EP1178278A2 - Heat exchange tube with twisted inner fins - Google Patents

Heat exchange tube with twisted inner fins Download PDF

Info

Publication number
EP1178278A2
EP1178278A2 EP01117802A EP01117802A EP1178278A2 EP 1178278 A2 EP1178278 A2 EP 1178278A2 EP 01117802 A EP01117802 A EP 01117802A EP 01117802 A EP01117802 A EP 01117802A EP 1178278 A2 EP1178278 A2 EP 1178278A2
Authority
EP
European Patent Office
Prior art keywords
ribs
cross
pipe
tube
inner ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01117802A
Other languages
German (de)
French (fr)
Other versions
EP1178278B1 (en
EP1178278A3 (en
Inventor
Jovan Prof. Dr.-Ing. Mitrovic
Steffen Dipl.-Kfm. Dittmann
Michael SCHÖNHERR
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fw Brokelmann Aluminiumwerk & Cokg GmbH
Original Assignee
Fw Brokelmann Aluminiumwerk & Cokg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fw Brokelmann Aluminiumwerk & Cokg GmbH filed Critical Fw Brokelmann Aluminiumwerk & Cokg GmbH
Publication of EP1178278A2 publication Critical patent/EP1178278A2/en
Publication of EP1178278A3 publication Critical patent/EP1178278A3/en
Application granted granted Critical
Publication of EP1178278B1 publication Critical patent/EP1178278B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/51Heat exchange having heat exchange surface treatment, adjunct or enhancement
    • Y10S165/518Conduit with discrete fin structure
    • Y10S165/524Longitudinally extending

Definitions

  • the invention relates to a tube with twisted inner fins rotationally symmetrical to the longitudinal axis of symmetry of the tube run.
  • a known pipe of this type according to DE-GM 74 22 107 has several multi-start screw-like on its inside Inner ribs that have a small width b and a small radial Extend e.
  • a heat exchanger is known from EP 0 582 835 A1 become known, which consists of several, in their outer wall tiered, non-generic tubes composed in their Interior with other differently configured pipes different dimensions and inner ribs concentric are arranged to serve as an oil cooler.
  • This Heat pipes are next to their elaborate manufacture suffers from the disadvantage of considerable pressure loss because also - if it exists at all - one that Cross flow increasing heat transfer either not or can only arise accidentally and on the inner tube remains limited.
  • the invention is based on the object Heat transfer tube of the type mentioned at the beginning create, which is compared to the previously known internally finned tubes by a much better Heat transfer performance distinguishes itself and for this purpose not just an increase in the internal heat transfer area served, but also an effective cross flow between the Inner wall surface of the tube and the core flow near the Longitudinal axis of symmetry to increase heat transfer guaranteed.
  • the Cross-sectional shape of each rib is a pointed, isosceles Triangle with straight leg sides, the Triangle tip rounded by a radius in the two Leg sides merges, with two adjacent inner ribs form a space trapezoidal in cross section.
  • This Cross-sectional shape is in principle from DE 33 34 964 A1 known, but there the ribs run without any twist, so that it in conjunction with the swirl features of claim 1 are not known as known.
  • each inner fin of the tube is the shape of a Tooth in the case of gears with convexly curved flanks with a rounded tooth tip, with two adjacent ribs a cross-sectionally U-shaped space with concave grasp sunken side surfaces.
  • This rib shape is particularly suitable for high viscosity fluids such as oils.
  • each inner rib an isosceles, pointed triangle with concave legs and a semicircular shape at the top, with two adjacent ones Inner ribs a space trapezoidal in cross section Grip in a U-shape, the trapezoidal legs convex to the outside are arched.
  • This rib shape is preferably used in the Flow of fluids of low viscosity, like them have gases, for example.
  • the wall thickness of the tube is dependent on System pressure is determined and is advantageously in a range between 0.4mm and 3mm, with each tube having at least four inner fins having.
  • the distance a is the free ends of the inner ribs from the axis of symmetry of the Tube with large viscosity fluids, such as with oils, larger and Low viscosity fluids such as water and gases are lower sized. This increases the cross section of the Core flow in the area of the free cross section near the Longitudinal axis of symmetry for fluids with high viscosity Low viscosity fluids.
  • the free interior near the The longitudinal axis of symmetry is never closed in any tube become. This space must be with the channels between the ribs communicate. For this reason, point in an advantageous Training the free ends of the inner ribs from the Longitudinal axis of symmetry, even with low viscosity fluids such a distance a from this that between its free Obtain a core flow channel ends in each cross section of the tube remains. For this reason, according to feature a) of Main claim this distance a is not less than 1/12 of Pipe inner diameter are dimensioned.
  • Fig. 1 is a first embodiment of the tube 1 according to the invention shown.
  • the forms Cross-sectional shape of each rib 2 is a pointed, isosceles Triangle with straight leg sides 2a, 2b, the Triangle tip 2c rounded into the two by means of a radius r Leg sides 2a, 2b merges.
  • Two adjacent ones Inner ribs 2 form a trapezoidal cross section Gap 2d.
  • each inner rib 3 of the tube 1 the shape of a tooth in gearwheels with convex externally curved side flanks 3a, 3b with a rounded Tooth tip 3c.
  • Two adjacent ribs 3 encompass one in cross section U-shaped space 3d with convex sunken side faces that are identical to the shape of the Side flanks 3a, 3b of the ribs 3 are.
  • FIG. 3 A further cross-sectional shape is disclosed in FIG. 3. there forms the cross section of each inner rib 4 isosceles, pointed triangle with concave inside incident leg sides 4a, 4b with a semicircular Tip 4c. Grip two adjacent inner ribs 4 at a time U-shaped, a space 4d trapezoidal in cross section, whose trapezoidal legs are convexly curved outwards and are identical to the leg sides 4a, 4b.
  • Each tube 1 is with at least four inner ribs 2, 3, 4, in present case with eight inner ribs 2, 3, 4 each.
  • the free ends 2c, 3c, 4c are with the tips of the cross-sectional shapes of the individual inner ribs 2, 3, 4 identical. However, it must note that the tips are on the flat Cross-sectional body of a triangle, however, the free ends themselves on a twisted to the longitudinal axis 5 of symmetry refer to the spatial body.
  • These free ends 2c, 3c, 4c have to the longitudinal axis of symmetry 5 of the tube 1 at a distance a in Relation to the inner pipe diameter d in a range of 1:12 to 1: 3.
  • the tubes are advantageously either extruded Made of aluminum or copper or extruded in plastic.
  • the wall thickness d 1 of the pipe 1 depends on the system pressure and is in a range between 0.4 mm and 3 mm.
  • the tubes 1 also from other than that in the pipes 1 to 3 shown may consist of that instead of the eight ribs 2, 3, 4 shown there, for example, only four Ribs 2, 3, 4 or more than eight ribs in the interior of tube 1 are arranged.
  • the number of ribs 2, 3, 4, the length L of the Twist as well as the thickness and rib shape are dependent on the type of fluid and its flow rate as well designed by the pressure drop.
  • the general flow rule applies that the narrower the free pressure, the greater the pressure drop Flow cross section in the core area and between the Single ribs 2, 3, 4 is that on the other hand with larger Number of ribs and the associated larger Heat transfer area also the heat transfer performance passively increases.
  • the swirl and the transverse flow thereby induced between the core area in the vicinity of the longitudinal axis 5 of symmetry and the tube inner wall 9 are of fundamental importance. This is illustrated in Fig. 5.
  • a core flow 7 is formed, which due to the swirling of the end regions, which coincide with the ends of the tips 2c, 3c, 4c agree, a swirl is given, which is a left-hand swirl in the case shown, ie is connected to a rotation in the plane of the drawing in the counterclockwise direction, as indicated by arrow 6 in FIGS. 4 and 5.
  • Such a tube 1 is used, for example a tube bundle heat exchanger 12, as shown in Fig. 6.
  • the cooling medium enters through the connector 13 the tubes 1 and leaves them through the outlet 14.
  • the medium to be cooled for example, flows through the countercurrent Inlet connector 15 on the outside 11 of the tubes 1 and leaves the heat exchanger 12 in the cooled down state by the Outlet port 16.
  • the inventive Tube 1 for both cooling and heating fluids Can be used depending on the direction in which the Heat transfer process should take place.

Abstract

The heat transfer pipe (1), with a number of internal spiral ribs (2) in a symmetrical twist around the longitudinal axis (5), has a gap between the free ends (2c) of the ribs and the axis. The ratio of the gap to the inner diameter of the pipe is 1:12 to 1:3. The spiral ribs all have a twist in the same direction (6) and have the same twist length (L). The ribs have the shape of an equilateral triangle or a tooth. The pipe is of metal or plastics.

Description

Die Erfindung betrifft ein Rohr mit gedrallten Innenrippen, die zur Symmetrielängsachse des Rohres rotationssymmetrisch verlaufen.The invention relates to a tube with twisted inner fins rotationally symmetrical to the longitudinal axis of symmetry of the tube run.

Ein bekanntes Rohr dieser Art gemäß dem DE-GM 74 22 107 weist an seiner Innenseite mehrere mehrgängige schraubenartige Innenrippen auf, die eine geringe Breite b sowie eine geringe radiale Erstreckung e aufweisen. Dabei soll die Breite b in einem Bereich von 0,02 und 0,15 inch und die Höhe e in einem Bereich zwischen 0,0125 und 0,075 inch liegen; d.h. das Größtmaß in beiden Bereichen beträgt unter der Annahme 1 inch = 25,4 mm bei der Breite b = 3,8 mm, bei der Höhe e = 1,9 mm, bei einem Innendurchmesser von ca. 20,3 mm. Daraus folgt, daß sich in einem solchen von einem Fluid durchströmten Rohr zwar aufgrund des Verhältnisses von Rohrinnendurchmesser zu den relativ kurzen und im Querschnitt noppenartig ausgebildeten Innenrippen in der Nähe der Innenwand den Wärmeübergang fördernde Turbulenzen ausbilden, es jedoch an einer zur Hauptströmrichtung querverlaufenden Sekundärströmung fehlt und somit letztlich der Wärmeübergangseffekt auf die Strömungsverhältnisse der Hauptströmung und auf die durch die Wandunebenheiten ausgelösten Turbulenzen beschränkt bleibt.A known pipe of this type according to DE-GM 74 22 107 has several multi-start screw-like on its inside Inner ribs that have a small width b and a small radial Extend e. The width b should be in a range of 0.02 and 0.15 inches and the height e in a range between 0.0125 and 0.075 inches; i.e. the largest in both areas assumes 1 inch = 25.4 mm for the Width b = 3.8 mm, with height e = 1.9 mm, with one Inner diameter of approximately 20.3 mm. It follows that in one such a tube through which a fluid flows because of the Ratio of inner tube diameter to the relatively short and cross-sectionally formed inner ribs nearby turbulence promoting the heat transfer on the inner wall train it, however, on one to the main flow direction transverse secondary flow is missing and thus ultimately the Heat transfer effect on the flow conditions of the Main flow and on through the bumps triggered turbulence remains limited.

Diesen Nachteil einer zu gringen Wärmeübertragungsfläche der Innenrippen hat offenkundig der Erfinder der gattungsfremden DE 196 09 641 C2 erkannt und zu diesem Zweck ein Rohr für die Kühlung von Betondecken mit Luft vorgeschlagen, welches mit erheblich längeren geraden Innenrippen versehen ist, die sich radial von der Innenwandung des Rohres in Richtung auf die Symmetrielängsachse erstrecken. Dieses Rohr ist jedoch mit dem Nachteil behaftet, daß die Kernströmung, d.h. die Strömung durch den freien, zentralen Raum in der Nähe der Symmetrielängsachse mit erheblichen Druckverlusten behaftet ist und eine effektive Wärmeübertragung zwischen dieser Kernströmung und der Rohrinnenwand dem Zufall überlassen bleibt, weil eine die Wärmeübertragung erhöhende Strömung quer zur Hauptströmung nicht vorhanden ist. Die Strömung innerhalb einer jeden von zwei benachbarten Rippenflanken und der Rohrinnenwand gebildeten Teilkammer ist aufgrund der Wandreibung mit einer geringeren Geschwindigkeit als die Kernströmung behaftet. Zudem ist der stoffliche Austausch zwischen der Kernströmung und der Strömung in den einzelnen Kammern dem Zufall überlassen. Da diese Rippen infolge der herabgesetzten Strömungsgeschwindigkeit in den Kammern den Wärmeübertragungskoeffizienten herabsetzen, beruht ihre positive Wirkung ausschließlich auf einer Vergrößerung der Wärmeübertragungsfläche. Das gleiche gilt für das gattungsfremde Rohr gemäß Fig. 2 der DE 27 03 341 C2.This disadvantage of a heat transfer surface to gring The inventor of the non-genres obviously has inner ribs DE 196 09 641 C2 recognized and for this purpose a pipe for the Cooling of concrete ceilings with air is proposed, which with considerably longer straight inner ribs that are radial from the inner wall of the tube towards the Extend longitudinal axis of symmetry. However, this tube is with the Disadvantageous that the core flow, i.e. the flow through the free, central space near the axis of symmetry considerable pressure loss and is effective Heat transfer between this core flow and the The inner wall of the pipe is left to chance because one of them Flow increasing heat transfer across the main flow is not present. The flow within each of two adjacent rib flanks and the inner tube wall formed Partial chamber is less due to wall friction Speed afflicted as the core flow. In addition, the material exchange between the core flow and the flow left to chance in the individual chambers. Because these ribs due to the reduced flow velocity in the Chambers reduce the heat transfer coefficient their positive effect only on an enlargement of the Heat transfer area. The same applies to the non-generic Pipe according to FIG. 2 of DE 27 03 341 C2.

Weiterhin ist aus der EP 0 582 835 A1 ein Wärmeübertrager bekannt geworden, der sich aus mehreren, in ihrer Außenwandung abgestuften, gattungsfremden Rohren zusammensetzt, in deren Innenraum weitere unterschiedlich konfigurierte Rohre mit unterschiedlichen Abmessungen und Innenrippen konzentrisch angeordnet sind, die als Ölkühler dienen sollen. Diese Wärmeübertragungsrohre sind neben ihrer aufwendigen Herstellung mit dem Nachteil eines erheblichen Druckverlustes behaftet, weil auch dabei - soweit sie überhaupt vorhanden ist - eine die Wärmeübertragung erhöhende Querströmung entweder nicht oder nur zufällig entstehen kann und auf das innenliegende Rohr beschränkt bleibt.Furthermore, a heat exchanger is known from EP 0 582 835 A1 become known, which consists of several, in their outer wall tiered, non-generic tubes composed in their Interior with other differently configured pipes different dimensions and inner ribs concentric are arranged to serve as an oil cooler. This Heat pipes are next to their elaborate manufacture suffers from the disadvantage of considerable pressure loss because also - if it exists at all - one that Cross flow increasing heat transfer either not or can only arise accidentally and on the inner tube remains limited.

Außer den vorgenannten Veröffentlichungen gibt es noch einen umfangreichen Stand der Technik mit innenberippten Rohren, wie z.B. aus der DE-OS 24 02 942, der DE-33 34 964 A1 und der DE-OS 26 15 168, die aber allesamt Innenrippen mit den oben dargelegten Nachteilen aufweisen. Da bei diesen eine Verdrallung fehlt, entsprechen sie nicht der Gattung der in der vorliegenden Erfindung beschriebenen Rohre.In addition to the above publications, there is one extensive state of the art with internally finned tubes, such as e.g. from DE-OS 24 02 942, DE-33 34 964 A1 and DE-OS 26 15 168, but all of them inner ribs with the above disadvantages presented. There is a twist in these missing, they do not correspond to the genus in the present Invention described tubes.

Denn der Erfindung liegt die Aufgabe zugrunde, ein Wärmeübertragungsrohr der eingangs genannten Gattung zu schaffen, welches sich gegenüber den bislang bekannten innenverrippten Rohren durch eine erheblich bessere Wärmeübertragungsleistung auszeichnet und sich zu diesem Zweck nicht nur einer Erhöhung der inneren Wärmeübertragungsfläche bedient, sondern auch eine effektive Querströmung zwischen der Innenwandfläche des Rohres und der Kernströmung in der Nähe der Symmetrielängsachse zur Wärmeübertragungserhöhung gewährleistet.Because the invention is based on the object Heat transfer tube of the type mentioned at the beginning create, which is compared to the previously known internally finned tubes by a much better Heat transfer performance distinguishes itself and for this purpose not just an increase in the internal heat transfer area served, but also an effective cross flow between the Inner wall surface of the tube and the core flow near the Longitudinal axis of symmetry to increase heat transfer guaranteed.

Diese Aufgabe wird in Verbindung mit dem eingangs genannten Gattungsbegriff erfindungsgemäß durch folgende Merkmale gelöst:

  • a) Die freien Enden der Innenrippen weisen zur Symmetrielängsachse des Rohres einen gleichen Abstand a auf, der im Verhältnis zum Rohrinnendurchmesser d in einem Bereich von 1:12 bis 1:3 liegt,
  • b) sämtliche Innenrippen verlaufen zur Symmetrielängsachse drallartig in gleicher Richtung und mit gleicher Drallänge.
  • This object is achieved in connection with the generic term mentioned at the outset by the following features:
  • a) The free ends of the inner ribs are at the same distance a from the longitudinal axis of symmetry of the tube, which is in a range from 1:12 to 1: 3 in relation to the tube inner diameter d,
  • b) all inner ribs run in a twist-like manner in the same direction and with the same twist length in relation to the longitudinal axis of symmetry.
  • Durch diese Merkmale wird erstmalig ein Rohr geschaffen, welches aufgrund des geringen Abstandes a zwischen 1/12 und 1/3 des Innendurchmessers des Rohres nicht nur eine große Wärmeübertragungsfläche auf seiner Innenseite aufweist, sondern sich aufgrund der Drallung der Innenrippen in jedem gedrallten Zwischenraum zwischen zwei benachbarten Rippenflanken und der Rohrwandung einerseits und der durch den freien Raum in der Nähe der Symmetrielängsachse strömenden Kernströmung andererseits eine Querströmung mit relativ geringen Druckverlusten ausbildet, die für eine erhebliche Steigerung der Wärmeübertragungsleistung zwischen der Kernströmung und der Rohrwand sorgt. Dieses Wirkungsprinzip ist im gesamten Stand der Technik ohne Vorbild, sei es, daß nach dem nächstkommenden Stand der Technik gemäß dem DE-GM 74 22 107 sich aufgrund der kurzen noppenartigen Rippen keine ausgeprägte Querströmung, sondern nur eine erhöhte Turbulenz im Wandbereich ausbilden kann oder sei es, daß die längeren Rippen gemäß dem Stand der Technik keine Verdrallung aufweisen.These features create a tube for the first time, which due to the small distance a between 1/12 and 1/3 the inside diameter of the pipe is not just a large one Has heat transfer surface on its inside, but each twisted due to the twist of the inner ribs Space between two adjacent rib flanks and the Pipe wall on the one hand and through the free space nearby the core flow flowing on the other hand, the longitudinal axis of symmetry forms a cross flow with relatively low pressure drops, the for a significant increase in heat transfer performance between the core flow and the pipe wall. This The principle of operation is without model in the entire state of the art it that according to the closest prior art according to DE-GM 74 22 107 itself due to the short nub-like ribs no pronounced cross flow, only an increased one Can form turbulence in the wall area or be it that the longer ribs according to the prior art no swirl exhibit.

    Bei der Ausbildung der Querschnittsform der Innenrippen gestattet die Erfindung mehrere Ausführungsformen:When forming the cross-sectional shape of the inner ribs the invention allows several embodiments:

    Nach einer ersten Ausführungsform bildet die Querschnittsform einer jeden Rippe ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten, dessen Dreieckspitze mittels eines Radius abgerundet in die beiden Schenkelseiten übergeht, wobei jeweils zwei benachbarte Innenrippen einen im Querschnitt trapezförmigen Zwischenraum bilden. Diese Querschnittsform ist zwar grundsätzlich aus der DE 33 34 964 A1 bekannt, jedoch verlaufen dort die Rippen ohne jeden Drall, so daß sie in Verbindung mit den Verdrallungsmerkmalen des Anspruchs 1 nicht als bekannt zu bezeichnen sind.According to a first embodiment, the Cross-sectional shape of each rib is a pointed, isosceles Triangle with straight leg sides, the Triangle tip rounded by a radius in the two Leg sides merges, with two adjacent inner ribs form a space trapezoidal in cross section. This Cross-sectional shape is in principle from DE 33 34 964 A1 known, but there the ribs run without any twist, so that it in conjunction with the swirl features of claim 1 are not known as known.

    Nach einer zweiten Ausführungsform weist die Querschnittsform einer jeden Innenrippe des Rohres die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Flanken mit abgerundeter Zahnspitze auf, wobei zwei benachbarte Rippen einen im Querschnitt U-förmigen Zwischenraum mit konkav eingefallenen Seitenflächen umgreifen. Diese Rippenform ist besonders für Fluide großer Viskosität wie Öle geeignet.According to a second embodiment, the Cross-sectional shape of each inner fin of the tube is the shape of a Tooth in the case of gears with convexly curved flanks with a rounded tooth tip, with two adjacent ribs a cross-sectionally U-shaped space with concave grasp sunken side surfaces. This rib shape is particularly suitable for high viscosity fluids such as oils.

    Nach einer dritten vorteilhaften Ausführungsform weist die Querschnittsform einer jeden Innenrippe ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkeln und eine Halbkreisform an der Spitze auf, wobei jeweils zwei benachbarte Innenrippen einen im Querschnitt trapezförmigen Zwischenraum U-förmig umgreifen, dessen Trapezschenkel konvex nach außen gewölbt sind. Diese Rippenform findet bevorzugt Einsatz bei der Durchströmung von Fluiden geringer Viskosität, wie sie beispielsweise Gase aufweisen.According to a third advantageous embodiment, the Cross-sectional shape of each inner rib an isosceles, pointed triangle with concave legs and a semicircular shape at the top, with two adjacent ones Inner ribs a space trapezoidal in cross section Grip in a U-shape, the trapezoidal legs convex to the outside are arched. This rib shape is preferably used in the Flow of fluids of low viscosity, like them have gases, for example.

    Sämtliche dieser unterschiedlichen Ausführungsformen der Innenrippen führen zu unterschiedlichen Strömungen quer zur Kernströmung im Bereich der Symmetrielängsachse. Dabei wird vorteilhaft die Anzahl der Rippen, die Steigung der Verdrallung, die Rippendicke und die Form in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet, ohne dadurch den Erfindungsgedanken zu verlassen.All of these different embodiments of the Inner ribs lead to different currents across Core flow in the area of the longitudinal axis of symmetry. Doing so advantageous the number of ribs, the slope of the twist, the Rib thickness and shape depending on the type of fluid and its flow rate as well as the pressure drop designed without leaving the inventive idea.

    Nach einer besonders vorteilhaften Weiterbildung der Erfindung werden diese Rohre in Massenfertigung mit ihren Innenrippen aus stranggepreßtem Aluminium oder Kupfer bzw. aus extrudiertem Kunststoff hergestellt. Dabei zeichnen sich sowohl Aluminium als auch Kupfer durch eine hohe Wärmeleitfähigkeit aus.After a particularly advantageous development of These tubes are mass-produced with their invention Inner ribs made of extruded aluminum or copper or extruded plastic. Both stand out Aluminum and copper are characterized by a high thermal conductivity.

    Zur Sicherstellung einer gleichmäßigen Kern- und Querströmung ist die Querschnittsgestaltung des Rohres mit seinen Innenrippen und den Zwischenräumen über die gesamte Länge der Verdrallung in jeder Querschnittsebene gleich.To ensure an even core and Cross flow is the cross-sectional design of the pipe with its Inner ribs and the spaces along the entire length of the Twist is the same in every cross-sectional plane.

    Die Wanddicke des Rohres wird in Abhängigkeit vom Systemdruck ermittelt und liegt vorteilhaft in einem Bereich zwischen 0,4 mm und 3 mm, wobei jedes Rohr mindestens vier Innenrippen aufweist.The wall thickness of the tube is dependent on System pressure is determined and is advantageously in a range between 0.4mm and 3mm, with each tube having at least four inner fins having.

    Um eine möglichst hohe Wärmeübertragungsleistung bei einem relativ geringen Druckverlust zu erhalten, wird der Abstand a der freien Enden der Innenrippen von der Symmetrielängsachse des Rohres bei Fluiden großer Viskosität, wie bei Ölen, größer und bei Fluiden mit geringer Viskosität, wie Wasser und Gasen, geringer bemessen. Dadurch vergrößert sich der Querschnitt der Kernströmung im Bereich des freien Querschnittes in der Nähe der Symmetrielängsachse bei Fluiden großer Viskosität gegenüber Fluiden geringer Viskosität. To achieve the highest possible heat transfer performance with a To obtain relatively low pressure loss, the distance a is the free ends of the inner ribs from the axis of symmetry of the Tube with large viscosity fluids, such as with oils, larger and Low viscosity fluids such as water and gases are lower sized. This increases the cross section of the Core flow in the area of the free cross section near the Longitudinal axis of symmetry for fluids with high viscosity Low viscosity fluids.

    Erfindungsgemäß darf der freie Innenraum in der Nähe der Symmetrielängsachse in jedem Rohr auf keinen Fall geschlossen werden. Dieser Raum muß mit den Kanälen zwischen den Rippen kommunizieren. Aus diesem Grunde weisen in einer vorteilhaften Weiterbildung die freien Enden der Innenrippen von der Symmetrielängsachse auch bei Fluiden geringer Viskosität stets einen solchen Abstand a von dieser auf, daß zwischen dessen freien Enden in jedem Querschnitt des Rohres ein Kernströmkanal erhalten bleibt. Aus diesem Grund soll gemäß dem Merkmal a) des Hauptanspruchs dieser Abstand a nicht unter 1/12 des Rohrinnendurchmessers bemessen werden.According to the invention, the free interior near the The longitudinal axis of symmetry is never closed in any tube become. This space must be with the channels between the ribs communicate. For this reason, point in an advantageous Training the free ends of the inner ribs from the Longitudinal axis of symmetry, even with low viscosity fluids such a distance a from this that between its free Obtain a core flow channel ends in each cross section of the tube remains. For this reason, according to feature a) of Main claim this distance a is not less than 1/12 of Pipe inner diameter are dimensioned.

    Mehrere Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt. Dabei zeigen:

  • Fig. 1 den Querschnitt eines Rohres mit acht Innenrippen, welche die Querschnittsform eines spitzen gleichschenkeligen Dreiecks aufweisen,
  • Fig. 2 eine weitere Querschnittsausbildung eines Rohres mit Innenrippen, von denen eine jede die Querschnittsform eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Flanken aufweist,
  • Fig. 3 eine dritte Querschnittsform eines Rohres, bei dem eine jede Innenrippe die Querschnittsform eines gleichschenkeligen, spitzen Dreiecks mit konkav nach innen einfallenden Schenkelseiten besitzt,
  • Fig. 4 eine perspektivische Ansicht des Rohres von Fig. 1 mit gestrichelt angedeuteter Verdrallung der Innenrippen,
  • Fig. 5 das Rohr von Fig. 4 in teilweise aufgeschnittener Perspektivansicht mit durch Pfeile angedeuteten Strömungen und
  • Fig. 6 eine beispielhafte Prinzipdarstellung eines Wärmeübertragers zum Einsatz der Rohre gemäß den Figuren 1 bis 5.
  • Several embodiments of the invention are shown in the drawings. Show:
  • 1 shows the cross section of a tube with eight inner ribs, which have the cross-sectional shape of an acute isosceles triangle,
  • 2 shows a further cross-sectional design of a tube with inner fins, each of which has the cross-sectional shape of a tooth in the case of gearwheels with flanks which are convexly curved outwards,
  • 3 shows a third cross-sectional shape of a tube, in which each inner rib has the cross-sectional shape of an isosceles, pointed triangle with concave leg sides falling inwards,
  • 4 shows a perspective view of the tube from FIG. 1 with the twist of the inner ribs indicated by dashed lines,
  • Fig. 5 shows the tube of Fig. 4 in a partially cutaway perspective view with flows indicated by arrows and
  • 6 shows an exemplary basic illustration of a heat exchanger for using the tubes according to FIGS. 1 to 5.
  • In Fig. 1 ist eine erste Ausführungsform des erfindungsgemäßen Rohres 1 dargestellt. Dabei bildet die Querschnittsform einer jeden Rippe 2 ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten 2a, 2b, dessen Dreieckspitze 2c mittels eines Radius r abgerundet in die beiden Schenkelseiten 2a, 2b übergeht. Jeweils zwei benachbarte Innenrippen 2 bilden einen im Querschnitt trapezförmigen Zwischenraum 2d.In Fig. 1 is a first embodiment of the tube 1 according to the invention shown. The forms Cross-sectional shape of each rib 2 is a pointed, isosceles Triangle with straight leg sides 2a, 2b, the Triangle tip 2c rounded into the two by means of a radius r Leg sides 2a, 2b merges. Two adjacent ones Inner ribs 2 form a trapezoidal cross section Gap 2d.

    Im Ausführungsbeispiel der Fig. 2 weist eine jede Innenrippe 3 des Rohres 1 die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Seitenflanken 3a, 3b mit einer abgerundeten Zahnspitze 3c auf. Dabei umgreifen zwei benachbarte Rippen 3 einen im Querschnitt U-förmigen Zwischenraum 3d mit konvex eingefallenen Seitenflächen, die identisch mit der Form der Seitenflanken 3a, 3b der Rippen 3 sind.In the exemplary embodiment in FIG. 2, each inner rib 3 of the tube 1 the shape of a tooth in gearwheels with convex externally curved side flanks 3a, 3b with a rounded Tooth tip 3c. Two adjacent ribs 3 encompass one in cross section U-shaped space 3d with convex sunken side faces that are identical to the shape of the Side flanks 3a, 3b of the ribs 3 are.

    In Fig. 3 ist eine weitere Querschnittsform offenbart. Dabei bildet der Querschnitt einer jeden Innenrippe 4 ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkelseiten 4a, 4b mit einer halbkreisförmigen Spitze 4c. Jeweils zwei benachbarte Innenrippen 4 umgreifen U-förmig einen im Querschnitt trapezförmigen Zwischenraum 4d, dessen Trapezschenkel konvex nach außen gewölbt sind und identisch mit den Schenkelseiten 4a, 4b sind.A further cross-sectional shape is disclosed in FIG. 3. there forms the cross section of each inner rib 4 isosceles, pointed triangle with concave inside incident leg sides 4a, 4b with a semicircular Tip 4c. Grip two adjacent inner ribs 4 at a time U-shaped, a space 4d trapezoidal in cross section, whose trapezoidal legs are convexly curved outwards and are identical to the leg sides 4a, 4b.

    Jedes Rohr 1 ist mit mindestens vier Innenrippen 2, 3, 4, im vorliegenden Fall mit jeweils acht Innenrippen 2, 3, 4 versehen. Die freien Enden 2c, 3c, 4c sind mit den Spitzen der Querschnittsformen der einzelnen Innenrippen 2, 3, 4 identisch. Dabei muß allerdings beachtet werden, daß die Spitzen sich auf den flächigen Querschnittskörper eines Dreiecks, hingegen die freien Enden sich auf einen verdrallt zur Symmetrielängsachse 5 erstreckenden räumlichen Körper beziehen. Diese freien Enden 2c, 3c, 4c weisen zur Symmetrielängsachse 5 des Rohres 1 einen Abstand a auf, der im Verhältnis zum Rohrinnendurchmesser d in einem Bereich von 1 : 12 bis 1 : 3 liegt.Each tube 1 is with at least four inner ribs 2, 3, 4, in present case with eight inner ribs 2, 3, 4 each. The free ends 2c, 3c, 4c are with the tips of the cross-sectional shapes of the individual inner ribs 2, 3, 4 identical. However, it must note that the tips are on the flat Cross-sectional body of a triangle, however, the free ends themselves on a twisted to the longitudinal axis 5 of symmetry refer to the spatial body. These free ends 2c, 3c, 4c have to the longitudinal axis of symmetry 5 of the tube 1 at a distance a in Relation to the inner pipe diameter d in a range of 1:12 to 1: 3.

    Und schließlich verlaufen sämtliche Innenrippen 2, 3, 4 gemäß der perspektivischen Darstellung der Fig. 4 zur Symmetrielängsachse 5 drallartig in gleicher Drallrichtung, hier z.B. nach links in Richtung des Pfeiles 6, und weisen die gleiche Drallänge L auf. Unter dieser Drallänge versteht man die Länge, die zwischen einer vollständigen 360°-Drallung einer Rippe liegt, d.h. die Länge L zwischen zwei Schnittebenen, zwischen denen nach einer 360°-Drallung eine jede Rippe wieder an der gleichen Stelle der ersten Schnittebene liegt.And finally all inner ribs 2, 3, 4 run according to the perspective view of FIG. 4 Longitudinal axis of symmetry 5 swirling in the same swirl direction, here e.g. to the left in the direction of arrow 6, and point the same Twist length L. This twist length is the length that between a full 360 ° twist of a rib, i.e. the Length L between two cutting planes, between those after one 360 ° twist each rib back in the same place as the first Cutting plane lies.

    Die Rohre sind vorteilhaft entweder aus einem stranggepreßten Aluminium oder Kupfer hergestellt oder in Kunststoff extrudiert. The tubes are advantageously either extruded Made of aluminum or copper or extruded in plastic.

    Die Wanddicke d1 des Rohres 1 ist abhängig vom Systemdruck und liegt in einem Bereich zwischen 0,4 mm und 3 mm.The wall thickness d 1 of the pipe 1 depends on the system pressure and is in a range between 0.4 mm and 3 mm.

    Zur Vermeidung einer jedweden Strömungsunregelmäßigkeit ist die Querschnittskonfiguration des Rohres 1 mit seinen Innenrippen 2, 3, 4 und den Zwischenräumen 2d, 3d, 4d über die Länge L der Verdrallung in jedem Querschnitt gleich. Dadurch werden Drucksprünge und unerwünschte Störeffekte unterbunden, so daß die Kernströmung 7 und jede Querströmung 8 in den Zwischenräumen 2d, 3d und 4d miteinander kommunizieren und sich gegenseitig austauschen.To avoid any flow irregularity is the cross-sectional configuration of the tube 1 with its Inner ribs 2, 3, 4 and the spaces 2d, 3d, 4d over the Length L of the twist is the same in every cross-section. Thereby pressure jumps and undesired interference effects are prevented, so that the core flow 7 and each cross flow 8 in the Spaces 2d, 3d and 4d communicate with each other and exchange each other.

    Es versteht sich, daß die Rohre 1 auch aus anderen als die in den Figuren 1 bis 3 dargestellten Rohre bestehen können, daß also statt der dort dargestellten acht Rippen 2, 3, 4 beispielsweise nur vier Rippen 2, 3, 4 oder mehr als acht Rippen im Innenraum des Rohres 1 angeordnet sind. Denn die Anzahl der Rippen 2, 3, 4, die Länge L der Verdrallung sowie die Dicke und Rippenform werden in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet. Dabei gilt die allgemeine Strömungsregel, daß der Druckabfall um so größer ist, je enger der freie Strömquerschnitt im Kernbereich sowie zwischen den Einzelrippen 2, 3, 4 ist, daß aber andererseits mit größerer Rippenanzahl und damit einhergehender größerer Wärmeübertragungsfläche auch die Wärmeübertragungsleistung passiv steigt.It is understood that the tubes 1 also from other than that in the pipes 1 to 3 shown may consist of that instead of the eight ribs 2, 3, 4 shown there, for example, only four Ribs 2, 3, 4 or more than eight ribs in the interior of tube 1 are arranged. Because the number of ribs 2, 3, 4, the length L of the Twist as well as the thickness and rib shape are dependent on the type of fluid and its flow rate as well designed by the pressure drop. The general flow rule applies that the narrower the free pressure, the greater the pressure drop Flow cross section in the core area and between the Single ribs 2, 3, 4 is that on the other hand with larger Number of ribs and the associated larger Heat transfer area also the heat transfer performance passively increases.

    Bei dem erfindungsgemäßen Rohr 1 kommt aber der Verdrallung und der dadurch induzierten Querströmung zwischen dem Kernbereich in der Nähe der Symmetrielängsachse 5 und der Rohrinnenwandung 9 eine tragende Bedeutung zu. Diese ist in Fig. 5 veranschaulicht. Um die Symmetrielängsachse 5 des Rohres 1 bildet sich im freien Strömquerschnitt zwischen den Enden 2c, 3c, 4c der Rippen 2, 3, 4 eine Kernströmung 7, der aufgrund auch der Verdrallung der Endbereiche, die mit den Enden der Spitzen 2c, 3c, 4c übereinstimmen, ein Drall erteilt wird, der im dargestellten Fall ein Linksdrall ist, d.h. mit einer Drehung in der Zeichenebene im Gegenuhrzeigersinn verbunden ist, wie es der Pfeil 6 der Figuren 4 und 5 ausweist. Aufgrund der Verdrallung der Rippen 2 bzw. 3, 4 bildet sich in den Zwischenräumen 2d bzw. 3d, 4d eine Querströmung 8 aus, welche durch die darin eingezeichneten Pfeile angedeutet ist. Infolge dieser Querströmung 8, d.h. durch eine Strömung quer zur Symmetrielängsachse 5, findet ein äußerst intensiver Wärmetransport zwischen der Kernströmung 7 und der Innenwandung 9 des Rohres 1 statt. Aufgrund der hohen Wärmeleitfähigkeit λ des beispielsweise aus stranggepreßtem Aluminium oder Kupfer hergestellten Rohres 1 von
          209,3 W/(mK) Aluminium und
          407,1 W/(mK) bei Kupfer erfolgt eine erhebliche Wärmeübertragungsleistung von der Kernströmung 7 über die Querströmung 8 an die Innenseite 9 des Rohres 1 und von dort weiter durch dessen Wand 10 mit der Dicke d1 auf die Außenseite 11 statt.
    In the tube 1 according to the invention, however, the swirl and the transverse flow thereby induced between the core area in the vicinity of the longitudinal axis 5 of symmetry and the tube inner wall 9 are of fundamental importance. This is illustrated in Fig. 5. Around the longitudinal axis of symmetry 5 of the tube 1, in the free flow cross-section between the ends 2c, 3c, 4c of the ribs 2, 3, 4, a core flow 7 is formed, which due to the swirling of the end regions, which coincide with the ends of the tips 2c, 3c, 4c agree, a swirl is given, which is a left-hand swirl in the case shown, ie is connected to a rotation in the plane of the drawing in the counterclockwise direction, as indicated by arrow 6 in FIGS. 4 and 5. Due to the twisting of the ribs 2 and 3, 4, a transverse flow 8 is formed in the spaces 2d and 3d, 4d, which is indicated by the arrows drawn therein. As a result of this cross flow 8, ie through a flow transverse to the longitudinal axis 5 of symmetry, an extremely intensive heat transfer takes place between the core flow 7 and the inner wall 9 of the tube 1. Due to the high thermal conductivity λ of the tube 1 made, for example, of extruded aluminum or copper
    209.3 W / (mK) aluminum and
    407.1 W / (mK) for copper there is a considerable heat transfer capacity from the core flow 7 via the cross flow 8 to the inside 9 of the tube 1 and from there through the wall 10 with the thickness d 1 to the outside 11.

    Ein derartiges Rohr 1 findet beispielsweise Anwendung auf einem Rohrbündelwärmeübertrager 12, wie er in Fig. 6 dargestellt ist. Dabei tritt beispielsweise das Kühlmedium über den Stutzen 13 in die Rohre 1 ein und verläßt diese durch den Austritt 14. Im Gegenstrom tritt das beispielsweise zu kühlende Medium durch den Eintrittstutzen 15 an die Außenseite 11 der Rohre 1 ein und verläßt den Wärmeübertrager 12 in herabgekühltem Zustand durch den Auslaßstutzen 16. Es versteht sich, daß das erfindungsgemäße Rohr 1 sowohl zur Kühlung als auch zur Aufheizung von Fluiden Verwendung finden kann, je nachdem in welcher Richtung der Wärmeübertragungsvorgang stattfinden soll. Dabei gilt die allgemeine Regel, daß bei Fluiden mit großer Viskosität wie beispielsweise bei Ölen der Abstand a der freien Enden 2c, 3c, 4c der Innenrippen 2, 3, 4 von der Symmetrielängsachse 5 des Rohres 1 größer als bei Fluiden mit geringer Viskosität, wie Wasser und Gasen, zu bemessen ist. Such a tube 1 is used, for example a tube bundle heat exchanger 12, as shown in Fig. 6. In this case, for example, the cooling medium enters through the connector 13 the tubes 1 and leaves them through the outlet 14. Im The medium to be cooled, for example, flows through the countercurrent Inlet connector 15 on the outside 11 of the tubes 1 and leaves the heat exchanger 12 in the cooled down state by the Outlet port 16. It is understood that the inventive Tube 1 for both cooling and heating fluids Can be used depending on the direction in which the Heat transfer process should take place. The general applies Rule that with fluids with high viscosity such as Oil the distance a of the free ends 2c, 3c, 4c of the Inner ribs 2, 3, 4 from the longitudinal axis of symmetry 5 of the tube 1 larger than low viscosity fluids such as water and gases is to be measured.

    Bezugszeichenliste:LIST OF REFERENCE NUMBERS

    Rohrpipe
    11
    Innenrippeninternal ribs
    2, 3, 42, 3, 4
    Schenkelseiten der Innenrippe 2Leg sides of the inner rib 2
    2a, 2b2a, 2b
    Dreieckspitzetriangle top
    2c2c
    trapezförmiger Zwischenraumtrapezoidal space
    2d2d
    Seitenflanken der Innenrippe 3Side flanks of the inner rib 3
    3a, 3b3a, 3b
    Zahnspitzetooth tip
    3c3c
    U-förmiger ZwischenraumU-shaped space
    3d3d
    Schenkelseiten der Innenrippe 4Leg sides of the inner rib 4
    4a, 4b4a, 4b
    halbkreisförmige Spitzesemicircular tip
    4c4c
    Zwischenraumgap
    4d4d
    Pfeilarrow
    66
    KernströmkanalKernströmkanal
    77
    Querströmungcrossflow
    88th
    Innenseite des Rohres 1Inside of the tube 1
    9 9
    Wand des Rohres 1Wall of the pipe 1
    1010
    Außenseite des Rohres 1Outside of the tube 1
    1111
    RohrbündelwärmeübertragerShell and tube heat exchanger
    1212
    Eintritt in die Rohre 1Entry into the pipes 1
    1313
    Austrittexit
    1414
    Eintrittstutzeninlet connection
    1515
    Auslaßstutzenoutlet
    1616
    Abstand der freien Enden 2c, 3c, 4c zur Symmetrielängsachse 5Distance between the free ends 2c, 3c, 4c to the longitudinal axis of symmetry 5
    aa
    RohrinnendurchmesserInside pipe diameter
    dd
    Wanddicke der Rohre 1Wall thickness of the pipes 1
    d1 d 1
    Drallängerate of twist
    LL
    Wärmeleitfähigkeitthermal conductivity
    λλ
    Radiusradius
    rr

    Claims (11)

    Rohr mit mehreren gedrallten Innenrippen, die zur Symmetrielängsachse des Rohres rotationssymmetrisch verlaufen, gekennzeichnet durch folgende Merkmale: a) Die freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) weisen zur Symmetrielängsachse (5) des Rohres (1) einen Abstand (a) auf, der im Verhältnis zum Rohrinnendurchmesser (d) in einem Bereich von 1:12 bis 1:3 liegt, b) sämtliche Innenrippen (2, 3, 4) verlaufen zur Symmetrielängsachse (5) drallartig in gleicher Richtung (Pfeil 6) und mit gleicher Drallänge (L). Pipe with several twisted inner ribs, which are rotationally symmetrical to the longitudinal axis of symmetry of the pipe, characterized by the following features: a) The free ends (2c, 3c, 4c) of the inner ribs (2, 3, 4) are at a distance (a) from the longitudinal axis of symmetry (5) of the tube (1), which is in a range in relation to the tube inner diameter (d) from 1:12 to 1: 3, b) all inner ribs (2, 3, 4) run in a twist-like manner to the longitudinal axis of symmetry (5) in the same direction (arrow 6) and with the same twist length (L). Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (2) ein spitzes, gleichschenkeliges Dreieck mit gerade verlaufenden Schenkelseiten (2a, 2b) bildet, dessen Dreieckspitze (2c) mittels eines Radius (r) abgerundet in die beiden Schenkelseiten (2a, 2b) übergeht, wobei jeweils zwei benachbarte Innenrippen (2) einen im Querschnitt trapezförmigen Zwischenraum (2d) bilden.Pipe according to claim 1, characterized in that the cross-sectional shape of each inner rib (2) forms a pointed, isosceles triangle with straight leg sides (2a, 2b), the triangular tip (2c) of which is rounded by means of a radius (r) into the two leg sides ( 2a, 2b) merges, two adjacent inner ribs (2) each forming an intermediate space (2d) which is trapezoidal in cross section. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (3) des Rohres (1) die Form eines Zahnes bei Zahnrädern mit konvex nach außen gewölbten Seitenflanken (3a, 3b) mit abgerundeter Zahnspitze (3c) aufweist und zwei benachbarte Rippen (3) einen im Querschnitt U-förmigen Zwischenraum (3d) mit konkav eingefallenen Seitenflächen umgreifen. Tube according to claim 1, characterized in that the cross-sectional shape of each inner rib (3) of the tube (1) has the shape of a tooth in the case of gearwheels with convexly outwardly curved side flanks (3a, 3b) with a rounded tooth tip (3c) and two adjacent ribs (3) encompass a space (3d) with a U-shaped cross section and concave side surfaces. Rohr nach Anspruch 1, dadurch gekennzeichnet, daß die Querschnittsform einer jeden Innenrippe (4) ein gleichschenkeliges, spitzes Dreieck mit konkav nach innen einfallenden Schenkelseiten (4a, 4b) und eine Halbkreisform an der Spitze (4c) aufweist, wobei jeweils zwei benachbarte Innenrippen (4) einen im Querschnitt trapezförmigen Zwischenraum (4d) U-förmig umgreifen, dessen Trapezschenkel konvex nach außen gewölbt sind.Pipe according to claim 1, characterized in that the cross-sectional shape of each inner rib (4) has an isosceles, pointed triangle with concave leg sides falling inwards (4a, 4b) and a semicircular shape at the tip (4c), with two adjacent inner ribs ( 4) enclose a U-shaped space (4d) with a trapezoidal cross-section, the trapezoidal legs of which are convexly curved outwards. Rohr nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Rohr (1) mit seinen Innenrippen (2, 3, 4) einteilig aus stranggepreßtem Aluminium oder Kupfer, bzw. aus extrudiertem Kunststoff besteht.Pipe according to one of claims 1 to 4, characterized in that the pipe (1) with its inner ribs (2, 3, 4) consists in one piece of extruded aluminum or copper, or of extruded plastic. Rohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Querschnittskonfiguration des Rohres (1) mit seinen Innenrippen (2, 3, 4) und den Zwischenräumen (2d, 3d, 4d) über die Länge (L) der Verdrallung in jeder Querschnittsebene gleich ist.Pipe according to one of claims 1 to 5, characterized in that the cross-sectional configuration of the pipe (1) with its inner ribs (2, 3, 4) and the spaces (2d, 3d, 4d) over the length (L) of the twist in each Cross-sectional level is the same. Rohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Wanddicke (d1) des Rohres (1) in Abhängigkeit vom Systemdruck in einem Bereich zwischen 0,4 mm und 3 mm liegt.Pipe according to one of claims 1 to 6, characterized in that the wall thickness (d 1 ) of the pipe (1) is in a range between 0.4 mm and 3 mm depending on the system pressure. Rohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es (1) mindestens vier Innenrippen (2, 3, 4) aufweist. Pipe according to one of claims 1 to 7, characterized in that it (1) has at least four inner ribs (2, 3, 4). Rohr nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Anzahl der Rippen (2, 3, 4), die Länge (L) der Verdrallung, die Dicke und Form der Rippen (2, 3, 4) in Abhängigkeit von der Art des Fluids und dessen Strömungsgeschwindigkeit sowie vom Druckabfall gestaltet ist.Pipe according to one of claims 1 to 8, characterized in that the number of ribs (2, 3, 4), the length (L) of the twist, the thickness and shape of the ribs (2, 3, 4) depending on the Type of fluid and its flow rate and the pressure drop is designed. Rohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Abstand (a) der freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) von der Symmetrielängsachse (5) des Rohres (1) bei Fluiden großer Viskosität, wie bei Ölen, größer als bei Fluiden geringer Viskosität, wie Wasser und Gasen, bemessen ist.Pipe according to one of claims 1 to 9, characterized in that the distance (a) of the free ends (2c, 3c, 4c) of the inner ribs (2, 3, 4) from the longitudinal axis of symmetry (5) of the pipe (1) in the case of fluids large viscosity, as with oils, larger than with fluids of low viscosity, such as water and gases. Rohr nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die freien Enden (2c, 3c, 4c) der Innenrippen (2, 3, 4) von der Symmetrielängsachse (5) auch bei Fluiden geringer Viskosität stets einen solchen Abstand (a) von dieser aufweisen, daß zwischen dessen freien Enden (2c, 3c, 4c) in jeder Querschnittsebene des Rohres (1) ein Kernströmkanal (7) gebildet ist.Pipe according to one of claims 1 to 10, characterized in that the free ends (2c, 3c, 4c) of the inner ribs (2, 3, 4) from the longitudinal axis of symmetry (5) always have such a distance (a) even with fluids of low viscosity. of this, that a core flow channel (7) is formed between its free ends (2c, 3c, 4c) in each cross-sectional plane of the tube (1).
    EP01117802A 2000-08-03 2001-07-21 Heat exchange tube with twisted inner fins Expired - Lifetime EP1178278B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10038624A DE10038624C2 (en) 2000-08-03 2000-08-03 Heat transfer tube with twisted inner fins
    DE10038624 2000-08-03

    Publications (3)

    Publication Number Publication Date
    EP1178278A2 true EP1178278A2 (en) 2002-02-06
    EP1178278A3 EP1178278A3 (en) 2004-01-07
    EP1178278B1 EP1178278B1 (en) 2005-11-30

    Family

    ID=7651692

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01117802A Expired - Lifetime EP1178278B1 (en) 2000-08-03 2001-07-21 Heat exchange tube with twisted inner fins

    Country Status (5)

    Country Link
    US (1) US6533030B2 (en)
    EP (1) EP1178278B1 (en)
    AT (1) ATE311581T1 (en)
    DE (2) DE10038624C2 (en)
    DK (1) DK1178278T3 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN111256211A (en) * 2020-01-20 2020-06-09 海信(山东)空调有限公司 Air conditioner
    CN112948970A (en) * 2021-03-01 2021-06-11 西北工业大学 Design method of spiral evaporation tube structure based on spherical convex fins

    Families Citing this family (42)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6872070B2 (en) * 2001-05-10 2005-03-29 Hauck Manufacturing Company U-tube diffusion flame burner assembly having unique flame stabilization
    JP4303105B2 (en) * 2001-06-28 2009-07-29 ドマンティス リミテッド Dual specific ligands and their use
    US20050271663A1 (en) * 2001-06-28 2005-12-08 Domantis Limited Compositions and methods for treating inflammatory disorders
    US9321832B2 (en) * 2002-06-28 2016-04-26 Domantis Limited Ligand
    DK1517921T3 (en) * 2002-06-28 2006-10-09 Domantis Ltd Immunoglobulin single variable antigen binding domains and double specific constructs thereof
    EP1378719A1 (en) 2002-07-04 2004-01-07 Maschinenfabrik Georg Kiefer GmbH Tube with swirl element
    CA2511910A1 (en) * 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
    EP1512924A3 (en) * 2003-09-05 2011-01-26 LG Electronics, Inc. Air conditioner comprising heat exchanger and means for switching cooling cycle
    US20050126757A1 (en) * 2003-12-16 2005-06-16 Bennett Donald L. Internally enhanced tube with smaller groove top
    KR100539570B1 (en) * 2004-01-27 2005-12-29 엘지전자 주식회사 multi airconditioner
    JP4651366B2 (en) * 2004-12-02 2011-03-16 住友軽金属工業株式会社 Internal grooved heat transfer tube for high-pressure refrigerant
    US7182128B2 (en) * 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations
    US20060288602A1 (en) * 2005-06-04 2006-12-28 Lg Electronics Inc. Heat exchanger for dryer and condensing type dryer using the same
    CA2615524C (en) * 2005-07-29 2014-09-23 Robert A. Benson Undersea well product transport
    EA200801170A1 (en) * 2005-12-01 2008-12-30 Домантис Лимитед FORMATS OF NON-COMPETITIVE DOMAIN ANTIBODIES THAT ASSOCIATE WITH INTERLEUKIN RECEPTOR FIRST TYPE 1
    US8162040B2 (en) * 2006-03-10 2012-04-24 Spinworks, LLC Heat exchanging insert and method for fabricating same
    DE102006045650B4 (en) * 2006-09-27 2008-08-21 Techeffekt Anstalt Heat exchanger with a helical channel for a forced flow
    US20120186792A1 (en) * 2006-11-08 2012-07-26 Thomas Middleton Semmes Architecturally And Thermally Improved Freeze Resistant Window Perimeter Radiator
    US8385672B2 (en) * 2007-05-01 2013-02-26 Pictometry International Corp. System for detecting image abnormalities
    DE102007047726A1 (en) 2007-10-05 2009-04-09 Rieter Automatik Gmbh Extrusion device for extruding molten synthetic material, has heating insert comprising elongated base, where external dimensions of base is formed in such manner that base is inserted into opening in starting valve in form-fit manner
    JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
    US20100212875A1 (en) * 2009-02-23 2010-08-26 Kun-Jung Chang Tubular heat dispersing structure
    US9945620B2 (en) * 2011-08-01 2018-04-17 Thomas Middleton Semmes Freeze damage resistant window perimeter radiator
    CA2861893A1 (en) 2012-01-19 2013-07-25 Joseph Dugan Internally heated fluid transfer pipes with internal helical heating ribs
    DE202012012741U1 (en) 2012-06-23 2013-11-19 Denis Blaffert-Kapfer Strangheizprofil
    US8755682B2 (en) 2012-07-18 2014-06-17 Trebor International Mixing header for fluid heater
    IN2015DN03287A (en) * 2012-09-21 2015-10-09 Ng1 Technologies Llc
    JP6391140B2 (en) * 2012-12-27 2018-09-19 三菱アルミニウム株式会社 Manufacturing method of internally spiral grooved tube
    DE102013002097B4 (en) 2013-02-05 2020-02-27 Volkswagen Aktiengesellschaft Method for producing a coolable tool part for a molding tool for hot forming and / or press hardening, and a molding tool produced therewith
    US9713838B2 (en) 2013-05-14 2017-07-25 General Electric Company Static core tie rods
    US9249917B2 (en) * 2013-05-14 2016-02-02 General Electric Company Active sealing member
    EP2851628A3 (en) 2013-08-26 2015-08-05 Robert Bosch Gmbh Heat exchanger module with cyclone fins and heat exchanger cell formed from this module
    DE102013020469A1 (en) * 2013-12-06 2015-06-11 Webasto SE Heat exchanger and method for producing a heat exchanger
    US20160231065A1 (en) * 2015-02-09 2016-08-11 United Technologies Corporation Heat exchanger article with hollow tube having plurality of vanes
    GB201513415D0 (en) * 2015-07-30 2015-09-16 Senior Uk Ltd Finned coaxial cooler
    MY194402A (en) * 2016-07-07 2022-11-30 Siemens Ag Steam generator pipe having a turbulence installation body
    US10988904B2 (en) * 2016-08-18 2021-04-27 Ian R. Cooke Snow and ice melting device, system and corresponding methods
    US10539371B2 (en) * 2017-01-18 2020-01-21 Qorvo Us, Inc. Heat transfer device incorporating a helical flow element within a fluid conduit
    CZ307349B6 (en) 2017-02-09 2018-06-20 SUAR.CZ s.r.o. An annular heat exchanger
    US20190257592A1 (en) * 2018-02-20 2019-08-22 K&N Engineering, Inc. Modular intercooler block
    US11322920B2 (en) * 2019-05-03 2022-05-03 Hydro Extrusion USA, LLC Ribbed extruded electrical conduit
    US11549644B2 (en) 2019-07-09 2023-01-10 Seatrec, Inc. Apparatus and method for making internally finned pressure vessel

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2402942A1 (en) 1973-01-23 1974-07-25 Wikstroem Ab Berth ELECTRIC HEATER
    DE7422107U (en) 1973-07-05 1974-09-26 Universal Oil Prod Co Finned tube
    DE2615168A1 (en) 1976-04-07 1977-10-27 Gartner & Co J HEAT TRANSFER DEVICE WITH AT LEAST ONE LONGITUDINAL FIBER PIPE
    DE2703341C2 (en) 1977-01-27 1983-01-27 Geb. Patorova Antonina Ivanovna Berdjugina Mandrel for extrusion of tubes with internal ribs
    DE3334964A1 (en) 1983-09-27 1985-04-18 Wolf Klimatechnik GmbH, 8302 Mainburg Internally finned tube for gas- or oil-heated heating boilers
    EP0582835A1 (en) 1992-08-11 1994-02-16 Steyr Nutzfahrzeuge Ag Heat-exchanger

    Family Cites Families (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1519673A (en) * 1921-08-01 1924-12-16 Doble Lab Heater
    US1881610A (en) * 1930-07-11 1932-10-11 Mccord Radiator & Mfg Co Tubing
    US2463997A (en) * 1944-06-19 1949-03-08 Calumet And Hecla Cons Copper Method of making integral external and internal finned tubing
    US2731709A (en) * 1950-09-18 1956-01-24 Brown Fintube Co Method of making internally finned heat exchanger tubes
    US2930405A (en) * 1955-05-31 1960-03-29 Brown Fintube Co Tube with internal fins and method of making same
    US3267564A (en) * 1964-04-23 1966-08-23 Calumet & Hecla Method of producing duplex internally finned tube unit
    US3528494A (en) * 1966-11-07 1970-09-15 Teledyne Inc Heat pipe for low thermal conductivity working fluids
    US3705617A (en) * 1970-11-05 1972-12-12 Badger Co Sublimation apparatus and method
    GB1334458A (en) * 1971-06-30 1973-10-17 Atomic Energy Authority Uk Heat exchange members
    CA1063097A (en) * 1976-01-26 1979-09-25 David F. Fijas Inner finned heat exchanger tube
    DE2814828C3 (en) * 1978-04-06 1981-07-09 Metallgesellschaft Ag, 6000 Frankfurt Gas cooler with internally ribbed lead pipes
    JP2726480B2 (en) * 1989-03-02 1998-03-11 古河電気工業株式会社 Heat transfer tube
    DE9203670U1 (en) * 1991-03-15 1992-05-21 Joh. Vaillant Gmbh U. Co, 5630 Remscheid, De
    MX9305803A (en) * 1992-10-02 1994-06-30 Carrier Corp HEAT TRANSFER TUBE WITH INTERNAL RIBS.
    JP3001181B2 (en) * 1994-07-11 2000-01-24 株式会社クボタ Reaction tube for ethylene production
    GB9420946D0 (en) * 1994-10-18 1994-12-07 Univ Manchester Heat transfer tube
    US5655599A (en) * 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
    DE19609641C2 (en) * 1996-03-12 1999-05-06 Kiefer Gmbh Maschf G G Method and system for cooling a room
    JP3811909B2 (en) * 1997-03-21 2006-08-23 三菱電機株式会社 Heat transfer tube and heat exchanger using the same

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2402942A1 (en) 1973-01-23 1974-07-25 Wikstroem Ab Berth ELECTRIC HEATER
    DE7422107U (en) 1973-07-05 1974-09-26 Universal Oil Prod Co Finned tube
    DE2615168A1 (en) 1976-04-07 1977-10-27 Gartner & Co J HEAT TRANSFER DEVICE WITH AT LEAST ONE LONGITUDINAL FIBER PIPE
    DE2703341C2 (en) 1977-01-27 1983-01-27 Geb. Patorova Antonina Ivanovna Berdjugina Mandrel for extrusion of tubes with internal ribs
    DE3334964A1 (en) 1983-09-27 1985-04-18 Wolf Klimatechnik GmbH, 8302 Mainburg Internally finned tube for gas- or oil-heated heating boilers
    EP0582835A1 (en) 1992-08-11 1994-02-16 Steyr Nutzfahrzeuge Ag Heat-exchanger

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN111256211A (en) * 2020-01-20 2020-06-09 海信(山东)空调有限公司 Air conditioner
    CN112948970A (en) * 2021-03-01 2021-06-11 西北工业大学 Design method of spiral evaporation tube structure based on spherical convex fins

    Also Published As

    Publication number Publication date
    DE10038624A1 (en) 2002-02-21
    EP1178278B1 (en) 2005-11-30
    DE50108221D1 (en) 2006-01-05
    US6533030B2 (en) 2003-03-18
    DK1178278T3 (en) 2006-04-03
    DE10038624C2 (en) 2002-11-21
    EP1178278A3 (en) 2004-01-07
    US20020014328A1 (en) 2002-02-07
    ATE311581T1 (en) 2005-12-15

    Similar Documents

    Publication Publication Date Title
    DE10038624C2 (en) Heat transfer tube with twisted inner fins
    DE3737217C3 (en) Heat exchanger tube
    EP3048407B1 (en) Heat exchanger
    EP2267393B1 (en) Flow channel for heat exchanger
    DE202005009948U1 (en) Heat exchange element and thus produced heat exchanger
    DE4432972A1 (en) Heat exchanger having two rows of tubes (pipes), in particular for motor vehicles
    DE2950563C2 (en)
    DE1426648C3 (en) Rapid steam generator
    DE102010008175B4 (en) Heat exchanger
    CH656951A5 (en) HEAT EXCHANGER.
    DE2549359A1 (en) COOLING TOWER
    DE102006029043B4 (en) Heat transfer unit for an internal combustion engine
    DE202007017501U1 (en) Heat exchange element and thus produced heat exchanger
    EP1118831B1 (en) Finned heat transfer wall
    DE202004020294U1 (en) Heat exchanger has wall comprising of burls and two half shafts such that first half shaft exhibits shorter rising and longer sloping section and related to center planes in which connecting lines exists
    EP2031336B1 (en) Heat exchanger unit for a combustion engine
    DE2809143A1 (en) FIBER TUBE HEAT EXCHANGER
    CH435347A (en) Method for limiting the wall temperature of a partition between heat-exchanging media and the device for carrying out the method
    DE3321456A1 (en) THROTTLING DEVICE FOR A HEAT EXCHANGER HAVING A TUBE BUNDLE AND HEAT EXCHANGER WITH SUCH THROW SPIRTING DEVICES
    DE102012111928A1 (en) Heat exchanger for an internal combustion engine
    DE19616034C2 (en) Heat exchanger for weather cooling in mining and tunneling work areas
    DE19718064A1 (en) Turbulence installation for heat transmitter
    CH226310A (en) Heat exchanger.
    DE924149C (en) Tube heat exchangers, in particular preheaters or pre-evaporators in radiant steam generators
    DE10350735A1 (en) Cooled combustion chamber for rocket engine, has cooling channels linked by openings in dividing walls

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20040303

    17Q First examination report despatched

    Effective date: 20040421

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50108221

    Country of ref document: DE

    Date of ref document: 20060105

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060313

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060329

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060502

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060731

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070201

    NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

    Free format text: A REQUEST FOR RESTORATION TO THE PRIOR STATE (ARTICLE 23 OF THE PATENTS ACT 1995) HAS BEEN FILED ON 20061220

    NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

    Free format text: THE REQUEST FOR RESTORATION TO THE PRIOR STATE AS PROVIDED FOR IN ARTICLE 23 OF THE PATENTS ACT 1995 (SEE PUBLICATION IN HEADING XE OF THE PATENT BULLETIN OF 20070301/03) HAS BEEN WITHDRAWN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: F.W. BROEKELMANN ALUMINIUMWERK GMBH & CO.KG

    Free format text: F.W. BROEKELMANN ALUMINIUMWERK GMBH & CO.KG#OESTERWEG 14#59469 ENSE (DE) -TRANSFER TO- F.W. BROEKELMANN ALUMINIUMWERK GMBH & CO.KG#OESTERWEG 14#59469 ENSE (DE)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060721

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20080715

    Year of fee payment: 8

    Ref country code: DK

    Payment date: 20080710

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20080715

    Year of fee payment: 8

    Ref country code: FR

    Payment date: 20080715

    Year of fee payment: 8

    Ref country code: IT

    Payment date: 20080723

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080722

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080814

    Year of fee payment: 8

    Ref country code: SE

    Payment date: 20080714

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: F.W. *BROKELMANN ALUMINIUMWERK G.M.B.H. & CO. K.G.

    Effective date: 20090731

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090721

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090721

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090721

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090721

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090722