sec.
Le réacteur est purgé à l'azote et la température est portée à 75 °C sous 1 50tr/min. Quand la température est atteinte et stabilisée, 200g du mélange de monomètres constitué de 92.0g de méthacrylate de méthyle, 1 04.0g d'acrylate de butyle et 4.0g d'acide acrylique et une solution de 0.8g d'amorceur TBHP (Terbutylhydroperoxyde) dans 25 ml l'eau et une solution de 0.28g d'activateur FORMOPON (sel de sodium de formaldehyde sulfoxylate) dans 25 ml l'eau sont écoulés en 300 min. Après 90 min de polymérisation, une solution de 1 .23g SDS en 25 ml l'eau est coulée en 21 0min.
Après la fin de l'addition le milieu réactionnel est maintenu à 75 °C pendant 60 min, puis refroidi à température ambiante et filtré sur un filtre de 1 00 micromètres. L'extrait sec et la taille des particules ont alors été déterminés (Tableau 1 ).
Exemple 5.2 : utilisant le PAHDI de l'exemple 2 dans le mode opératoire de l'exemple 5.1
L'extrait sec et la taille des particules ont alors été déterminés (Tableau 1 ).
Exemple 5.3 : utilisant le PAHDI de l'exemple 3 dans le mode opératoire de l'exemple 5.1 .
L'extrait sec et la taille des particules ont alors été déterminés (Tableau 1 ). L'extrait sec et la taille des particules des dispersions obtenues à partir des semences de polymérisation décrites dans l'exemple hors invention et les trois exemples ont été déterminés et sont indiqués dans le tableau 1 :
Tableau 1 : résultats
Claims
1 . Dispersion aqueuse de particules de polymères de diamètre compris entre 20 et 500 nm et de préférence inférieur à 1 20 nm constituées de :
- 0, 1 à 1 00% en poids du poids total des particules de polyamide hydrodispersible
- 0 à 99,9 % en poids du poids total des particules de polymères acryliques, vinyliques et/ou styréniques.
2. Dispersion selon la revendication 1 caractérisée en ce que le polyamide hydrodispersible contient en moyenne de 0, 1 à 2 insaturations polymérisables par chaîne.
3. Dispersion selon la revendication 1 ou 2 caractérisée en ce que de 50 à 99% de chaînes de polyamide sont greffées par liaisons covalentes aux polymères acryliques, vinyliques et/ou styréniques.
4. Dispersion selon l'une quelconque des revendications précédentes caractérisée en ce que le polyamide hydrodispersible représente au moins 10% en poids du poids total des particules de polymères.
5. Film microstructuré tel qu'on peut l'obtenir par application et séchage de la dispersion de la revendication 4.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9906473A FR2793800A1 (fr) | 1999-05-21 | 1999-05-21 | Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliques |
FR9906473 | 1999-05-21 | ||
PCT/FR2000/001338 WO2000071594A1 (fr) | 1999-05-21 | 2000-05-16 | Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1189957A1 true EP1189957A1 (fr) | 2002-03-27 |
Family
ID=9545863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00927363A Withdrawn EP1189957A1 (fr) | 1999-05-21 | 2000-05-16 | Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliques |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1189957A1 (fr) |
AU (1) | AU4577200A (fr) |
FR (1) | FR2793800A1 (fr) |
WO (1) | WO2000071594A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005005493A1 (de) * | 2005-02-04 | 2006-08-10 | Basf Ag | Verfahren zur Herstellung einer wässrigen Polymerdispersion |
DE102005016226A1 (de) * | 2005-04-07 | 2006-10-12 | Basf Ag | Verfahren zur Herstellung einer wässrigen Polymerdispersion |
JP6507103B2 (ja) * | 2013-02-13 | 2019-04-24 | ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド | 水性ポリアミド−尿素分散物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725854B2 (ja) * | 1984-05-18 | 1995-03-22 | 帝国化学産業株式会社 | ポリアミド樹脂の水溶化方法 |
MX166835B (es) * | 1985-03-13 | 1993-02-09 | Sun Chemical Corp | Copolimeros de injerto de poliamida/acrilico |
US5268412A (en) * | 1990-11-21 | 1993-12-07 | Eastman Kodak Company | Polymer blends for aqueous dispersions having improved freeze-thaw stability |
DE19501726A1 (de) * | 1995-01-20 | 1996-07-25 | Merck Patent Gmbh | Polymerisationsfähige Derivate von Polyamiden |
DE19629452A1 (de) * | 1996-07-23 | 1998-01-29 | Basf Ag | Verfahren zur Herstellung wasserdispergierbarer Polymerblends |
-
1999
- 1999-05-21 FR FR9906473A patent/FR2793800A1/fr active Pending
-
2000
- 2000-05-16 WO PCT/FR2000/001338 patent/WO2000071594A1/fr not_active Application Discontinuation
- 2000-05-16 AU AU45772/00A patent/AU4577200A/en not_active Abandoned
- 2000-05-16 EP EP00927363A patent/EP1189957A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0071594A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2793800A1 (fr) | 2000-11-24 |
WO2000071594A1 (fr) | 2000-11-30 |
AU4577200A (en) | 2000-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2767173C (fr) | Dispersion aqueuse de polymere autoreticulable, a base de particules de polymere structurees en coeur dur et ecorce molle et compositions de revetements ou de traitement | |
FR2693203A1 (fr) | Copolymère acrylique partiellement ou totalement hydrosoluble, réticulé ou non et son utilisation. | |
FR2497811A1 (fr) | Dispersions aqueuses de polymeres et leur application notamment comme compositions de revetement | |
FR2969159A1 (fr) | Composition thermoplastique modifiee choc ayant une sensibilite hydrolytique pour obtenir une fluidite elevee tout en maintenant une resistance aux chocs elevee | |
FR2744125A1 (fr) | Copolymeres greffes, leur procede de fabrication, les compositions les contenant et leur utilisation pour la preparation de dispersions pigmentaires en milieu aqueux et/ou organique | |
LU86940A1 (fr) | Particules polymeres produites sequentiellement,dispersions aqueuses de particules polymeres produites sequentiellement,procedes pour la preparation de particules polymeres produites sequentiellement,et utilisation de particules polymeres produites sequentiellement | |
WO2001018111A2 (fr) | Compositions de polymeres acryliques antistatiques | |
CA2346352A1 (fr) | Compositions de polymeres styreniques antistatiques | |
CA2393637A1 (fr) | Latex a chimie de surface modifiee et poudres redispersables, leur obtention et leurs utilisations | |
EP0728154B1 (fr) | Dispersion aqueuse de polymere, son procede de fabrication et son application a la formulation de peintures | |
EP1297078A1 (fr) | Utilisation d'un polymere a base d'anhydride maleique imidise dans des compositions de traitement de surface ou de revetement et dans les encres et vernis | |
FR3097866A1 (fr) | Composition comprenant un composé renfermant deux groupes polymérisables, un polymère à étages multiples et un polymère thermoplastique, son procédé de préparation, son utilisation et article la comprenant | |
EP1189957A1 (fr) | Dispersions aqueuses de polyamides et de polymeres vinyliques et/ou acryliques | |
WO1994021699A1 (fr) | Latex pour peintures sans solvant possedant une lessivabilite amelioree | |
EP1045007A1 (fr) | Compositions de résines thermoplastiques comprenant une phase dispersée rigide | |
FR2819520A1 (fr) | Application des latex porteurs de fonction acide a l'impregnation de substrat poreux | |
WO2000071631A1 (fr) | Revetement isolant et protecteur formule avec un polycondensat hydrodispersible | |
EP0875540A1 (fr) | Système monocomposant à base de latex coréactifs | |
EP1451236B1 (fr) | Dispersion aqueuse de polymere a lessivabilite elevee, sa preparation et son application comme liant dans des compositions de revetement | |
EP2162477A1 (fr) | Utilisation de copolymeres sma greffes dans des compositions liquides | |
FR2819515A1 (fr) | Procede de fabrication d'un latex a haut extrait sec sur base de copolymere styrene-anhydride maleique | |
WO2003068861A1 (fr) | Compositions de polymeres styreniques antistatiques | |
EP1149121A1 (fr) | Systeme monocomposant aqueux d'un polymere a fonction acetal ou aldehyde | |
FR2798666A1 (fr) | Compositions de polymeres acryliques antistatiques | |
CH373184A (fr) | Procédé pour la préparation de dispersions fines d'homopolymères ou de copolymères d'esters vinyliques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011220 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17Q | First examination report despatched |
Effective date: 20020404 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030527 |