EP1180137A1 - Verwendung von mikroemulsionen in fermentationsverfahren - Google Patents

Verwendung von mikroemulsionen in fermentationsverfahren

Info

Publication number
EP1180137A1
EP1180137A1 EP00945681A EP00945681A EP1180137A1 EP 1180137 A1 EP1180137 A1 EP 1180137A1 EP 00945681 A EP00945681 A EP 00945681A EP 00945681 A EP00945681 A EP 00945681A EP 1180137 A1 EP1180137 A1 EP 1180137A1
Authority
EP
European Patent Office
Prior art keywords
weight
acid
emulsions
use according
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00945681A
Other languages
English (en)
French (fr)
Inventor
Matthias Wegener
Jean-Pierre Molitor
Christian De Haut
Benoit Abribat
Bent Rogge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1180137A1 publication Critical patent/EP1180137A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • C09K23/018Mixtures of two or more different organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/56Glucosides; Mucilage; Saponins

Definitions

  • the present invention relates to the use of microemulsions in fermentation processes.
  • Microbiological processes are increasingly used in the synthesis of complex natural products or other organic compounds, for example antibiotics. It is a matter conversion under anaerobic or aerobic conditions, in which microorganisms, or parts of microorganisms, but especially bacteria or fungi are involved.
  • Various such expressions such as “bioconversion”, “biotransformation” or “fermentation”, which are not always clearly delimited from one another, are used in the art for such processes.
  • the latter expression is also used in the context of the present application for those processes in which microorganisms, preferably bacteria, are used for the conversion or synthesis of chemical compounds.
  • the reaction medium in which the microbiological conversion takes place is of particular importance for the development and optimization of fermentation processes.
  • the reaction medium usually an aqueous solution or dispersion, influences in particular the yield and efficiency of the process.
  • the microorganisms need carbon, nitrogen and certain trace elements in bound form, for example calcium, iron, phosphorus or zinc, in order to enable successful metabolism to the desired products.
  • a certain, usually narrow temperature and pH range must be maintained.
  • a microbial process for the production of alpha-omega-dicarboxylic acids wherein bacteria from the Candida tropicalis strain convert methyl laurate into the desired dicarboxylic acids.
  • the conversion takes place in an aqueous medium at a pH of 6.0 and a temperature of 30 ° C.
  • the medium also contains ethoxylated sorbitan monooleate as an emulsifier, yeast extract, corn steep liquor and inorganic N and P sources.
  • the methyl laurate is then metered into the medium.
  • the document does not indicate the type of emulsion which forms in the fermenter or in which the methyl laurate is added to the medium.
  • EP 0 535 939 A1 discloses a process for the preparation of omega-9 polyunsaturated fatty acids, suitable microorganisms in an aqueous culture medium in the presence of sugars as energy suppliers and inorganic or organic nitrogen sources, and in the presence of fatty acid methyl esters, the desired polyunsaturated Produce fatty acids.
  • the oxygen content in the medium or the fermentation broth plays a decisive role in fermentation processes.
  • Oxygen plays the role of a substrate in aerobic processes.
  • the decisive factor is whether an adequate oxygen transition from the gas to the liquid phase, which contains the microorganisms, can take place for the respective process.
  • An important parameter is the specific exchange area, which is usually determined indirectly via the oxygen transfer coefficient k (cf. Literature Crueger, chapter 5, page 71 ff).
  • the optimum oxygen input is typically set by stirring the fermentation broth, the oxygen or air being mixed with the liquid and the gas exchange thus taking place at the interfaces.
  • the considerable mechanical energy input from vigorous stirring, as Park et al. perform also destroy parts of the culture, thus reducing the yield of the process.
  • the dead microorganisms are also further broken down themselves and can lead to a poisoning of the culture by the degradation products formed, which makes economic production impossible.
  • Goma and Rols G. Goma, JL Rols, Biotech. Let., Vol 13, No. 1, pages 7 to 12, 1991
  • the use of soybean oil in fermentation processes for the production of antibiotics is an improvement of the oxygen transfer coefficient k, which can lead to an increase in the yield of the overall process with the same energy input (stirring).
  • the present invention was based on the object of improving fermentation processes in such a way that, on the one hand, inexpensive carbon sources can be used and, on the other hand, an adequate supply of the microorganisms with oxygen is ensured without an impermissibly high mechanical load on the microorganisms due to stirring.
  • a way should be found to minimize the mechanical energy input in fermentation processes without reducing the yield. An increase in the yield should preferably be possible despite the reduced energy input.
  • O / W emulsions in fermentation processes, these emulsions containing at least water, emulsifiers and an oil phase and the oil phase vegetable or one or more compounds from groups a) the fatty acid alkyl esters and / or b) the triglycerides Contain origin, the emulsions have a droplet size of 1 to 100 nm.
  • the emulsions according to the invention are distinguished in particular by their fine particle size.
  • microemulsions which are defined as macroscopically homogeneous, optically transparent, often low-viscosity, thermodynamically stable mixtures of two immiscible liquids and at least one nonionic or one ionic surfactant, which preferably contains two hydrophobic residues.
  • the formation of a microemulsion results in a situation in which the oil-water interfacial tension approaches zero.
  • the droplet size of the emulsions used according to the invention is 1 to 100 nm.
  • the droplet size is preferably in the range from 10 to 80 nm, in particular in the range from 10 to 30 nm.
  • the fine particle size of the oil droplets leads to a large surface area between the oil and water phases and thus enables rapid contact between the microorganisms contained in the aqueous phase and the oil phase containing the nutrients.
  • the large surface area also simplifies gas exchange, especially of oxygen and CO.
  • the viscosity of the emulsion and thus of the entire fermentation medium is reduced. As a result, it is therefore possible to significantly reduce the stirring speed of the fermentation medium, thereby making it possible to increase the yield of the fermentation process.
  • the microemulsions are metered into the aqueous fermentation medium which contains the microorganisms and, if appropriate, further auxiliaries and additives.
  • the details of this process, in particular the speed and amount of the emulsion added, result from the type of microorganisms and the fermentation process chosen and can be adapted to the specific circumstances by a person skilled in the art.
  • the microemulsions contain an oil phase which contains compounds from the group of the fatty acid alkyl esters a) or the native vegetable oils and their derivatives b).
  • Groups a) and b) are hydrophobic compounds which are insoluble or only slightly soluble in water and which serve both as nutrients and energy suppliers for the Bacteria used in the fermentation process can serve, but they can also be raw materials (substrates) for the products desired by bioconversion.
  • Suitable methyl esters of group a) are derived in particular from saturated, unsaturated, linear or branched fatty acids with a total of 7 to 23 carbon atoms. These are compounds of the formula (I)
  • R 1 is an alkyl radical having 6 to 22 carbon atoms and R 2 is an alkyl radical having 1 to 4 carbon atoms.
  • Methyl and ethyl radicals are preferred.
  • the use of methyl esters as component a) is particularly preferred.
  • the esters of formula (I) or the methyl esters can be obtained in a conventional manner, for example by transesterification of triglycerides with methanol and subsequent distillation.
  • Suitable fatty acids are capronic, heptanoic, caprylic, pearlagon, capric, undecane, lauric, tridecane, myristic, pentadecane, palmitic, heptadecanoic, stearic, nonadecanoic, arachic and behenic acids .
  • Unsaturated representatives are, for example, lauric acid, myristoleic acid, palmitoleic acid, petroselaidic acid, oleic acid, elaidin acid, ricinoleic acid, linoleic acid, linolaidic acid, linolenic acid, arachidone and erucic acid.
  • methyl esters of these acids are also suitable. It is particularly preferred to use those microemulsions which contain methyl esters from the group consisting of methyl oleate, methyl Pamitat, methyl stearate and / or methyl pelargonate. But it is also possible to "use" methyl esters based on natural fatty acid mixtures, such as those from linseed, coconut, palm, palm kernel, olive, castor, beet, sesame, soybean or sunflower oil (in the case of rapeseed oil and sunflower oil, both new and old varieties) can be obtained.
  • natural fatty acid mixtures such as those from linseed, coconut, palm, palm kernel, olive, castor, beet, sesame, soybean or sunflower oil (in the case of rapeseed oil and sunflower oil, both new and old varieties) can be obtained.
  • Suitable group b) compounds are native oils of vegetable origin. These are essentially triglyceride mixtures, with the glycerin being completely esterified with longer-chain fatty acids. Particularly suitable vegetable oils are selected from the group of peanut, coconut, linseed, palm, olive, palm kernel, castor oil, rapeseed, sesame, soybean and sunflower oil. Peanut oil contains on average (based on fatty acid) 54% by weight oleic acid, 24% by weight
  • Linoleic acid 1st% by weight linolenic acid, 1% by weight arachic acid, 10% by weight palmitic acid, and 4% by weight stearic acid.
  • the melting point is 2 to 3 ° C.
  • Linseed oil typically contains 5% by weight palmitin, 4% by weight stearin, 22% by weight oil, 17
  • % By weight of linoleic and 52% by weight of linolenic acid.
  • the iodine number is in the range from 155 to 205,
  • the saponification number is 188 to 196 and the melting point is about - 20 ° C.
  • Coconut oil contains about 0.2 to 1% by weight of hexane, 5 to 8% by weight of octane, 6 to 9 of fatty acids
  • the iodine number is in the range of 7.5 to 9.5, the saponification number is 0.88 to 0.90.
  • the melting point is 20 to 23 ° C.
  • Olive oil mainly contains oleic acid (see clarchem . sublimel. Chem., 39, 112 bis
  • Palm oil contains about 2% by weight myristine, 42% by weight as fatty acid components
  • Palmitic 5% by weight stearic, 41% by weight oleic, 10% by weight linoleic acid. Palm kernel oil is typically composed in relation to the fatty acid spectrum as follows: 9% by weight
  • Capron / Capryl / Caprin 50% by weight laurin, 15% by weight myristine, 7% by weight palmitin, 2
  • % By weight of stearic acid, 15% by weight of oleic acid and 1% by weight of linoleic acid.
  • Rapeseed oil typically contains about 48% by weight erucic acid as a fatty acid component, 15
  • oleic acid 14% by weight of linoleic acid, 8% by weight of linolenic acid, 5% by weight of ionic acid, 3
  • Fatty acid proportions here are erucic acid 0.5% by weight, oleic acid 63% by weight, linoleic acid 20% by weight.
  • Linolenic acid 9% by weight
  • Icosenoic acid 1% by weight
  • Palmitic acid 4% by weight
  • Castor oil consists of 80 to 85% by weight of the glyceride of ricinoleic acid, in addition about 7% by weight of glycerides is oil, 3% by weight of glycerides is linoleic and about 2% by weight of glycerides the palmitic and stearic acid contain.
  • Soybean oil contains 55 to 65% by weight of the total fatty acids of polyunsaturated acids, especially linoleic and linolenic acid.
  • the situation is similar with sunflower oil, whose typical fatty acid spectrum, based on total fatty acid, looks as follows: approx. 1
  • Linoleic acid All of the above information about the fatty acid content in the triglycerides is known to depend on the quality of the raw materials and can therefore fluctuate in number.
  • emulsifiers or emulsifier systems used.
  • Nonionic emulsifiers in particular ethoxylated fatty alcohols and fatty acids, are preferably used as emulsifiers.
  • R 3 is a linear or branched, saturated or unsaturated alkyl radical having 6 to 24 carbon atoms and n is a number from 1 to 50. Those compounds of the formula (II) in which n represents a number from 1 to 35 and in particular from 1 to 15 are particularly preferred. Those compounds of the formula (II) in which R 3 represents an alkyl radical having 16 to 22 carbon atoms are also particularly preferred.
  • the compounds of the formula (II) are obtained in a manner known per se by reacting fatty alcohols with ethylene oxide under pressure, if appropriate in the presence of acidic or basic catalysts.
  • Typical examples are capronic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolenyl alcohol, linolenyl alcohol, linolenyl alcohol, linoleyl alcohol and their technical mixtures, which are obtained, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • fatty alcohols with 12 to 18 carbon atoms such as, for example, coconut, palm, palm kernel or tallow fatty alcohol, are preferred.
  • R 4 is a linear or branched alkyl radical having 12 to 22 carbon atoms and m is a number from 5 to 50 and preferably 15 to 35.
  • Typical examples are adducts of 20 to 30 moles of ethylene oxide with lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachic acid, and gadolic acid mixtures, behenic acid, behenic acid, behenic acid , which occur, for example, in the pressure splitting of natural fats and oils or in the reduction of aldehydes from Roelen's oxosynthesis. Addition products of 20 to 30 moles of ethylene oxide with fatty acids having 16 to 18 carbon atoms are preferably used.
  • Partial glycerides which are also suitable as emulsifiers, preferably follow the formula (IV),
  • CO R 5 is a linear or branched acyl radical having 12 to 22 carbon atoms and x, y and z in total is 0 or is a number from 1 to 50, preferably 15 to 35.
  • Typical examples of partial glycerides suitable for the purposes of the invention are lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride,
  • Monoglycerides or technical mono / diglyceride mixtures with a predominant monoglyceride content of the formula (IV) are preferably used, in which CO R 5 represents a linear acyl radical having 16 to 18 carbon atoms.
  • Other suitable emulsifiers are, for example, nonionic surfactants from one of the following groups:
  • (V) polyol and especially polyglycerol esters such as Polyglycerol polyricinoleate or polyglycerol poly-12-hydroxystearate. Mixtures of compounds from several of these classes of substances are also suitable;
  • VE vascular endothelial fatty acids
  • ricinoleic acid and 12-hydroxystearic acid and glycerol polyglycerol
  • pentaerythritol dipentaerythritol
  • sugar alcohols eg sorbitol
  • polyglucosides eg cellulose
  • the adducts of ethylene oxide and / or of propylene oxide with glycerol monoesters and diesters and sorbitan monoesters and diesters of fatty acids or with castor oil are known, commercially available products Ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out corresponds.
  • alkylglycosides are known nonionic surfactants which follow the formula (V) - R ° O- [G] p (V)
  • R 6 represents an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G represents a sugar radical having 5 or 6 carbon atoms
  • p represents numbers from 1 to 10.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and or alkenyl oligoglucosides.
  • the index number p in the general formula (V) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R ° can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capro alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 6 can also differ from primary alcohols with 12 to 22, preferably 12 to 14 carbon atoms , derive. Typical examples are lauryl alcohol, Myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol.
  • Oleyl alcohol Elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, which can be obtained as described above.
  • Alkyl oligoglucosides based on hardened Ci 2 / ⁇ 4 coco alcohol with a DP of 1 to 3 are preferred. If alkyl glycosides of the formula (V) are used as emulsifiers, it may be advantageous to add small amounts of polyhydroxycarboxylic acids, preferably citric acid, as formulation auxiliaries use. The polyhydroxy acids are then usually used in amounts of 0.1 to 3.0% by weight, preferably in amounts of 0.1 to 1.0% by weight.
  • the microemulsions used according to the invention preferably contain from 20 to 90% by weight of water, in particular from 30 to 80% by weight and very particularly preferably from 30 to 60% by weight. The remainder to 100% by weight is accounted for by the oil phase as well as emulsifiers and possibly other auxiliaries and additives.
  • the oil phase itself is preferably present in amounts of 10 to 80% by weight, in particular 20 to 70% by weight and in particular 25 to 55% by weight.
  • the oil phase preferably contains only components a) or b) or mixtures of these components. It is particularly preferred to use emulsions which contain the oil and water phase in a weight ratio of 1: 1.
  • the emulsifiers or emulsifier systems are preferably present in amounts of 10 to 50% by weight, in particular in amounts of 15 to 45% by weight and particularly preferably in amounts of 20 to 40% by weight.
  • microemulsions described can be used according to the invention in all kinds of fermentation processes. All of the process designs known to the person skilled in the art, for example batch or fed batch and continuous fermentation, can be used here. All fermenter systems known to the person skilled in the art can also be used. For details, see Crueger, pages 50 to 70.
  • the use of the microemulsions is also not limited to specific microorganisms; rather, the emulsions can be used to produce or convert all compounds known to those skilled in the art by fermentation. In addition to the classic fermentation processes, which are mainly used for the synthesis of antibiotics (see loc.
  • the described emulsions are also suitable for use in - microbial transformations ("bioconversion"), e.g. the transformation of steroids and Sterols, of antibiotics and pesticides or the production of vitamins (see Crueger. Pages 254 to 273).
  • bioconversion e.g. the transformation of steroids and Sterols
  • vitamins see Crueger. Pages 254 to 273.
  • use in fermentation processes for the production of antibiotics for example chefalosporins, tylosin or erythromycin, is preferred.
  • the microemulsions of the aqueous fermentation broth which contains the microorganisms and the nitrogen source and trace elements and optionally other auxiliaries, in particular defoamers, are metered in in a suitable manner.
  • suitable nitrogen sources are: peptone, yeast or malt extract, corn steep liquor, urea or lecithins.
  • the trace elements can be present in the form of inorganic salts, for example sodium or potassium nitrate, ammonium nitrate, ammonium sulfate, iron sulfate etc. It can also be advantageous to add further additives, such as defoamers or nitrogen sources, to the microemulsions themselves.
  • microemulsions were made by mixing the starting materials.
  • the compositions are listed in Table 1.
  • the droplet size was measured with a Malvem Mastersizer 2000.
  • the emulsions are suitable, for example, as the sole nutrient source for fermentation processes and can be added directly to the aqueous fermentation broth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Fats And Perfumes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Verwendung von O/W-Emulsionen, enthaltend mindestens Wasser, Emulgatoren sowie eine Ölphase, die eine oder mehrere Verbindungen enthält, ausgewählt aus den Gruppen a) der Fettsäurealkylester und/oder b) der Triglyceride pflanzlichen Ursprungs, wobei die Emulsionen eine mittlere Tröpfchengrösse im Bereich von 1 bis 100 nm aufweisen, in Fermentationsverfahren.

Description

Verwendung von Mikroemulsionen in Fermentationsverfahren
Die vorliegende Erfindung betrifft die Verwendung von Mikroemulsionen in Fermentationsverfahren.
Bei der Synthese komplexer Naturstoffe oder sonstiger organischer Verbindungen, beispielsweise Antibiotika, werden zunehmend mikrobiologische Verfahren eingesetzt. Dabei handelt es sich um eine Stoffumwandlung unter anaeroben oder aeroben Bedingungen, bei der Mikroorganismen, oder Teile von Mikroorganismen, insbesondere aber Bakterien oder Pilze beteiligt sind. Für derartige Verfahren werden in der Fachwelt verschiedene, nicht immer klar voneinander abgegrenzte Ausdrücke, wie "Bioconversion", "Biotransformation" oder "Fermentation" verwendet. Der letztere Ausdruck wird auch im Rahmen der vorliegenden Anmeldung für solche Verfahren verwendet, bei denen Mikroorganismen, vorzugsweise Bakterien, zur Umwandlung bzw. Synthese von chemischen Verbindungen verwendet werden.
Für die Entwicklung und Optimierung von Fermentationsprozessen ist insbesondere das Reaktionsmedium, in dem die mikrobiologische Umwandlung stattfindet, von Bedeutung. Das Reaktionsmedium, in aller Regel eine wäßrige Lösung oder Dispersion, beeinflußt insbesondere die Ausbeute und Effizienz des Verfahrens. Die Mikroorganismen benötigen als Nährstoffe Kohlenstoff, Stickstoff und bestimmte Spurenelemente in gebundener Form, z.B. Calcium, Eisen, Phosphor oder Zink, um eine erfolgreiche Metabolisierung zu den gewünschten Produkten möglich zu machen. Weiterhin muß regelmäßig ein bestimmter, meistens enger Temperatur- und pH-Bereich eingehalten werden. Zu weiteren Einzelheiten sei hier auf das Lehrbuch von W. Crueger/A. Crueger, Biotechnologie - Lehrbuch der angewandten Mikrobiologie, 2. Auflage 1984, R. Oldenbourg Verlag, verwiesen. Insbesondere Kapitel 5 dieses Werkes beschäftigt sich mit den Grundlagen der Fermentationstechnik. Diese Literaturstelle gehört daher auch ausdrücklich zur Offenbarung der vorliegenden Anmeldung. Als Nährstoffe für die Mikroorganismen werden neben energiereichen Zuckern und deren Derivaten in vielen Verfahren zusätzlich natürliche Fette und Öle, sowie Derivate dieser Stoffklassen, wie Glycerin, Glyceride, Fettsäuren oder Fettsäureester eingesetzt. Selbstverständlich dürfen die Kulturmedien keine Inhaltsstoffe aufweisen, die die Metabolisierung der Mikroorganismen negativ beeinflussen können.
Aus der DE 37 38 812 AI ist beispielsweise ein mikrobielles Verfahren zur Herstellung von alpha-omega-Dicarbonsäuren bekannt, wobei Bakterien des Stamms Candida tropicalis Methyllaurat in die gewünschten Dicarbonsäuren umwandeln. Die Umwandlung findet in einem wäßrigen Medium bei einem pH-Wert von 6,0 und einer Temperatur von 30 °C statt. Das Medium enthält, neben den Mikroorganismen als Energielieferant Glucose, weiterhin als Emulgator ethoxyliertes Sorbitanmonooleat, Hefeextrakt, Maisquellwasser sowie anorganische N- und P-Quellen. Dem Medium wird dann das Methyllaurat zudosiert. Der Schrift ist kein Hinweis auf den Emulsionstyp zu entnehmen, der sich im Fermenter ausbildet oder in der das Methyllaurat dem Medium zudosiert wird. Aus der EP 0 535 939 AI ist ein Verfahren zur Herstellung von omega-9-mehrfach ungesättigten Fettsäuren bekannt, wobei in einem wäßrigen Kulturmedium geeignete Mikroorganismen in Gegenwart von Zuckern als Energielieferanten und anorganischen oder organischen Stickstoffquellen, sowie in Gegenwart von Fettsäuremethylestern die gewünschten mehrfach ungesättigten Fettsäuren produzieren.
Es sind aber auch Verfahren bekannt, wo nur Fettstoffe der oben bezeichneten Art als Energielieferanten verwendet werden. Dies ist besonders von wirtschaftlichem Interesse, da derartige Fettstoffe in der Regel preiswerter sind als Zucker, Stärke und ähnliche Verbindungen. Park et al. beschreiben (Park et al., Journal of Fermentation and Bioengineering, Vol. 82, No. 2, 183-186, 1996) einen Fermentationsprozess zur Herstellung von Tylosin, bei dem Mikroorganismen des Stammes Streptomyces fradiae in einem wäßrigen Medium verwendet werden, daß als einzige Kohlenstoffquelle Rapsöl in Ausgangsmengen von etwa 60 g/1 enthielt.
Bei Fermentationsverfahren spielt außerdem der Sauerstoffgehalt im Medium bzw. der Fermentationsbrühe, eine entscheidende Rolle. Dabei kommt dem Sauerstoff bei aeroben Prozessen die Rolle eines Substrates zu. Entscheidend ist, ob ein für das jeweilige Verfahren ausreichender Sauerstoffübergang von der Gas- in die Flüssigphase, die die Mikroorganismen enthält, stattfinden kann. Ein wichtiger Parameter stellt die spezifische Ausstauschfläche dar, die in der Regel indirekt über den Sauerstoffübergangskoeffizienten k bestimmt wird (vergl. Literaturstelle Crueger, Kapitel 5, Seite 71 ff). Die Einstellung des optimalen Sauerstoffeintrags erfolgt typischerweise durch Rühren der Fermentationsbrühe, wobei der Sauerstoff bzw. die Luft mit der Flüssigkeit vermischt wird und so an den Grenzflächen der Gasaustausch stattfindet. Allerdings kann der erhebliche mechanische Energieeintrag durch starkes Rühren, wie Park et al. ausführen, auch Teile der Kultur zerstören, und so die Ausbeute des Verfahrens verringern. Die abgestorbenen Mikroorganismen werden außerdem selbst weiter abgebaut und können durch die gebildeten Abbauprodukte zu einer Vergiftung der Kultur führen, die eine wirtschaftliche Produktion unmöglich macht. Aus der Arbeit von Goma und Rols (G. Goma, J.L. Rols, Biotech. Let., Vol 13, No. 1, Seiten 7 bis 12, 1991) ist bekannt daß die Verwendung von Sojaöl in Fermentationsverfahren zur Herstellung von Antibiotika zu einer Verbesserung des Sauerstoffübergangskoeffizienten k führt, was bei gleichem Energieeintrag (Rühren) zu einem Anstieg der Ausbeute des Gesamtverfahrens führen kann.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, Fermentationsverfahren so zu verbessern, daß einerseits preiswerte Kohlenstoffquellen eingesetzt werden können und andererseits eine ausreichende Versorgung der Mikroorganismen mit Sauerstoff gewährleistet ist, ohne daß eine unzulässig hohe mechanische Belastung der Mikroorganismen durch Rühren auftritt. Es sollte eine Weg gefunden werden, den mechanischen Energieeintrag bei Fermentationsverfahren zu minimieren, ohne daß es zu einer Verringerung der Ausbeute kommt. Vorzugsweise soll eine Erhöhung der Ausbeute trotz verringertem Energieeintrag möglich sein.
Es wurde gefunden, daß die Verwendung von speziellen, feinteiligen Öl-in- Wasser (O/W) Emulsionen die obige Aufgabe löst.
In einer ersten Ausführungsform wird die Verwendung von O/W-Emulsionen in Fermentationsverfahren beansprucht, wobei diese Emulsionen mindestens Wasser, Emulgatoren sowie eine Ölphase enthalten und die Ölphase eine oder mehrere Verbindungen aus den Gruppen a) der Fettsäurealkylester und/oder b) der Triglyceride pflanzlichen Ursprungs enthalten, wobei die Emulsionen eine Tröpfchengröße von 1 bis 100 nm aufweisen. Die erfindungsgemäßen Emulsionen zeichnen sich insbesondere durch ihre Feinteiligkeit aus. Es handelt sich dabei um sogenannte Mikroemulsionen, die definiert sind als makroskopisch homogene, optisch transparente, häufig niedrigviskose, thermodynamisch stabile Mischungen aus zwei miteinander nicht mischbaren Flüssigkeiten und mindestens einem nichtionischen oder einem ionischen Tensid, das vorzugsweise zwei hydrophobe Reste enthält. Die Bildung einer Mikroemulsion bedingt eine Situation, bei der die Öl-Wasser-Grenzflächenspannung sich dem Wert Null annähert. In der Regel ist es notwendig, zusätzlich zu mindestens einem nichtionischen Tensid weitere Cotenside zuzusetzen, um diese spezielle Emulsionsform zu erreichen. Vergleiche hierzu die Literaturstelle "Introduction to Colloid and Surface Chemistry, DJ. Shaw, Butteπvorth, 1992, Seiten 269 und 270". Die Tröpfchengröße der erfindungsgemäß verwendeten Emulsionen beträgt 1 bis 100 nm. Vorzugsweise liegt die Tröpfchengröße im Bereich von 10 bis 80 nm, insbesondere im Bereich von 10 bis 30 nm. Die Feinteiligkeit der Öltröpfchen führt zu einer großen Oberfläche zwischen Öl- und Wasserphase und ermöglicht so einen schnellen Kontakt zwischen den in der wäßrigen Phase enthaltenen Mikroorganismen und der die Nährstoffe enthaltenden Ölphase. Durch die große Oberfläche wird auch der Gasaustausch, insbesondere von Sauerstoff und CO , vereinfacht. Zusätzlich verringert sich die Viskosität der Emulsion und somit des gesamten Fermentationsmediums. In der Folge ist es daher möglich die Rührgeschwindigkeit des Fermentationsmediums deutlich zu verringern wodurch eine Erhöhung der Ausbeute des Fermentationsprozeß ermöglicht wird.
Die Mikroemulsionen werden erfindungsgemäß dem wäßrigen Fermentationsmedium, welches die Mikroorganismen sowie ggf. weitere Hilfs- und Zusatzstoffe enthält, zudosiert. Die Einzelheiten dieses Verfahrens, insbesondere die Geschwindigkeit und Menge der zudosierten Emulsion, ergeben sich aus der Art der Mikroorganismen und des gewählten Fermentationsverfahrens und können vom Fachmann an die spezifischen Gegebenheiten angepaßt werden.
Die Mikroemulsionen enthalten, neben Wasser, eine Ölphase, die Verbindungen aus der Gruppe der Fettsäurealkylester a) oder der nativen pflanzlichen Öle und deren Derivate b) enthält. Es handelt sich bei den Gruppen a) und b) um hydrophobe, in Wasser nicht oder nur sehr gering lösliche Verbindungen, die sowohl als Nährstoffe, also Energielieferanten, für die im Fermentationsprozeß eingesetzten Bakterien dienen können, die aber auch Ausgangsstoffe (Substrate) für die durch Biokonversion gewünschten Produkte darstellen können.
Geeignete Methylester der Gruppe a) leiten sich insbesondere ab von gesättigten, ungesättigten, linearen oder verzweigten Fettsäuren mit insgesamt 7 bis 23 Kohlenstoffatomen. Es handelt sich also um Verbindungen der Formel (I)
R'-COO-R2 (I)
wobei R1 für einen Alkylrest mit 6 bis 22 C-Atomen steht und R2 ein Alkylrest mit 1 bis 4 C- Atomen ist. Bevorzugt sind Methyl- und Ethylreste. Besonders bevorzugt ist die Verwendung von Methylestem als Komponente a). Die Ester der Formel (I) bzw. die Methylester können auf übliche Weise erhalten werden, z.B. durch Umesterung von Triglyceriden mit Methanol und anschließender Destillation. Geeignete Fettsäuren sind die Capron-, Heptan-, Capryl-, Perlagon-, Caprin-, Undecan-, Laurin-, Tridecan-, Myristin-, Pentadecan-, Palmitin-, Heptadecan-, Stearin-, Nonadecan-, Arachin- und Behensäure. Ungesättigte Vertreter sind beispielsweise Lauroelein-, Myristolein-, Palmitolein-, Petroselaidin-, Öl-, Elaidin-, Ricinol-, Linol-, Linolaidin-, Linolen- Gadolein-, Arachidon und Erucasäure. Auch Mischungen der Methylester dieser Säuren sind geeignet. Besonders bevorzugt ist die Verwendung solcher Mikroemulsionen, die Methylester aus der Gruppe Methyloleat, Methylpamitat, Methylstearat und/oder Methylpelargonat enthalten. Es können aber auch Methylester auf Basis natürlicher Fettsäuremischungen "eingesetzt werden", wie sie beispielsweise aus Lein-, Kokos-, Palm-, Palmkern-, Oliven- , Ricinus-, Rüb-, Sesam-, Soja- oder Sonnenblumenöl (bei Raps- und Sonnenblumenöl jeweils neue und alte Züchtungen) erhalten werden.
Geeignete Verbindungen der Gruppe b) sind native Öle pflanzlichen Ursprungs. Es handelt sich dabei im Wesentlichen um Triglyceridmischungen, wobei das Glycerin mit längerkettigen Fettsäuren jeweils vollständig verestert ist. Besonders geeignete pflanzliche Öle sind ausgewählt aus der Gruppe Erdnuß-, Kokos-, Lein-, Palm-, Oliven-, Palmkern-, Ricinus-, Raps-, Sesam-, Soja- und Sonnenblumenöl. Erdnußöl enthält durchschnittlich (bezogen auf Fettsäure) 54 Gew.-% Ölsäure, 24 Gew -
Linolsäure, 1. Gew.-% Linolensäure, 1 Gew.-% Arachinsäure, 10 Gew.-% Palmitinsäure, sowie 4 Gew.-% Stearinsäure. Der Schmelzpunkt beträgt 2 bis 3 °C.
Leinöl enthält typischerweise 5 Gew.-% Palmitin-, 4 Gew.-% Stearin-, 22 Gew.-% Öl-, 17
Gew.-% Linol- und 52 Gew.-% Linolensäure. Die Iodzahl liegt im Bereich von 155 bis 205,
Die Verseifungszahl ist 188 bis 196 und der Schmelzpunkt liegt bei etwa - 20 °C.
Kokosöl enthält an Fettsäuren etwa 0,2 bis 1 Gew.-% Hexan-, 5 bis 8 Gew.-% Octan-, 6 bis 9
Gew.-% Decan-, 45 bis 51 Gew.-% Laurin-, 16 bis 19 Gew.-% Myristin-, 9 bis 11 Gew.-%
Palmitin-, 2 bis 3 Gew.-% Stearin-, weniger als 0,5 Gew.-% Behen-, 8 bis 10 Gew.-% Öl- und bis 1 Gew.-% Linolsäure. Die Iodzahl liegt im Bereich von 7,5 bis 9,5 , die Verseifungszahl liegt bei 0,88 bis 0,90. Der Schmelzpunkt liegt bei 20 bis 23 °C.
Olivenöl enthält überwiegend Ölsäure (vergl. Lebensmittelchem. Gerichtl. Chem., 39, 112 bis
114, 1985). Palmöl enthält als Fettsäurekomponenten etwa 2 Gew.-% Myristin-, 42 Gew.-%
Palmitin-, 5 Gew.-% Stearin-, 41 Gew.-% Öl-, 10 Gew.-% Linolsäure. Palmkernöl ist typischerweise in Bezug auf das Fettsäurespektrum wie folgt zusammengesetzt: 9 Gew.-%
Capron/Capryl/Caprin-, 50 Gew.-% Laurin-, 15 Gew.-% Myristin-, 7 Gew.-% Palmitin-, 2
Gew.-% Stearin-, 15 Gew.-% Öl- und 1 Gew.-% Linolsäure.
Rapsöl enthält als Fettsäurekomponenten typischerweise etwa 48 Gew.-% Erucasäure, 15
Gew.-% Ölsäure, 14 Gew.-% Linolsäure, 8 Gew.-% Linolensäure, 5 Gew.-% Icosensäure, 3
Gew.-% Palmitinsäure, 2 Gew.-% Hexadecensäure und 1 Gew.-% Docosadiensäure. Rapsöl aus neuer Züchtung ist bezüglich der ungesättigten Anteile angereichert. Typische
Fettsäureanteile sind hier Erucasäure 0,5 Gew.-%, Ölsäure 63 Gew.-%, Linolsäure 20 Gew.-
%, Linolensäure 9 Gew.-%, Icosensäure 1 Gew.-%, Palmitinsäure 4 Gew.-%, Hexadecensäure
2 Gew.-% und Docosadiensäure 1 Gew.-%.
Ricinusöl besteht zu 80 bis 85 Gew.-% aus dem Glycerid der Ricinolsäure, daneben sind zu etwa 7 Gew.-% Glyceride der Öl-, zu 3 Gew.-% Glyceride der Linol- und zu etwa 2 Gew.-% die Glyceride der Palmitin- und der Stearinsäure enthalten.
Sojaöl enthält zu 55 bis 65 Gew.-% der Gesamtfettsäuren mehrfach ungesättigte Säuren, insbesondere Linol- und Linolensäure. Ähnlich ist die Situation beim Sonnenblumenöl , dessen typisches Fettsäurespektrum, bezogen auf Gesamtfettsäure wie folgt aussieht: ca. 1
Gew.-% Myristin-, 3 bis 10 Gew.-% Palmitin-, 14 bis 65 Gew.-% Öl- und 20 bis 75 Gew.-%
Linolsäure. Alle obigen Angaben über den Fettsäureanteile in den Triglyceriden sind bekanntermaßen abhängig von der Qualität der Rohstoffe und können daher zahlenmäßig schwanken. Besonders bevorzugt sind solche Mikroemulsionen, die Nährstoffe der Gruppe b), ausgewählt aus der Gruppe Kokosöl, Sonnenblumenöl und/oder Rapsöl enthalten.
Wichtige Bestandteile der erfindungsgemäß verwendeten Mikroemulsionen sind die eingesetzten Emulgatoren bzw. Emulgatorensysteme. Vorzugsweise werden als Emulgatoren nichtionische Emulgatoren, insbesondere ethoxylierte Fettalkohole und Fettsäuren eingesetzt.
Fettalkoholethoxylate im Sinne der erfindungsgemäßen Lehre folgen der allgemeinen Formel (II)
R3-O-(CH2CH2O)π-H (II)
wobei R3 für einen linearen oder verzweigten, gesättigten oder ungesättigten Alkylrest mit 6 bis 24 Kohlenstoffatomen steht und n eine Zahl von 1 bis 50 bedeutet. Besonders bevorzugt sind solche Verbindungen der Formel (II), in der n für eine Zahl von 1 bis 35 und insbesondere von 1 bis 15 steht. Besonders bevorzugt sind weiterhin solche Verbindungen der Formel (II), in der R3 für einen Alkylrest mit 16 bis 22 Kohlenstoffatomen steht.
Die Verbindungen der Formel (II) werden in an sich bekannter Weise durch Umsetzung von Fettalkoholen mit Ethylenoxid unter Druck, ggf. in Gegenwart saurer oder basischer Katalysatoren erhalten. Typische Beispiele sind Capronalkohol, Caprylalkohol, 2- Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalko- hol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestem auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind technische .Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkem- oder Taigfettalkohol. Fettsäureethoxylate, die ebenfalls als Emulgator oder Emulgatorkomponente in Betracht kommen, folgen vorzugsweise der Formel (III),
R4CO2(CH2CH2O)mH (III)
in der R4 für einen linearen oder verzweigten Alkylrest mit 12 bis 22 Kohlenstoffatomen und m für Zahlen von 5 bis 50 und vorzugsweise 15 bis 35 steht. Typische Beispiele sind Anlagerungsprodukte von 20 bis 30 Mol Ethylenoxid an Laurinsäure, Isotridecansäure, My- ristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen oder bei der Reduktion von Aldehyden aus der Roelen'schen Oxosynthese anfallen. Vorzugsweise werden Anlagerungsprodukte von 20 bis 30 Mol Ethylenoxid an Fettsäuren mit 16 bis 18 Kohlenstoffatomen eingesetzt.
Partialglyceride, die ebenfalls als Emulgatoren in Betracht kommen, folgen vorzugsweise der Formel (IV),
CH2O(CH2CH2O)x-COR5
I CH-O(CH2CH2O)yH (IV)
CH2O(CH2CH2O)2-H
in der CO R5 für einen linearen oder verzweigten Acylrest mit 12 bis 22 Kohlenstoffatomen und x, y und z in Summe für 0 oder für Zahlen von 1 bis 50, vorzugsweise 15 bis 35 steht. Typische Beispiele für im Sinne der Erfindung geeignete Partialglyceride sind Laurin- säuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid,
Stearinsäuremonoglycerid, Isostearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Addukte mit 5 bis 50 und vorzugsweise 20 bis 30 Mol Ethylenoxid. Vorzugsweise werden Monoglyceride bzw. technische Mono/Diglyceridgemische mit überwiegendem Monoglyceridanteil der Formel (IV) eingesetzt, in der CO R5 für einen linearen Acylrest mit 16 bis 18 Kohlenstoffatomen steht. Als weitere geeignete Emulgatoren kommen beispielsweise nichtionogene Tenside aus einer der folgenden_Gruppen in Frage:
(I) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen;
(II) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(IH) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga;
(IV) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(V) Polyol- und insbesondere Polyglycerinester wie z.B. Polyglycerinpolyricinoleat oder Polyglyce-rinpoly-12-hydroxystearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(VI) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(VE) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C 12/22- Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit) sowie Polyglucoside (z.B. Cellulose);
(VÜJ) Wollwachsalkohole;
(IX) Polyalkylenglycole.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht.
Besonders bevorzugt ist die Mitverwendung von Emulgatoren der Gruppe (III), also der Alkylglycoside. Alkyl- und Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (V) folgen, - R°O-[G]p (V)
in der R6 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B.Salka in Cosm. Toil. 108, 89 (1993) sowie J.Kahre et al. in SÖFW- Journal Heft 8, 598 (1995) verwiesen.
Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (V) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R° kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-Cιo (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C ι8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% Ci2-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/π-Oxo-alkohole (DP = 1 bis 3), Der Alkyl- bzw. Alkenylrest R6 kann sich femer auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen, ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol. OleylalkohoL Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci2/ι4-Kokosalkohol mit einem DP von 1 bis 3. Werden Alkylglycoside der Formel (V) als Emulgatoren verwendet, kann es vorteilhaft sein, geringe Mengen an Polyhydroxycarbonsäuren, vorzugsweise Zitronensäure, als Formulierungshilfsstoffe mit zu verwenden. Üblicherweise werde dann die Polyhydroxysäuren in Mengen von 0,1 bis 3,0 Gew.-% verwendet, vorzugsweise in Mengen von 0,1 bis 1,0 Gew.-%.
Die erfmdungsgemäß verwendeten Mikroemulsionen enthalten vorzugsweise von 20 bis 90 Gew.-% Wasser, insbesondere von 30 bis 80 Gew.-% und ganz besonders bevorzugt von 30 bis 60 Gew.-%. Der Rest auf 100 Gew.-% entfällt auf die Ölphase sowie Emulgatoren und ggf. weitere Hilfs- und Zusatzstoffe. Die Ölphase selbst ist vorzugsweise in Mengen von 10 bis 80 Gew.-%, insbesondere von 20 bis 70 Gew.-% und insbesondere von 25 bis 55 Gew.-% enthalten. Dabei enthält die Ölphase vorzugsweise ausschließlich die Komponenten a) oder b) bzw. Mischungen dieser Komponenten. Besonders bevorzugt ist die Verwendung solcher Emulsionen, die Öl- und Wasserphase im Gewichtsverhältnis von 1 : 1 enthalten. Die Emulgatoren, bzw. Emulgatorensysteme sind vorzugsweise in Mengen von 10 bis 50 Gew.- %, insbesondere in Mengen von 15 bis 45 Gew.-% und besonders bevorzugt in Mengen von 20 bis 40 Gew.-% enthalten.
Die beschriebenen Mikroemulsionen können erfindungsgemäß in Fermentationsprozessen aller Art eingesetzt werden. Dabei können alle dem Fachmann bekannten Verfahrensaus gestaltungen, z.B. Batch- oder Fed-Batch sowie kontinuierliche Fermentation verwendet werden. Auch sind alle dem Fachmann bekannten Fermentersysteme einsetzbar. Zu den Einzelheiten siehe Crueger, Seiten 50 bis 70. Die Verwendung der Mikroemulsionen ist auch nicht auf bestimmte Mikroorganismen begrenzt, vielmehr lassen sich die Emulsionen zur Herstellung oder Umwandlung aller dem Fachmann durch Fermentation bekannten Verbindungen einsetzten. Neben den klassischen Fermentationsverfahren, die überwiegend zu Synthese von Antibiotika eingesetzt werden, (vergl. a.a.O. Crueger, Seiten 197 bis 242) eignen sich die beschriebenen Emulsionen aber auch zum Einsatz bei - mikrobiellen Transformationen ("Bioconversion"), z.B. der Transformation von Steroiden und Sterinen, von Antibiotika und Pestiziden oder der Herstellung von Vitaminen (vergl. Crueger. Seiten 254 bis 273). - Bevorzugt ist aber die Verwendung in Fermentationsprozessen zur Herstellung von Antibiotika, beispielsweise Chephalosporinen, Tylosin oder Erythromycin.
In der Regel werden die Mikroemulsionen der wäßrigen Fermentationsbrühe, welche die Mikroorganismen sowie die Stickstoffquelle und Spurenelemente und ggf. weitere Hilfsstoffe, insbesondere Entschäumer, enthält, in geeigneter Weise zudosiert. Als Stickstoffquellen kommen beispielsweise in Betracht: Pepton, Hefe- oder Malzextrakt, Maisquellwasser, Harnstoff oder Lecithine. Die Spurenelemente können in Form anorganischer Salze anwesend sein, beispielsweise Natrium- oder Kaliumnitrat, Ammoniumnitrat, Ammoniumsulfat, Eisensulfat etc. Es kann auch vorteilhaft sein, den Mikroemulsionen selbst weitere Zusatzstoffe, wie Entschäumer oder Stickstoffquellen zuzusetzen.
Beispiele
Es wurden verschiedene Mikroemulsionen durch Mischen der Ausgangsstoffe hergestellt. Die Zusammensetzungen sind in Tabelle 1 aufgeführt. Die Tröpfchengröße wurde mit einem Malvem Mastersizer 2000 gemessen. Die Emulsionen eignen sich beispielsweise als alleinige Nährstoffquelle für Fermentationsprozessen und können direkt der wäßrigen Fermentationsbrühe zugesetzt werden.
Tabelle la

Claims

Patentansprüche
1. Verwendung von O/W-Emulsionen. enthaltend mindesten Wasser, Emulgatoren sowie eine Ölphase, die eine oder mehrere Verbindungen, ausgewählt aus den Gruppen
a) der Fettsäurealkylester und oder b) der Triglyceride pflanzlichen Ursprungs
enthält, dadurch gekennzeichnet, daß die Emulsion eine Tröpfchengröße im Bereich von 1 bis 100 nm aufweist, in Fermentationsverfahren.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß als Komponente a) Fettsäuremethylester verwendet werden.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die eine mittlere Tröpfchengröße im Bereich von 10 bis 80 nm, vorzugsweise 10 bis 50 nm aufweisen.
4. Verwendung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die Wasser in Mengen von 20 bis 90 Gew.-%, vorzugsweise von 30 bis 80 Gew.-% und insbesondere von 30 bis 60 Gew.-% enthalten.
5. Verwendung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Emulsionen verwendet werden, welche die Ölphase in Mengen von 10 bis 80 Gew.-%, vorzugsweise 20 bis 70 Gew.-% und insbesondere von 25 bis 55 Gew.-% enthalten.
6. Verwendung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die in der Ölphase Fettsäuremethylester der Formel (I) enthalten, R'-COO-R2 (I)
wobei R1 für eine Alkylrest mit 6 bis 22 C-Atomen steht und R2 einen Methylrest bedeutet.
7. Verwendung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die in der Ölphase Methyloleat, Methylpalmitat, Methylstearat und/oder Methylpelargonat enthalten.
8. Verwendung nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die in der Ölphase Kokos-, Sonnenblumen- und/oder Rapsöl enthalten.
9. Verwendung nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die als Emulgatoren Alkyloligoglycoside enthalten.
10. Verwendung nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß Emulsionen verwendet werden, die Emulgatoren in Mengen von 10 bis 50 Gew.-%, vorzugsweise in Mengen von 15 bis 40 Gew.-% und insbesondere in Mengen von 20 bis 35 Gew.-% enthalten.
EP00945681A 1999-05-25 2000-05-16 Verwendung von mikroemulsionen in fermentationsverfahren Withdrawn EP1180137A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19923784A DE19923784A1 (de) 1999-05-25 1999-05-25 Verwendung von Mikroemulsionen in Fermentationsverfahren
DE19923784 1999-05-25
PCT/EP2000/004364 WO2000071672A1 (de) 1999-05-25 2000-05-16 Verwendung von mikroemulsionen in fermentationsverfahren

Publications (1)

Publication Number Publication Date
EP1180137A1 true EP1180137A1 (de) 2002-02-20

Family

ID=7909038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945681A Withdrawn EP1180137A1 (de) 1999-05-25 2000-05-16 Verwendung von mikroemulsionen in fermentationsverfahren

Country Status (15)

Country Link
EP (1) EP1180137A1 (de)
JP (1) JP2003500043A (de)
KR (1) KR20020012580A (de)
CN (1) CN1351650A (de)
AR (1) AR024085A1 (de)
BR (1) BR0010873A (de)
CZ (1) CZ20014205A3 (de)
DE (1) DE19923784A1 (de)
HK (1) HK1043478A1 (de)
MX (1) MXPA01011818A (de)
NO (1) NO20015732D0 (de)
PL (1) PL352059A1 (de)
SK (1) SK16942001A3 (de)
TR (1) TR200102994T2 (de)
WO (1) WO2000071672A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138120B2 (en) * 2003-03-11 2012-03-20 Cognis Ip Management Gmbh Microemulsions as adjuvants for agricultural chemicals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545246A1 (de) * 1985-12-20 1987-06-25 Henkel Kgaa Verfahren zur herstellung von exozellulaeren biopolymeren mit verdickungswirkung fuer waessrige medien
US5372943A (en) * 1987-07-24 1994-12-13 Cetus Corporation Lipid microemulsions for culture media
CH680223A5 (de) * 1989-07-17 1992-07-15 Pier Luigi Prof Dr Luisi
JPH07509126A (ja) * 1992-07-07 1995-10-12 ユニケマ・ケミー・ベー・ヴェー アルキル配糖体エステルの製造方法
DE19735790A1 (de) * 1997-08-18 1999-02-25 Henkel Kgaa Mikroemulsionen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0071672A1 *

Also Published As

Publication number Publication date
BR0010873A (pt) 2002-02-19
CN1351650A (zh) 2002-05-29
SK16942001A3 (sk) 2002-05-09
DE19923784A1 (de) 2000-11-30
HK1043478A1 (zh) 2002-09-13
CZ20014205A3 (cs) 2002-02-13
WO2000071672A1 (de) 2000-11-30
AR024085A1 (es) 2002-09-04
NO20015732D0 (no) 2001-11-23
KR20020012580A (ko) 2002-02-16
WO2000071672A8 (de) 2001-02-22
MXPA01011818A (es) 2002-04-24
PL352059A1 (en) 2003-07-28
TR200102994T2 (tr) 2002-04-22
JP2003500043A (ja) 2003-01-07

Similar Documents

Publication Publication Date Title
WO1992011330A1 (de) Verfahren zur herstellung von reinigungs- und pflegemitteln
DE69109833T2 (de) Pflanzenschutz-Suspoemulsionen.
EP1181350B1 (de) Verwendung von pit-emulsionen in fermentationsverfahren
EP1654357B1 (de) Verwendung von pit-emulsionen in enzymatischen reaktionen
WO1997006870A1 (de) Feinteilige emulsionen enthaltend zuckertenside
WO2000071672A1 (de) Verwendung von mikroemulsionen in fermentationsverfahren
DE69724297T2 (de) Wasserfreie Zusammensetzungen aus Alkylpolyglykosiden und alkoxylierten Fettalkoholen
WO2001076368A1 (de) Wässriges herbizides mittel
EP1246531A1 (de) Wässriges herbizides mittel
DE69309099T2 (de) Verfahren zur herstellung von alkyglycoside estern.
WO2004096749A1 (de) Citronensäureester
WO1991016296A1 (de) Ester von polycarbonsäuren mit polyhydroxyverbindungen
WO1990013345A1 (de) Mischung aus alkylglucosiden und alkoholen als entschäumer
EP1180136B1 (de) Verwendung von selbstemulgierenden ölen in fermentationsverfahren
EP0041626B1 (de) Entschaümermischung aus Alkalisalzen von Sulfobernsteinsäuredialkylestern und höheren aliphatischen Alkoholen und Verwendung dieser Mischungen zum Entschäumen von mineralsauren Aufschlussmassen
WO1992011270A1 (de) Verfahren zur herstellung von alkoxylierten alkyl- und/oder alkenylglykosidpartialestern
DE10107714A1 (de) Adjuvantien für biologische Pflanzenschutzmittel
DE19540829C2 (de) Kosmetische und/oder pharmazeutische Emulsionen
DE10000321A1 (de) Wäßrige Mittel, die Mikronährstoffe für Pflanzen enthalten
DE19957246A1 (de) Lebensmittel in Form von Öl-in-Wasser oder Wasser-in-Öl Emulsionen
EP1154845B1 (de) Verwendung von ethoxylierten glyceridgemischen als emulgatoren zur herstellung von paraffinkohlenwasserstoffemulsionen
DE3327860A1 (de) Verfahren zur herstellung von borsaeureestern von glycerinfettsaeureestern
DD251992A1 (de) Verfahren zur herstellung kristalliner biotenside
WO1992011271A1 (de) Verfahren zur herstellung von alkyl- und/oder alkenylglykosidestern mit verbesserter farbqualität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 20011116;SI PAYMENT 20011116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

17Q First examination report despatched

Effective date: 20030701

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031112