EP1186831B1 - Regeleinrichtung für einen luftzahlgeregelten Brenner - Google Patents

Regeleinrichtung für einen luftzahlgeregelten Brenner Download PDF

Info

Publication number
EP1186831B1
EP1186831B1 EP01117153A EP01117153A EP1186831B1 EP 1186831 B1 EP1186831 B1 EP 1186831B1 EP 01117153 A EP01117153 A EP 01117153A EP 01117153 A EP01117153 A EP 01117153A EP 1186831 B1 EP1186831 B1 EP 1186831B1
Authority
EP
European Patent Office
Prior art keywords
signal
regulating device
control
burner
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01117153A
Other languages
English (en)
French (fr)
Other versions
EP1186831A1 (de
Inventor
Rainer Dr. Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP1186831A1 publication Critical patent/EP1186831A1/de
Application granted granted Critical
Publication of EP1186831B1 publication Critical patent/EP1186831B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/08Regulating air supply or draught by power-assisted systems
    • F23N3/082Regulating air supply or draught by power-assisted systems using electronic means

Definitions

  • the invention relates to a control device according to the preamble of Claim 1.
  • Air ratio the ratio of the amount of air to the amount of fuel
  • lambda the ratio of the amount of air to the amount of fuel
  • Air ratio the ratio of the amount of air to the amount of fuel
  • Lambda slightly above the stoichiometric value 1, for example 1.3.
  • Air-controlled burners unlike controlled burners, react to external conditions Influences that change the combustion.
  • the combustion be readjusted after a change in the type of fuel or air density. she have a higher efficiency, thus higher efficiency as well as lower Pollutant and soot emissions.
  • the environmental impact is lower, the lifetime will be extended.
  • Control of the air ratio is particularly effective when using a sensor quality combustion can be observed.
  • Typical are in known burners Oxygen sensors in the exhaust duct, temperature sensors on the burner surface or UV sensors used in the combustion chamber. Newer developments are based on the ionization electrode, which has long been standard for monitoring the Flame is used in burners.
  • Air-controlled burners using an ionization electrode as a flame sensor are known from DE-PS 196 18 573. Such burners check the control loop among other things, that the measuring signal a safety margin around the Control setpoint during normal operation should not leave in the long term. Meets this Nevertheless, the burner switches off.
  • the tax period should be as short as possible, since external influences during this Time can not be corrected.
  • the quality of the control should be below monitored at least marginally and for plausibility become. If the position of the fuel valve or the air blower during the Control period is not monitored by additional measures, so can at a Defective the permissible emission levels are greatly exceeded.
  • the invention is based on the object of quality control during such Control periods are inexpensive and easy to improve.
  • 1 indicates the flame of an air-operated gas burner.
  • a Ionization electrode 2 protrudes into the area of the flame 1.
  • the flame 1 is from an adjustable air blower 3 and an adjustable gas valve 4 fed.
  • One Safety valve 5 in the gas supply ensures a faultless shutdown in case of a Error message.
  • a control device 6 the air blower 3, the gas valve 4 and the Safety valve 5 as follows.
  • the actuator of the air blower 3 is by means of a power request signal. 7 driven to a speed corresponding to a speed signal 8, as Input parameter is used for the performance request.
  • z. B the measurement signal of a Differential pressure gauge in the ventilation duct, to be used as a power variable.
  • the adjustable gas valve 4 is not shown by a control signal 9 via a Motor driven. An unshown mechanical pressure regulator is interposed.
  • the safety valve 5 is opened against spring pressure, as long as an enable signal 10th is applied.
  • the air ratio is controlled by the ionization electrode 2.
  • the Tuning of the control signal 9 to the speed signal 8 is done by observation of current and voltage at the ionization electrode 2 as a measure of flame quality.
  • the speed signal 8 is passed through a filter 11 to a control unit 12, which is realized as a program part in a microprocessor.
  • a control unit 12 which is realized as a program part in a microprocessor.
  • the control signals 13, 14 be fed to a controller 15, where they on the basis of flame quality in one Adjusting module 16 are weighted and added to form the control signal 9.
  • Controller 15 is implemented as a program part in a microprocessor.
  • a sensor evaluator 17 prepares two signals.
  • a sensor signal 18 is a measure of the quality of the flame 1.
  • a monitoring signal 19 indicates Extinguish the flame 1 a monitoring unit 20 in the controller 15 on.
  • the monitoring unit 20 interrupts a corresponding monitoring signal 19 towards the release signal 10 and thereby closes the safety valve 5. Thus hears the gas supply on.
  • the sensor signal 18 is supplied to the controller 15. There it becomes first by means of a low-pass filter 21 smoothed to suppress glitches and flicker.
  • a comparison unit 22 is a generated by the control unit 12 and via a Correction unit 23 subtracted nominal reference signal 24.
  • the setpoint signal 24 represents over a characteristic curve at each speed a desired size of the Sensor signal 18. From the difference is from a proportional controller 25 and a parallel integration unit 26 of the internal control value x redetermined, the two Control signals 13 and 14 re-weighted and thus changed the control signal 9.
  • control value x of course by other types of controllers, for example a PID controller or state controller.
  • the sensor signal 18 is thus in its normal operation on his current performance associated setpoint and the combustion receives the above the setpoint signal 24th set quality.
  • the air ratio is programmed during a starting process controlled until the burner and the ionization 2 their operating temperature approximated or reached. Only then follows the normal operation, in which the Air ratio is regulated.
  • the reason for the control at the start is, among other things, the inertia of the sensor, which measures the quality of combustion.
  • ionization electrodes not only ionization electrodes have such a delay.
  • an ionization signal can only be used for regulation about 30 s after ignition.
  • Other sensors, such as ZrO 2 oxygen sensors in the exhaust duct, require more than one minute, depending on the design, until reliable control signals can be obtained.
  • the control unit 12 During a startup process, the control unit 12 generates a start-up signal 27, which is supplied to the controller 15 and causes it to be linear in time to generate increasing actuating signal 9.
  • a switching unit 28 selects as long as that Start-up signal 27, instead of the control value x, off. Because the air blower 3 meanwhile produces a constant flow of air, the air ratio of initially large Values are getting smaller and smaller. Once the mixture of air and gas is enough fat, can an ignition of the flame 1 done.
  • the controller 15 opens the safety valve 5 by means of the release signal 10 and generates an actuating signal 9 which sets the position of the gas valve 4 to its start position S 1 .
  • the control unit 12 introduces the controller 15. Start-up signal 27 too.
  • the start-up signal 27 determines in this phase a control value x 'as a provisional replacement for the control value x in the weighting of the two control signals 13 and 14. Their size is fixed at the above-mentioned firing speed of the air blower 3.
  • the controller 15 weights the control signals 13 and 14 on the basis of the start-up signal 27, so that a control signal 9 corresponding to the starting position S 1 appears at the output of the controller.
  • control signal 9 after a programmed sequence, wherein the amount of gas per unit time is increased linearly.
  • the gas-air mixture is initially very lean and is getting fatter during the ignition, until the time T 2 is an ignition.
  • the linear increase of the actuating signal 9 is stopped and the position of the gas valve 4 is kept constant at its ignition position S 2 .
  • the control unit 12 can then estimate the gas range based on the ignition position S 2 and the required ignition time T 2 -T 1 and selects the control value x 'new so that it matches the estimated gas range.
  • the new control value x ' is, depending on the type of gas, z. At 0.9 or 0.1. This leads to a renewal of the gas valve 4 to a correction position S 3rd
  • the actuating signal 9 in FIG. 2 is therefore quickly corrected to the correction position S 3 at the time T 3 .
  • control value x 6 for the control phase after ignition would be specified as the programmed value or determined as the learned value from the last decommissioning and stored.
  • FIG. 2 also shows a dot-dashed curve representing the actuating signal 9, if it is calculated on the basis of the sensor signal 18. This fictitious actuating signal S E would thus be the actuating signal 9 if the control loop is not broken during a starting process.
  • the monitoring unit 20 must naturally means of an analog circuit or a part of the program the behavior of the flame in response to the fictional setting signal simulate s E an outdoorsrend and the fictional setting signal s Set E to be that the current measured value of the resulting ionization signal 18th
  • the fictitious control signal s E is not suitable for this reason in this phase, in order to enable a control. Nevertheless, it has been shown that the fictitious actuating signal s E comes so quickly, for example already 2 seconds after the opening of the gas valve 4, so close to the value which is optimally regulated later that it forms a reliable comparison means, in order to prevent serious errors from harmless Inaccuracies of the control to distinguish.
  • the monitoring unit 20 continuously checks whether the fictitious actuating signal s E or the associated control value x E lies within a limit range around the actual actuating signal 9.
  • the boundaries are designated S 3min and S 3max in FIG. 2 and have, for example, the values of 0.90 times S 3 and 1.25 times S 3 .
  • the monitoring unit 20 checks the otherwise unused control value x by comparing it with the control value x '. This comparison is equivalent to a comparison between the fictitious actuating signal s E and the control signal (9). The difference is only the previous or the subsequent processing by the control module 16.
  • the monitoring unit 20 As soon as the fictitious actuating signal s E leaves said boundary region, the monitoring unit 20 generates a fault signal (not shown) and switches off the release signal 10 so that the safety valve 5 is closed.
  • the controller 6 stores the detection of a disturbance signal in one EEPROM to allow the event after any failure of the supply current is recognizable again.
  • An unillustrated unlocking signal through the Burner operator can override the consequences of an earlier fault signal.
  • the monitoring unit 20 switches off the combustion only when the fictitious actuating signal s E has left the boundary area for a predetermined time.
  • monitoring need not necessarily be continuous, but could also be discrete at one or more specified times.
  • the generation of the actuating signal 9 is taken over by the processing of the sensor signal 18.
  • the control signal 9 quickly adjusts to its control value S 4 .
  • the power of the burner during the control period to a other value within the entire permissible range.
  • FIG. 1 also shows that the monitoring unit 20 alternatively the Ionisationssignal 18 instead of the control signal 9 or the control value x processed.
  • the monitoring unit 20 is compared with its setpoint signal 24 and may, for example, a preprogrammed limit range, which may also be time-dependent, do not leave.
  • a sole application of this alternative would be a very simple Ausgestalltung enable the monitoring unit 20.
  • a comparison signal is already in shape the setpoint signal 24 is present and the comparison is already by the Comparison unit 22 in the form of the difference signal 35 of the monitoring unit 20th fed.
  • monitoring begins.
  • the monitoring unit 20 checks permanently or at discrete points in time whether the ionization signal I E does not leave its limit values, which are drawn as I SOLLmin and I SOLLmax .
  • control process begins on the basis of the ionisation signal 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

Die Erfindung bezieht sich auf eine Regeleinrichtung gemäß dem Oberbegriff des Anspruchs 1.
In einem Brenner muss das Verhältnis der Luftmenge zur Brennstoffmenge, genannt Luftzahl oder Lambda, im gesamten Leistungsbereich entweder durch eine Steuerung oder durch eine Regelung aufeinander abgestimmt sein. In der Regel soll Lambda leicht über dem stöchiometrischen Wert 1 sein, zum Beispiel 1,3.
Luftzahlgeregelte Brenner reagieren, anders als gesteuerte Brenner, auf äußere Einflüsse, welche die Verbrennung verändern. Beispielsweise kann die Verbrennung nach einer Änderung der Brennstoffart oder der Luftdichte nachgeregelt werden. Sie haben einen höheren Wirkungsgrad, damit eine höhere Effizienz sowie niedrigere Schadstoff- und Russemissionen. Die Umweltbelastung ist geringer, die Lebensdauer wird verlängert.
Eine Regelung der Luftzahl ist besonders effektiv, wenn mit einem Sensor die Qualität der Verbrennung beobachtet werden kann. Typisch werden bei bekannten Brennern Sauerstoffsensoren im Abgaskanal, Temperatursensoren auf der Brenneroberfläche oder UV-Sensoren in der Brennkammer verwendet. Neuere Entwicklungen basieren auf der Ionisationselektrode, die schon lange standardmäßig zur Überwachung der Flamme in Brennern eingesetzt wird.
Luftzahlgeregelte Brenner, die eine lonisationselektrode als Flammensensor benutzen, sind aus der DE-PS 196 18 573 bekannt. Solche Brenner überprüfen den Regelkreis unter anderem dadurch, dass das Messsignal eine Sicherheitsmarge um den Regelsollwert während des Regelbetriebes nicht langfristig verlassen soll. Trifft dies dennoch zu, so schaltet der Brenner ab.
Es ist zumeist wenig sinnvoll, die Luftzahl sofort nach der Zündung zu regeln, da das lonisationssignal erst im thermisch eingeschwungenen Zustand repräsentativ für die Verbrennung ist. Daher wird das Verhältnis von Luft und Brennstoff zunächst gesteuert, beispielsweise während der ersten Minute nach der Inbetriebsetzung. Erst danach wird es genau ausgeregelt.
Weiterhin ist es bekannt, dass während des Zündvorgangs die Luftzahl variiert wird, damit ein für die gelieferte Brennstoffart gutes Gemisch gefunden werden kann. Auf diesen Luftzahlwert wird im weiteren Startvorgang gesteuert. Auch davon ist ein Beispiel in der DE-PS 196 18 573 beschrieben. Ein solcher Brenner fährt während des Zündvorgangs den Gasanteil bei festem Luftvolumenstrom solange hoch, bis die lonisationselektrode eine Flamme detektiert. Die Anfahrsteuerung behält die der Zündung entsprechende Gasventilstellung bei, obwohl das Gas-Luft-Gemisch typisch etwas zu fett ist. Erst nachdem das System seine Betriebstemperatur erreicht hat, wird auf Regelung mittels lonisationssignal umgeschaltet.
Neben dem Startverhalten des Brenners ist es denkbar, dass später aus anderen Gründen das lonisationssignal nicht repräsentativ für die Verbrennung ist oder der Regelkreis durch äußere Einflüsse instabil wird. Auch dann kann die Regelung zeitweise abgeschaltet und die Luftzahl während dieser Zeit gesteuert werden.
Die Steuerperiode sollte so kurz wie möglich sein, da äußere Einflüsse während dieser Zeit nicht ausgeregelt werden können. Zudem sollte die Qualität der Steuerung unter den konkreten Umständen wenigstens marginal und auf Plausibilität überwacht werden. Wird die Stellung des Brennstoffsventils oder des Luftgebläses während der Steuerperiode nicht durch zusätzliche Maßnahmen überwacht, so können bei einem Defekt die zulässigen Emissionswerte stark überschritten werden.
Der Erfindung liegt die Aufgabe zugrunde, die Qualitätsüberwachung während solcher Steuerperioden kostengünstig und in einfacher Art zu verbessern.
Die genannte Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.
Es zeigen
Figur 1
ein Blockschaltbild einer Regeleinrichtung gemäß der Erfindung,
Figur 2 und
den zeitlichen Ablauf des Aufstarten des Brenners mit der Regeleinrichtung
Figur 3
einen alternativen zeitlichen Ablauf des Aufstarten des Brenners mit der Regeleinrichtung.
In der Figur 1 bedeutet 1 die Flamme eines luftzahlgeregelten Gasbrenners. Eine lonisationselektrode 2 ragt in den Bereich der Flamme 1. Die Flamme 1 wird von einem stellbaren Luftgebläse 3 und einem stellbaren Gasventil 4 gespeist. Ein Sicherheitsventil 5 in der Gaszufuhr sorgt für ein fehlerfreies Abschalten im Falle einer Störungsmeldung.
Statt eines Luftgebläses wird bei manchen atmosphärischen Brennern die Luft durch den Brennerzug zugeführt und kann durch eine stellbare Luftklappe kontrolliert werden.
Eine Regeleinrichtung 6 stellt das Luftgebläse 3, das Gasventil 4 und das Sicherheitsventil 5 wie folgt.
Das Stellglied des Luftgebläses 3 wird mittels eines Leistungsanforderungssignals 7 auf eine Drehzahl angesteuert, welche einem Drehzahlsignal 8 entspricht, das als Eingabeparameter für die Leistungsanforderung verwendet wird.
Natürlich kann auch eine andere Größe, z. B. das Messsignal eines Differenzdruckmessers im Belüftungskanal, als Leistungsgröße verwendet werden.
Das stellbare Gasventil 4 wird von einem Stellsignal 9 über einen nicht gezeichneten Motor angetrieben. Ein nicht gezeichneter mechanischer Druckregler ist zwischengeschaltet.
Das Sicherheitsventil 5 wird gegen Federdruck geöffnet, solange ein Freigabesignal 10 anliegt.
Im Normalbetrieb wird die Luftzahl über die lonisationselektrode 2 geregelt. Die Abstimmung des Stellsignals 9 auf das Drehzahlsignal 8 erfolgt durch Beobachtung von Strom und Spannung an der lonisationselektrode 2 als Maß der Flammenqualität.
Das Drehzahlsignal 8 wird über ein Filter 11 zu einer Steuereinheit 12 geführt, welche als Programmteil in einem Mikroprozessor realisiert ist. Dort sind Kenndaten gespeichert, welche die Kennlinien eines ersten und eines zweiten Steuersignals 13 beziehungsweise 14 festlegen. Diese Kennlinien repräsentieren zu jeder Drehzahl eine unter ihren respektiven Umständen erwünschte Größe des Stellsignals 9, hier für zwei Gasarten mit unterschiedlichen spezifischen Energiewerten. Die Steuersignale 13, 14 werden einem Regler 15 zugeführt, wo sie anhand der Flammenqualität in einem Stellmodul 16 gewichtet und aufaddiert werden um das Stellsignal 9 zu bilden. Der Regler 15 ist als Programmteil in einem Mikroprozessor realisiert.
Zugleich wird die Qualität und Präsenz der Flamme 1 von der lonisationselektrode 2 ermittelt. Ein Sensorauswerter 17 bereitet daraus zwei Signale auf. Ein Sensorsignal 18 ist ein Maß für die Qualität der Flamme 1. Ein Überwachungssignal 19 gibt ein Erlöschen der Flamme 1 einer Überwachungseinheit 20 im Regler 15 weiter.
Die Überwachungseinheit 20 unterbricht auf ein entsprechendes Überwachungssignal 19 hin das Freigabesignal 10 und schließt dadurch das Sicherheitsventil 5. Somit hört die Gaszufuhr auf.
Auch das Sensorsignal 18 wird dem Regler 15 zugeführt. Dort wird es zuerst mittels eines Tiefpassfilters 21 geglättet, um Störimpulse und Flackern zu unterdrücken. In einer Vergleichseinheit 22 wird ein von der Steuereinheit 12 erzeugtes und über eine Korrektureinheit 23 geführtes Sollwertsignal 24 subtrahiert. Das Sollwertsignal 24 repräsentiert über eine Kennlinie zu jeder Drehzahl eine erwünschte Größe des Sensorsignals 18. Aus der Differenz wird von einem Proportionalregler 25 und einer parallelen Integriereinheit 26 der interne Regelwert x neu ermittelt, der die beiden Steuersignale 13 und 14 neu gewichtet und damit das Stellsignal 9 verändert.
Alternativ kann der Regelwert x natürlich durch andere Reglertypen, beispielsweise einen PID-Regler oder einen Zustandsregler, erzeugt werden.
Das Sensorsignal 18 wird somit im Normalbetrieb auf seinen zur aktuellen Leistung gehörigen Sollwert geregelt und die Verbrennung erhält die über das Sollwertsignal 24 eingestellte Qualität.
Dem entgegen wird die Luftzahl während eines Startvorganges programmiert gesteuert, bis der Brenner und die lonisationselektrode 2 ihre Betriebstemperatur angenähert oder erreicht haben. Erst danach folgt der Normalbetrieb, in dem die Luftzahl geregelt wird.
Der Grund für die Steuerung am Start liegt unter anderem in der Trägheit des Sensors, der die Verbrennungsqualität misst.
Nicht nur lonisationselektroden weisen übrigens eine solche Verzögerung auf. Ein lonisationssignal kann je nach Brenner erst ungefähr 30 s nach der Zündung zum Regeln verwendet werden. Andere Sensoren, wie zum Beispiel ZrO2-Sauerstoffsensoren im Abgaskanal, benötigen je nach Bauart mehr als eine Minute, bis zuverlässige Regelsignale gewonnen werden können.
Während eines Startvorganges erzeugt die Steuereinheit 12 ein Aufstartsignal 27, welches dem Regler 15 zugeführt wird und ihn veranlasst, ein in der Zeit linear zunehmendes Stellsignal 9 zu erzeugen. Eine Schalteinheit 28 wählt solange das Aufstartsignal 27, anstatt des Regelwertes x, aus. Weil das Luftgebläse 3 indessen einen gleichbleibenden Luftstrom erzeugt, wird die Luftzahl von zunächst großen Werten immer kleiner. Sobald das Gemisch von Luft und Gas genügend Fett ist, kann eine Zündung der Flamme 1 erfolgen.
Der zeitliche Verlauf des Stellsignals 9 für das Gasventil 4 während eines Startvorgangs ist in der Figur 2 skizziert. Zum Zeitpunkt t = 0 tritt eine Leistungsanforderung auf.
Nach einer eventuell programmierten Vorspülzeit muss das Luftgebläse 3 zum Zeitpunkt T1 auf eine festen Zünddrehzahl gefahren sein, damit Verbrennungsluft vorhanden ist. Eine Zündeinrichtung beginnt schon damit, periodisch Zündimpulse zu erzeugen.
Zum Zeitpunkt T1 muss auch Gas vorhanden sein. Dazu öffnet der Regler 15 mittels des Freigabesignals 10 das Sicherheitsventil 5 und erzeugt ein Stellsignal 9, das die Stellung des Gasventils 4 auf seine Startposition S1 stellt.
Zur Bestimmung der Startposition S1 führt die Steuereinheit 12 dem Regler 15 ein. Aufstartsignal 27 zu. Das Aufstartsignal 27 bestimmt in dieser Phase einen Steuerwert x' als vorläufiger Ersatz für den Regelwert x bei der Gewichtung der beiden Steuersignale 13 und 14. Deren Größe liegt bei der oben genannten Zünddrehzahl des Luftgebläses 3 fest. Der Regler 15 gewichtet die Steuersignale 13 und 14 anhand des Aufstartsignals 27, so dass am Ausgang des Reglers ein der Startposition S1 entsprechendes Stellsignal 9 erscheint.
Unmittelbar nach dem Zeitpunkt T1 erhöht die Steuereinheit 12 in obengenannter Weise das Stellsignal 9 nach einem programmierten Ablauf, wobei die Gasmenge pro Zeiteinheit linear erhöht wird. Das Gas-Luft-Gemisch ist zunächst sehr mager und wird während des Zündvorganges immer fetter, bis zum Zeitpunkt T2 eine Zündung erfolgt.
Sobald das Überwachungssignal 19 das Vorhandensein der Flamme 1 bestätigt, wird der lineare Anwachs des Stellsignals 9 gestoppt und die Stellung des Gasventils 4 auf ihre Zündposition S2 konstant gehalten. Die Steuereinheit 12 kann dann anhand der Zündposition S2 und der benötigten Zündungszeit T2 - T1 den Gasbereich abschätzen und wählt den Steuerwert x' neu, so dass er zum geschätzten Gasbereich passt. Der neue Steuerwert x' liegt, je nach Gasart, z. B. bei 0,9 oder 0,1. Dies führt zu einer Neustellung des Gasventils 4 auf eine Korrekturposition S3.
Das Stellsignal 9 in der Figur 2 wird daher schnell zum Zeitpunkt T3 auf die Korrekturposition S3 korrigiert.
Alternativ zu dieser Startrampe könnte natürlich eine feste Zündstellung für das Gasventil 4 gewählt werden. Dabei würde der Steuerwert x6 für die Steuerphase nach der Zündung als programmierter Wert vorgegeben oder aber als Lernwert aus der letzten Außerbetriebsetzung ermittelt und abgespeichert.
In der Figur 2 ist auch eine strichpunktierte Kurve gezeichnet, die das Stellsignal 9 darstellt, falls es auf Grund des Sensorsignals 18 berechnet wird. Dieses fiktive Stellsignal SE wäre also das Stellsignal 9, wenn der Regelkreis während eines Startvorganges nicht aufgebrochen wird.
Dazu muss die Überwachungseinheit 20 natürlich mittels einer Analogschaltung oder eines Programmteils das Verhalten der Flamme als Antwort auf das fiktive Stellsignal sE annäherend simulieren und das fiktive Stellsignal sE so einstellen, dass sich der momentane Messwert des lonisationssignals 18 ergibt.
Das fiktive Stellsignal sE ist aus oben genannten Gründen in diese Phase nicht geeignet, um eine Regelung zu ermöglichen. Es hat sich trotzdem gezeigt, dass das fiktive Stellsignal sE relativ schnell, beispielsweise schon 2 Sekunden nach dem Öffnen des Gasventils 4, so sehr in der Nähe des später optimal geregelten Wert kommt, dass es ein zuverlässiges Vergleichsmittel bildet, um ernsthafte Fehler von ungefährlichen Ungenauigkeiten der Steuerung zu unterscheiden.
Ab einem Zeitpunkt T4 bis zum Ende der Steuerperiode zum Zeitpunkt T5 überprüft die Überwachungseinheit 20 dauerhaft, ob das fiktive Stellsignal sE oder der zugehörige Regelwert xE innerhalb eines Grenzbereichs um das tatsächliche Stellsignal 9 herum liegt. Die Grenzen sind in der Figur 2 mit S3min und S3max bezeichnet und weisen beispielsweise die Werte von 0,90 mal S3 und 1,25 mal S3 auf.
In der Tat überprüft die Überwachungseinheit 20 übrigend den sonst unbenutzten Regelwert x in dem sie ihn mit dem Steuerwert x' vergleicht. Dieser Vergleich ist einem Vergleich zwischen das fiktive Stellsignal sE und das Stellsignal (9) gleichwertig. Der Unterschied ist lediglich die vorherige oder die nachherige Bearbeitung durch das Stellmodul 16.
Sobald das fiktive Stellsignal sE den genannten Grenzbereich verlässt, erzeugt die Überwachungseinheit 20 ein nicht dargestelltes Störungssignal und stellt das Freigabesignal 10 aus, damit das Sicherheitsventil 5 geschlossen wird.
Die Regeleinrichtung 6 speichert die Feststellung eines Störungssignals in einem EEPROM, damit das Ereignis nach einem etwaiger Ausfall der Versorgungsstrom wieder erkennbar ist. Ein nicht dargestelltes Entriegelungssignal durch den Brennerbetreiber kann die Konsequenzen eines früheren Störungssignals aufheben.
In einer Alternative schaltet die Überwachungseinheit 20 die Verbrennung erst ab, wenn das fiktive Stellsignal sE während einer vorgegebenen Zeit den Grenzbereich verlassen hat. Ebenso muss die Überwachung nicht unbedingt kontinuierlich sein, sondern könnte auch diskret zu einem oder mehreren festgelegten Zeitpunkten erfolgen.
Nach Erreichen einer unteren Differenz zwischen dem fiktiven Stellsignal SE und S3 wird die Steuerperiode beendet und der Verbund von Luft und Gas anhand des Sensorsignals 18 geregelt.
Das Ende der Steuerperiode zum Zeitpunkt T5 könnte natürlich auch vorprogrammiert sein.
Nach dem Zeitpunkt T5 wird die Erzeugung des Stellsignals 9 durch die Verarbeitung des Sensorsignals 18 übernommen. Das Stellsignal 9 verstellt sich schnell zu seinem Regelwert S4.
Alternativ kann die Leistung des Brenners während der Steuerperiode auf einen anderen Wert im gesamten zulässigen Bereich gestellt werden.
Die Figur 1 zeigt zudem, dass die Überwachungseinheit 20 alternativ das lonisationssignal 18 statt des Stellsignals 9 oder des Regelwertes x verarbeitet. Dabei wird es mit seinem Sollwertsignal 24 verglichen und darf beispielsweise einen vorprogrammierten Grenzbereich, der auch zeitabhängig sein kann, nicht verlassen. Eine alleinige Anwendung dieser Alternative würde eine sehr einfache Ausgestalltung der Überwachungseinheit 20 ermöglichen. Ein Vergleichssignal ist ohnehin im Form des Sollwertsignals 24 vorhanden und der Vergleich wird schon durch die Vergleichseinheit 22 in Form des Differenzsignals 35 der Überwachungseinheit 20 zugeführt.
In der Figur 3 wird diese Alternative näher erläutert. Der zeitliche Verlauf des lonisationssignals 18 während eines Startorgangs ist als Kurve IE gezeichnet. Der Wert des Sollwertsignals 24 ist strichpunktiert mit ISOLL angedeutet.
Zum Zeitpunkt T4, kurz nach dem Zeitpunkt T3 oder sogar gleichzeitig, fängt die Überwachung an. Die Überwachungseinheit 20 überprüft dauerhaft oder zu diskreten Zeitpunkten, ob das lonisationssignal IE seine Grenzwerte, welche als ISOLLmin und als ISOLLmax gezeichnet sind, nicht verlässt.
Zum Zeitpunkt T5 beginnt der Regelvorgang auf Grund des lonisationssignals 18.

Claims (8)

  1. Regeleinrichtung (6) für einen luftzahlgeregelten Brenner, welcher Brenner ausgestattet ist
    mit einem Sensor (2), der die Qualität der Verbrennung erfasst,
    mit einem Stellglied, das die Brennstoffzufuhrmenge oder die Luftzufuhrmenge in Abhängigkeit von einem Stellsignal (9) beeinflusst, welche Regeleinrichtung (6) ausgestattet ist
    mit einem dem Sensor (2) nachgeschalteten Sensorauswerter (17), der ein Sensorsignal (18) erzeugt,
    mit einer Steuereinheit (12), in der Kenndaten zur Bestimmung von mindestens einem Verhalten des Stellgliedes gespeichert sind und die zumindest zeitweise mindestens ein Steuersignal (13, 14) erzeugt, und
    mit einem Regler (15), der das Stellsignal (9) während zumindest einer Steuerperiode in Abhängigkeit vom Steuersignal und nicht in Abhängigkeit vom Sensorsignal (18), und sonst in Abhängigkeit vom Sensorsignal (18) erzeugt,
       dadurch gekennzeichnet, dass
    der Regler (15) zumindest zeitweise während der Steuerperiode ein Vergleichssignal (SE,ISOLL) in Abhängigkeit vom Sensorsignal (18) erzeugt,
    die Regeleinrichtung (6) die Differenz zwischen Vergleichssignal (SE,ISOLL) und korrespondierenden Stell-/Sensorsignal (9,18) feststellt und
    die Regeleinrichtung (6) in Abhängigkeit von der Größe der Differenz ein Störungssignal erzeugt.
  2. Regeleinrichtung nach Anspruch 1,
       dadurch gekennzeichnet, dass
    der Sensor (2) eine im Flammenbereich des Brenners angeordnete lonisationselektrode ist.
  3. Regeleinrichtung nach Anspruch 2,
       dadurch gekennzeichnet, dass
    die Regeleinrichtung (6) eine Zeiterfassung aufweist und
    die Regeleinrichtung (6) frühestens ab 2 Sekunden nach Beginn der Steuerperiode ein Störungssignal erzeugen kann.
  4. Regeleinrichtung nach einem der vorangehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    in der Regeleinrichtung (6) ein positiver Grenzwert und ein negativer Grenzwert gespeichert sind, und
    die Regeleinrichtung (6) ein Störungssignal erzeugt, falls die größeder Differenz einen positiven Grenzwert überstiegen oder einen negativen Grenzwert unterschritten hat.
  5. Regeleinrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die Regeleinrichtung (6) unmittelbar nachdem die größe den Differenz den positiven Grenzwert überstiegen oder den negativen Grenzwert unterschritten hat ein Störungssignal erzeugt.
  6. Regeleinrichtung nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass
    der positiven Grenzwert bis zu +30 % des Wertes des korrespondierenden Signals, und der negativen Grenzwert bis zu - 13 % dieses Wertes beträgt.
  7. Regeleinrichtung nach einem der vorangehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    die Steuereinheit (12) beim Zünden des Brenners den Regler (15) das Stellsignal (9) so erzeugen lässt, dass sich die Luftzahl von unterstöchiometrisch zu überstöchiometrisch bewegt,
    die Regeleinrichtung (6) aus dem Verhalten des Stellglieds bei der Flammenzündung den spezifischen Energieinhalt des Brennstoffs abschätzt und
    die Steuereinheit (12) nach dem Zünden des Brenners den Regler (15) ein dementsprechendes Stellsignal (9) erzeugen lässt.
  8. Regeleinrichtung nach einem der vorangehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    die Regeleinrichtung (6) zumindest einmal während einer Regelperiode die Größe des Stellsignals (9), welches während der Steuerperiode geeignet ist, ermittelt und in der Steuereinheit (12) speichert, und
    die Steuereinheit (12) nach einem Zünden des Brenners den Regler (15) ein dementsprechendes Stellsignal (9) erzeugen lässt.
EP01117153A 2000-09-05 2001-07-14 Regeleinrichtung für einen luftzahlgeregelten Brenner Expired - Lifetime EP1186831B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10044633 2000-09-05
DE10044633 2000-09-05

Publications (2)

Publication Number Publication Date
EP1186831A1 EP1186831A1 (de) 2002-03-13
EP1186831B1 true EP1186831B1 (de) 2003-12-17

Family

ID=7655635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117153A Expired - Lifetime EP1186831B1 (de) 2000-09-05 2001-07-14 Regeleinrichtung für einen luftzahlgeregelten Brenner

Country Status (5)

Country Link
US (1) US6527541B2 (de)
EP (1) EP1186831B1 (de)
JP (1) JP2002130667A (de)
AT (1) ATE256844T1 (de)
DE (2) DE10113468A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396681B1 (de) * 2002-09-04 2005-12-07 Siemens Schweiz AG Brennerkontroller und Einstellverfahren für einen Brennerkontroller
US7424442B2 (en) * 2004-05-04 2008-09-09 Utbk, Inc. Method and apparatus to allocate and recycle telephone numbers in a call-tracking system
US20050208443A1 (en) * 2004-03-17 2005-09-22 Bachinski Thomas J Heating appliance control system
WO2006000367A1 (de) * 2004-06-23 2006-01-05 Ebm-Papst Landshut Gmbh Verfahren zur einstellung der luftzahl an einer feuerungseinrichtung und feuerungseinrichtung
US7241135B2 (en) * 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
CA2552492C (en) * 2005-07-19 2010-06-01 Cfm U.S. Corporation Heat activated air shutter for fireplace
DE102005034758B3 (de) * 2005-07-21 2006-08-10 Honeywell Technologies S.A.R.L. Verfahren zum Betreiben eines Gasbrenners
JP2007298190A (ja) * 2006-04-27 2007-11-15 Noritz Corp 燃焼装置
DE102008021164B4 (de) * 2008-04-28 2011-08-25 Mertik Maxitrol GmbH & Co. KG, 06502 Verfahren und Gasregelarmatur zur Überwachung der Zündung eines Gasgerätes, insbesondere eines gasbeheizten Kaminofens
DE102008038949A1 (de) * 2008-08-13 2010-02-18 Ebm-Papst Landshut Gmbh Sicherungssystem in und Verfahren zum Betrieb einer Verbrennungsanlage
IT1399076B1 (it) * 2010-03-23 2013-04-05 Idea S R L Ora Idea S P A Dispositivo e metodo di controllo della portata di aria comburente di un bruciatore in genere
AT510002B1 (de) * 2010-12-20 2012-01-15 Vaillant Group Austria Gmbh Verfahren zur regelung eines gas-/luftgemisches
FR2975173B1 (fr) * 2011-05-12 2013-05-31 Snecma Installation de production d'energie thermique
DE102019110977A1 (de) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Verfahren zur Überprüfung eines Gasgemischsensors bei einem brenngasbetriebenen Heizgerät
DE102019110976A1 (de) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Verfahren zur Überprüfung eines Gasgemischsensors und Ionisationssensors bei einem brenngasbetriebenen Heizgerät
DE102020104084A1 (de) * 2020-02-17 2021-08-19 Ebm-Papst Landshut Gmbh Verfahren zur Überwachung und Regelung eines Prozesses einer Gastherme und Gastherme
DE102020204647B3 (de) * 2020-04-09 2021-07-29 Viessmann Werke Gmbh & Co Kg Brenneranordnung, verfahren zum betreiben einer brenneranordnung und windfunktion
DE102022101305A1 (de) * 2022-01-20 2023-07-20 Ebm-Papst Landshut Gmbh Verfahren zur fehlersicheren und mageren Zündung eines Brenngas-Luft-Gemisches an einem Gasbrenner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714122A (en) * 1980-07-01 1982-01-25 Mitsubishi Electric Corp Oxygen density detecting apparatus for burner
FR2638819A1 (fr) * 1988-11-10 1990-05-11 Vaillant Sarl Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion
US5253475A (en) * 1992-06-22 1993-10-19 General Motors Corporation Combustion detection
TW294771B (de) * 1995-01-30 1997-01-01 Gastar Co Ltd
JPH11503817A (ja) * 1995-04-19 1999-03-30 ボウィン テクノロジー ピーティーワイ リミテッド ヒーティング装置
ATE189301T1 (de) * 1995-10-25 2000-02-15 Stiebel Eltron Gmbh & Co Kg Verfahren und schaltung zur regelung eines gasbrenners
AU710622B2 (en) * 1995-11-13 1999-09-23 Gas Research Institute, Inc. Flame ionization control apparatus and method
JP3193316B2 (ja) * 1996-03-19 2001-07-30 リンナイ株式会社 強制給排気式燃焼装置
ATE202837T1 (de) * 1996-05-09 2001-07-15 Stiebel Eltron Gmbh & Co Kg Verfahren zum betrieb eines gasbrenners
DE19631821C2 (de) * 1996-08-07 1999-08-12 Stiebel Eltron Gmbh & Co Kg Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner

Also Published As

Publication number Publication date
US20020048737A1 (en) 2002-04-25
ATE256844T1 (de) 2004-01-15
JP2002130667A (ja) 2002-05-09
US6527541B2 (en) 2003-03-04
EP1186831A1 (de) 2002-03-13
DE10113468A1 (de) 2002-03-14
DE50101177D1 (de) 2004-01-29

Similar Documents

Publication Publication Date Title
EP1186831B1 (de) Regeleinrichtung für einen luftzahlgeregelten Brenner
EP2594848B1 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP0030736A2 (de) Regelvorrichtung für die Verbrennungsluftmenge einer Feuerstätte
DE19618573C1 (de) Verfahren und Einrichtung zum Betrieb eines Gasbrenners
WO2003023283A1 (de) Regeleinrichtung für einen brenner und einstellverfahren
DE4420946B4 (de) Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine
EP1331444B1 (de) Verfahren zur Regelung eines Gasbrenners
EP1522790B1 (de) Verfahren zur Regelung eines Gasbrenners, insbesondere bei Heizungsanlagen mit Gebläse
WO2007093312A1 (de) Verfahren zum starten einer feuerungseinrichtung bei unbekannten rahmenbedingungen
EP3690318B1 (de) Verfahren zur regelung eines brenngas-luft-gemisches in einem heizgerät
DE102004036911A1 (de) Betriebsverfahren für eine Feuerungsanlage
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP0833106A2 (de) Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners
WO2002046661A1 (de) Verfahren zum betreiben einer müllverbrennungsanlage
DE19627857C2 (de) Verfahren zum Betrieb eines Gasgebläsebrenners
DE4224893B4 (de) Verfahren zur Kraftstoffzumessung für eine Brennkraftmaschine in Verbindung mit einem Heißstart
EP0615095B1 (de) Brennerregler
DE3830687A1 (de) Kalibrierverfahren fuer einen regler zur regelung des luftverhaeltnisses von gasmotoren
DE4312801A1 (de) Verfahren zur Steuerung eines Gas-Gebläsebrenners
DE3808696A1 (de) Verfahren und system zum einstellen des lambda-wertes
EP1923634B1 (de) Regelung des Brenngas-Luft-Gemisches über die Brenner- oder Flammentemperatur eines Heizgerätes
AT505064B1 (de) Regelung des brenngas-luft-gemisches über die brenner- oder flammentemperatur eines heizgerätes
DE102011111453A1 (de) Verfahren zur Luftzahleinstellung bei einem Heizgerät
DE10300602A1 (de) Verfahren zur Regelung eines Gasbrenners
DE3203675C2 (de) Verfahren zur Regelung des Luftüberschusses an Feuerungen sowie Einrichtung zum Regeln des Luftüberschusses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020905

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50101177

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040714

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *SIEMENS BUILDING TECHNOLOGIES A.G.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50101177

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUERICH, CH

Effective date: 20130506

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130620 AND 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200702

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200813

Year of fee payment: 20

Ref country code: DE

Payment date: 20200921

Year of fee payment: 20

Ref country code: FR

Payment date: 20200720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200727

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210713

Ref country code: DE

Ref legal event code: R071

Ref document number: 50101177

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210713