EP1174696A2 - Druckmesszelle mit Temperatursensor - Google Patents

Druckmesszelle mit Temperatursensor Download PDF

Info

Publication number
EP1174696A2
EP1174696A2 EP01117373A EP01117373A EP1174696A2 EP 1174696 A2 EP1174696 A2 EP 1174696A2 EP 01117373 A EP01117373 A EP 01117373A EP 01117373 A EP01117373 A EP 01117373A EP 1174696 A2 EP1174696 A2 EP 1174696A2
Authority
EP
European Patent Office
Prior art keywords
measuring cell
membrane
base body
pressure measuring
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01117373A
Other languages
English (en)
French (fr)
Other versions
EP1174696A3 (de
EP1174696B1 (de
Inventor
Jörn Jacob
Ewald Böhler
Manfred Liehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Publication of EP1174696A2 publication Critical patent/EP1174696A2/de
Publication of EP1174696A3 publication Critical patent/EP1174696A3/de
Application granted granted Critical
Publication of EP1174696B1 publication Critical patent/EP1174696B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means

Definitions

  • the present invention relates to a pressure measuring cell with a Temperature sensor.
  • Temperature sensors are often in pressure measuring cells integrated to the static temperature error in the pressure measurement to compensate. This is the case with ceramic pressure measuring cells Temperature sensor mostly applied to the back of the ceramic, however, it can also be used in subsequent evaluation electronics be included.
  • a disadvantage of such pressure measuring cells is that temperature changes of the medium, the pressure of which are measured should and often in direct contact with the pressure measuring cell acts with a considerable delay and possibly dampened affect the temperature of the temperature sensor. A resulting temperature deviation between the to measuring medium and the temperature sensor leads to errors compensation of the pressure measurement value supplied by the measuring cell.
  • a pressure measuring cell with a base body and one arranged on the base body by one to be measured Pressure deformable membrane the temperature sensor between the membrane and to arrange the body.
  • This placement ensures a small distance between the temperature sensor and the Medium that exerts pressure on the membrane so that the measured value the temperature sensor temperature changes of this medium quickly is able to follow.
  • the disruptive influence of abrupt changes in temperature of the medium on the pressure measurement becomes significant reduced.
  • a typical distance between the temperature sensor and a The outer surface of the membrane exposed to pressure can vary according to the thickness of the membrane, i.e. depending on the dimensioning of the pressure measuring cell or the pressures to be measured by them, between 0.1 and 3 mm.
  • the one formed between the base body and the membrane Chamber closes.
  • the base body and / or membrane of one Such a seal is advantageously made of ceramic material formed from a glass.
  • the temperature sensor expediently comprises a resistance element with temperature dependent resistance. Such a resistance element can be easily generated over a large area.
  • the resistance element over extends essentially the entire circumference of the measuring cell.
  • the temperature value which can be determined from the resistance value of the resistance element an average over substantially the whole Represents the size of the membrane and thus an average over the entire surface of the membrane comes very close.
  • the resistance element preferably meandering.
  • FIG. 1 shows the pressure measuring cell according to the invention in a first Cut.
  • the pressure measuring cell comprises a substantially cylindrical one Base body 1 and a membrane 2, each made of a ceramic material, which is characterized by a ring shape along the edges the mutually facing end faces of base body 1 and membrane 2 extending material layer 4 are kept spaced.
  • the material layer 4 consists of a glass material. Encloses them together with the base body 1 and the membrane 2 tight a flat cylindrical chamber 3.
  • the base body 1 carries in the area the chamber 3 has a centrally arranged end face Electrode 6 and a ring electrode extending concentrically thereto 7. Vias 9 connect the two electrodes with connection panels 10 on the back of the base body 1.
  • the membrane 2 carries a Counter electrode 4, which is not contacted.
  • the membrane 2 is by the pressure of a medium acting on its outer surface 11 deformable.
  • the deformation of the membrane changes the capacity of the capacitor formed by the electrodes 6, 7, 8, so that by measuring this capacity, for example by installing the Pressure measuring cell as a capacitor in a resonant circuit and measuring from its resonance frequency, to that acting on the outer surface 11 Pressure can be closed.
  • a resistance element 5 In the material layer acting as a seal for the chamber 3 4 is a resistance element 5 with a temperature-dependent resistance value embedded. Two opposite ends of the elongated Resistance elements 5 are via vias 9 connected to connection panels 10 on the back of the base body 1.
  • the resistance element 5 in direct contact with the surface of the base body 1 and is from the membrane 2 through part of the Material layer 4 separated.
  • the direct attachment of the resistance element 5 on the base body 1 facilitates production an electrical connection between the resistance element and the environment via the vias 9.
  • the from Base body 1 facing away from the resistance element 5 forms a large heat exchange surface with the material layer 4 and over this with the membrane 2 and the (not shown) Medium that exerts the pressure to be measured on the membrane 2.
  • the pressure measuring cell can be manufactured in a simple manner, by first on the base body 1 in a thick film or Thin-film technology, the temperature-dependent resistance element 5 is formed on this then a precursor for the Material layer 4 applied and on the precursor material Membrane 2 is arranged. By heating and glazing the precursor material comes the glass-like material layer formed in this way 4 in intimate contact with the base body 1 and the Resistance element 5 on the one hand and the membrane 2 on the other hand, on the one hand, the tightness of the chamber 2 against the medium whose Pressure should be measured, guaranteed, and secondly a highly efficient heat exchange from that with the medium in Contact membrane 2 over the material layer 4 with the Resistor element 5 allows.
  • Strength of the membrane 2 is the distance between the outer surface 11 of the membrane and the resistance element 5 typically 0.1 to 3, preferably 0.2 to 2 mm.
  • Figures 2 to 4 each show along sections the level A-A of Figure 1 different configurations of the acting as a temperature sensor, temperature-dependent resistance elements 5.
  • the top view shows that in FIG Central electrode 6 and the ring electrode 7 of the base body 1 and arranged concentrically to the edge of the base body 1, the Material layer 4. This runs inside the material layer 4 temperature-dependent resistance element 5 over almost the entire Scope of the base body 1, with the exception of the distance between the two plated-through holes 9, which are used to supply the resistance element 5 serve with a measuring current.
  • the temperature-dependent resistance element 5 runs on one meandering or zigzag path around essentially the entire circumference of the base body 1 from one of the two plated-through holes 9 to another.
  • This configuration allows one To accommodate resistance element 5, its extended length is much greater than the circumferential length of the base body, the a high resistance value and a correspondingly strong change of the resistance value with the temperature.
  • the extended Length of the resistance element 5 is a multiple of the circumferential length of the main body 1.
  • the peculiarity of this Design is that they are largely arbitrary positioning of the plated-through holes 9 on the base body 1, e.g. at diametrically opposite positions as shown in Figure 4, because the length that the resistance element 5 reach can, here not proportional to the angular distance between the two vias 9 is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Eine Druckmesszelle umfaßt einen Grundkörper (1), eine an dem Grundkörper (1) angeordnete, durch einen zu messenden Druck verformbare Membran (2) und einen Temperatursensor (5), der zwischen der Membran (2) und dem Grundkörper (1), vorzugsweise in einer eine Kammer (3) verschließenden Dichtung (4), angeordnet ist. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Druckmesszelle mit einem Temperatursensor. Temperatursensoren sind häufig in Druckmesszellen integriert, um den statischen Temperaturfehler bei der Druckmessung zu kompensieren. Bei keramischen Druckmesszellen ist dieser Temperatursensor meistens auf der Rückseite der Kermik apliziert, er kann aber auch in einer anschließenden Auswertelektronik enthalten sein. Ein Nachteil derartiger Druckmesszellen ist, daß Temperaturänderungen des Mediums, dessen Druck gemessen werden soll und das oft in direktem Kontakt auf die Druckmesszelle einwirkt, erst mit einer beträchtlichen Verzögerung und eventuell gedämpft sich auf die Temperatur des Temperatursensors auswirken. Eine daraus resultierende Temperaturabweichung zwischen dem zu messenden Medium und dem Temperatursensor führt zu Fehlern bei der Kompensation des von der Meßzelle gelieferten Druckmeßwerts.
Um dieses Problem zu lösen, wird gemäß der vorliegenden Erfindung vorgeschlagen, bei einer Druckmesszelle mit einem Grundkörper und einer an dem Grundkörper angeordneten, durch einen zu messenden Druck verformbaren Membran den Temperatursensor zwischen der Membran und dem Grundkörper anzuordnen. Diese Plazierung gewährleistet einen geringen Abstand zwischen dem Temperatursensor und dem Medium, das den Druck auf die Membran ausübt, so daß der Meßwert des Temperatursensors Temperaturänderungen dieses Mediums schnell zu folgen vermag. Der störende Einfluß von abrupten Temperaturänderungen des Mediums auf die Druckmessung wird dadurch erheblich reduziert.
Ein typischer Abstand zwischen dem Temperatursensor und einer dem zu messenden Druck ausgesetzten Außenfläche der Membran kann je nach Dicke der Membran, d.h. je nach Dimensionierung der Druckmesszelle bzw. der durch sie zu messenden Drucke, zwischen 0,1 und 3 mm betragen.
Um eine effiziente Wärmeübertragung zwischen dem Medium und dem Temperatursensor zu gewährleisten, ist dieser vorteilhafterweise in eine den Grundkörper und die Membran verbindende Materialschicht eingebettet.
Insbesondere ist er vorteilhafterweise in eine Dichtung eingebettet, die eine zwischen dem Grundkörper und der Membran gebildete Kammer verschließt.
Bei einem Sensor, dessen Grundkörper und/oder Membran aus einem Keramikmaterial bestehen, ist eine solche Dichtung vorteilhafterweise aus einem Glas gebildet.
Zweckmäßigerweise umfaßt der Temperatursensor ein Widerstandselement mit temperaturabhängigem Widerstand. Ein solches Widerstandselement kann auf einfache Weise flächig erzeugt werden.
Um ein möglichst großes und rauscharmes Temperaturmeßsignal zu erhalten, ist es zweckmäßig, daß das Widerstandselement sich über im wesentlichen den gesamten Umfang der Meßzelle erstreckt. Ein Nebeneffekt dieser Anordnung des Widerstandselements ist, daß der aus dem Widerstandswert des Widerstandselements bestimmbare Temperaturwert einen Mittelwert über im wesentlichen den gesamten Umfang der Membran darstellt und somit einen Mittelwert über die gesamte Fläche der Membran sehr nahe kommt.
Um auf einer gegebenen Umfangslänge der Dichtung eine große Leiterlänge des Widerstandselements unterzubringen, ist das Widerstandselement vorzugsweise mäanderartig ausgebildet.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels mit Bezug auf die beigefügten Zeichnungen. Es zeigen:
  • Figur 1 eine erfindungsgemäße Druckmesszelle in einem axialen Schnitt;
  • Figuren bis 4 jeweils Schnitte durch die Druckmesszelle der Figur 1 entlang der Ebene A-A.
  • Figur 1 zeigt die erfindungsgemäße Druckmesszelle in einem ersten Schnitt. Die Druckmesszelle umfaßt einen im wesentlichen zylindrischen Grundkörper 1 und eine Membran 2, jeweils aus einem Keramikmaterial, die durch eine sich ringförmig entlang der Ränder der einander zugewandten Stirnseiten von Grundkörper 1 und Membran 2 erstreckende Materialschicht 4 beabstandet gehalten sind. Die Materialschicht 4 besteht aus einem Glaswerkstoff. Sie umschließt gemeinsam mit dem Grundkörper 1 und der Membran 2 dicht eine flachzylindrische Kammer 3. Der Grundkörper 1 trägt im Bereich der Kammer 3 an seiner Stirnfläche eine zentral angeordnete Elektrode 6 und eine sich konzentrisch dazu erstreckende Ringelektrode 7. Durchkontaktierungen 9 verbinden die zwei Elektroden mit Anschlußfeldern 10 an der Rückseite des Grundkörpers 1. An der gegenüberliegenden Seite der Kammer 3 trägt die Membran 2 eine Gegenelektrode 4, die nicht kontaktiert ist. Die Membran 2 ist durch den Druck eines auf ihre Außenfläche 11 wirkenden Mediums verformbar. Die Verformung der Membran verändert die Kapazität des von den Elektroden 6, 7, 8 gebildeten Kondensators, so daß durch Messen dieser Kapazität, beispielsweise durch Einbau der Druckmesszelle als Kondensator in einem Schwingkreis und Messen von dessen Resonanzfrequenz, auf den auf die Außenfläche 11 wirkenden Druck geschlossen werden kann.
    In die als Dichtung für die Kammer 3 fungierende Materialschicht 4 ist ein Widerstandselement 5 mit temperaturabhängigem Widerstandswert eingebettet. Zwei entgegengesetzte Enden des langgestreckten Widerstandselements 5 sind über Durchkontaktierungen 9 mit Anschlußfeldern 10 an der Rückseite des Grundkörpers 1 verbunden.
    Bei dem in Figur 1 gezeigten Ausführungsbeispiel befindet sich das Widerstandselement 5 in direktem Kontakt mit der Oberfläche des Grundkörpers 1 und ist von der Membran 2 durch einen Teil der Materialschicht 4 getrennt. Die direkte Anbringung des Widerstandselements 5 auf dem Grundkörper 1 erleichtert die Herstellung einer elektrischen Verbindung zwischen dem Widerstandselement und der Umgebung über die Durchkontaktierungen 9. Die vom Grundkörper 1 abgewandte Oberfläche des Widerstandselements 5 bildet eine große Wärmeaustauschfläche mit der Materialschicht 4 und über diese mit der Membran 2 und dem (nicht dargestellten) Medium, das den zu messenden Druck auf die Membran 2 ausübt.
    Die Druckmesszelle kann auf einfache Weise hergestellt werden, indem auf dem Grundkörper 1 zunächst in einer Dickschicht- oder Dünnschichttechnik das temperaturabhängige Widerstandselement 5 ausgebildet wird, auf diesem dann ein Vorläufermaterial für die Materialschicht 4 aufgetragen und auf dem Vorläufermaterial die Membran 2 angeordnet wird. Durch Erhitzen und Verglasen des Vorläufermaterials kommt die dadurch gebildete glasartige Materialschicht 4 in einen innigen Kontakt mit dem Grundkörper 1 und dem Widerstandselement 5 einerseits und der Membran 2 andererseits, was zum einen die Dichtigkeit der Kammer 2 gegen das Medium, dessen Druck gemessen werden soll, gewährleistet, und zum anderen einen hocheffizienten Wärmeaustausch von der mit dem Medium in Kontakt befindlichen Membran 2 über die Materialschicht 4 mit dem Widerstandselement 5 ermöglicht.
    Je nach vorgesehenem Meßbereich der Druckmesszelle bzw. der erforderlichen Festigkeit der Membran 2 beträgt der Abstand zwischen der Außenfläche 11 der Membran und dem Widerstandselement 5 typischerweise 0,1 bis 3, vorzugsweise 0,2 bis 2 mm.
    Die Figuren 2 bis 4 zeigen jeweils anhand von Schnitten entlang der Ebene A-A von Figur 1 unterschiedliche Ausgestaltungen des als Temperatursensor fungierenden temperaturabhängigen Widerstandselements 5. Man erkennt in Figur 2 in der Draufsicht die Zentralelektrode 6 und die Ringelektrode 7 des Grundkörpers 1 sowie konzentrisch dazu am Rand des Grundkörpers 1 angeordnet, die Materialschicht 4. Im Innern der Materialschicht 4 verläuft das temperaturabhängige Widerstandselement 5 über fast den gesamten Umfang des Grundkörpers 1, mit Ausnahme des Abstandes zwischen den zwei Durchkontaktierungen 9, die zur Versorgung des Widerstandselements 5 mit einem Meßstrom dienen.
    Bei der in Figur 3 dargestellten Ausgestaltung der Druckmesszelle verläuft das temperaturabhängige Widerstandselement 5 auf einem mäanderartigen oder zickzackförmigen Weg um im wesentlichen den gesamten Umfang des Grundkörpers 1 von einer der zwei Durchkontaktierungen 9 zur anderen. Diese Ausgestaltung erlaubt es, ein Widerstandselement 5 unterzubringen, dessen ausgestreckte Länge wesentlich größer ist als die Umfangslänge des Grundkörpers, das einen hohen Widerstandswert und eine dementsprechend starke Änderung des Widerstandswertes mit der Temperatur aufweist.
    Bei der Ausgestaltung der Figur 4 verläuft das temperaturabhängige Widerstandselement 5 auf einem spiralartigen Weg innerhalb der Materialschicht 4. Auch bei dieser Anordnung kann die ausgestreckte Länge des Widerstandselements 5 ein Vielfaches der Umfangslänge des Grundkörpers 1 erreichen. Die Besonderheit dieser Ausgestaltung ist, daß sie eine weitgehend willkürliche Positionierung der Durchkontaktierungen 9 am Grundkörper 1 zuläßt, z.B. an diametral gegenüberliegenden Positionen wie in Figur 4 gezeigt, weil die Länge, die das Widerstandselement 5 erreichen kann, hier nicht proportional zum Winkelabstand der zwei Durchkontaktierungen 9 ist.
    Das hier beschriebene Prinzip ist selbstverständlich nicht auf eine Druckmesszelle vom kapazitiven Typ, wie in den Figuren dargestellt, beschränkt. Es ist auch auf eine DMS-Meßzelle bzw. allgemein auf jeden Typ von Druckmesszelle übertragbar, die einen Grundkörper und eine von diesem beabstandete, durch den zu messenden Druck verformbare Membran aufweist.

    Claims (10)

    1. Druckmesszelle mit einem Grundkörper (1), einer an dem Grundkörper (1) angeordneten, durch einen zu messenden Druck verformbaren Membran (2) und einem Temperatursensor, dadurch gekennzeichnet, daß der Temperatursensor zwischen der Membran (2) und dem Grundkörper (1) angeordnet ist.
    2. Druckmesszelle nach Anspruch 1, dadurch gekennzeichnet, daß der Abstand zwischen dem Temperatursensor und einer dem zu messenden Druck ausgesetzten Außenfläche (11) der Membran (2) zwischen 0,1 und 3 mm beträgt.
    3. Druckmesszelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Temperatursensor in eine den Grundkörper (1) und die Membran (2) verbindende Materialschicht (4) eingebettet ist.
    4. Druckmesszelle nach Anspruch 3, dadurch gekennzeichnet, daß die Materialschicht (4) eine Dichtung ist, die eine zwischen dem Grundkörper (1) und der Membran (2) gebildete Kammer (3) verschließt.
    5. Druckmesszelle nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Grundkörper (1) und/oder die Membran (2) aus einem Keramikmaterial und die Materialschicht (4) aus einem Glas gebildet sind.
    6. Druckmesszelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Temperatursensor ein Widerstandselement (5) mit temperaturabhängigem Widerstandswert umfaßt.
    7. Druckmesszelle nach Anspruch 6, dadurch gekennzeichnet, daß das Widerstandselement (5) sich über im wesentlichen den gesamten Umfang der Materialschicht (4) erstreckt.
    8. Druckmesszelle nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Widerstandselement (5) mäanderartig verläuft.
    9. Druckmesszelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie eine DMS-Meßzelle ist.
    10. Druckmesszelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie eine kapazitive Meßzelle ist.
    EP01117373A 2000-07-20 2001-07-18 Druckmesszelle mit Temperatursensor Expired - Lifetime EP1174696B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE2000135346 DE10035346B4 (de) 2000-07-20 2000-07-20 Druckmesszelle mit Temperatursensor
    DE10035346 2000-07-20

    Publications (3)

    Publication Number Publication Date
    EP1174696A2 true EP1174696A2 (de) 2002-01-23
    EP1174696A3 EP1174696A3 (de) 2003-03-26
    EP1174696B1 EP1174696B1 (de) 2012-03-28

    Family

    ID=7649616

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01117373A Expired - Lifetime EP1174696B1 (de) 2000-07-20 2001-07-18 Druckmesszelle mit Temperatursensor

    Country Status (2)

    Country Link
    EP (1) EP1174696B1 (de)
    DE (1) DE10035346B4 (de)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH707387A1 (de) * 2012-12-24 2014-06-30 Inficon Gmbh Verfahren und Vorrichtung zur Vakuumdruckmessung mit einer Messzellenanordnung.
    WO2015090771A1 (de) * 2013-12-20 2015-06-25 Endress+Hauser Gmbh+Co. Kg Kapazitive druckmesszelle mit mindestens einem temperatursensor und druckmessverfahren
    WO2016015781A1 (de) * 2014-08-01 2016-02-04 Vega Grieshaber Kg Druckmessanordnung und verfahren zur herstellung dieser druckmessanordnung
    CN109477828A (zh) * 2016-01-15 2019-03-15 海斯勒阿尔特曼细胞与组织科技股份有限公司 一种用于测量机械应力的细胞鼓电极装置
    EP3569995A1 (de) 2018-05-14 2019-11-20 Huba Control Ag Sensor zur erfassung von temperatur und druck
    WO2023072660A1 (de) * 2021-10-29 2023-05-04 Vega Grieshaber Kg Druckmesszelle mit auswerteelektronik und 4-20 ma schnittstelle

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN108593187A (zh) * 2018-05-23 2018-09-28 金陵科技学院 陶瓷电容式压力传感器及提高压力检测精度的方法
    DE102018117594A1 (de) 2018-07-20 2020-01-23 Ifm Electronic Gmbh Druckmesszelle mit Temperatursensor und Druckmessgerät mit einer solchen Druckmesszelle
    DE102020100675A1 (de) 2019-01-14 2020-07-16 Ifm Electronic Gmbh Kapazitiver Drucksensor mit Temperaturerfassung

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4011901A1 (de) 1990-04-12 1991-10-17 Vdo Schindling Kapazitiver drucksensor

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2615618B1 (fr) * 1987-05-22 1990-11-30 Crouzet Sa Capteur de pression a compensation numerique
    DE8815425U1 (de) * 1988-12-12 1990-04-12 Fibronix Sensoren GmbH, 2300 Kiel Überlastfester kapazitiver Drucksensor
    DE3912280A1 (de) * 1989-04-14 1990-10-18 Bosch Gmbh Robert Verfahren zum herstellen eines sensors zum bestimmen von druckkraeften
    DE4111118A1 (de) * 1991-04-03 1992-10-08 Univ Chemnitz Tech Mikromechanischer kapazitiver druckwandler
    DE4142141A1 (de) * 1991-12-20 1993-06-24 Bosch Gmbh Robert Kraftmesseinrichtung
    US5510895A (en) * 1993-03-05 1996-04-23 Sahagen; Armen N. Probe for monitoring a fluid medium
    DE9310968U1 (de) * 1993-07-22 1994-11-24 Robert Bosch Gmbh, 70469 Stuttgart Einrichtung zum Messen einer Kraft
    EP0764839A1 (de) * 1995-09-22 1997-03-26 Endress + Hauser GmbH + Co. Druck- oder Differenzdruckmessgerät
    JPH1194667A (ja) * 1997-09-19 1999-04-09 Fujikoki Corp 圧力センサ

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4011901A1 (de) 1990-04-12 1991-10-17 Vdo Schindling Kapazitiver drucksensor

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH707387A1 (de) * 2012-12-24 2014-06-30 Inficon Gmbh Verfahren und Vorrichtung zur Vakuumdruckmessung mit einer Messzellenanordnung.
    WO2014102035A1 (de) * 2012-12-24 2014-07-03 Inficon Gmbh Verfahren und vorrichtung zur vakuumdruckmessung mit einer messzellenanordnung
    US9791339B2 (en) 2012-12-24 2017-10-17 Inficon ag Method and device for measuring a vacuum pressure using a measuring cell arrangement
    WO2015090771A1 (de) * 2013-12-20 2015-06-25 Endress+Hauser Gmbh+Co. Kg Kapazitive druckmesszelle mit mindestens einem temperatursensor und druckmessverfahren
    US9976923B2 (en) 2013-12-20 2018-05-22 Endress + Hauser Gmbh + Co. Kg Capacitive pressure-measuring cell having at least one temperature sensor and pressure measurement method
    EP3094951B1 (de) * 2013-12-20 2020-10-28 Endress+Hauser SE+Co. KG Kapazitive druckmesszelle mit mindestens einem temperatursensor und druckmessverfahren
    WO2016015781A1 (de) * 2014-08-01 2016-02-04 Vega Grieshaber Kg Druckmessanordnung und verfahren zur herstellung dieser druckmessanordnung
    CN109477828A (zh) * 2016-01-15 2019-03-15 海斯勒阿尔特曼细胞与组织科技股份有限公司 一种用于测量机械应力的细胞鼓电极装置
    EP3569995A1 (de) 2018-05-14 2019-11-20 Huba Control Ag Sensor zur erfassung von temperatur und druck
    US11081284B2 (en) 2018-05-14 2021-08-03 Huba Control Ag Sensor recording temperature and pressure
    WO2023072660A1 (de) * 2021-10-29 2023-05-04 Vega Grieshaber Kg Druckmesszelle mit auswerteelektronik und 4-20 ma schnittstelle

    Also Published As

    Publication number Publication date
    DE10035346A1 (de) 2002-02-14
    EP1174696A3 (de) 2003-03-26
    EP1174696B1 (de) 2012-03-28
    DE10035346B4 (de) 2007-08-09

    Similar Documents

    Publication Publication Date Title
    EP1857800B1 (de) Druckmessverfahren mit einem Temperatursensor
    DE69111337T2 (de) Druckmassfühler.
    DE2820478C2 (de)
    DE4035371C2 (de) Kapazitiver Feuchtesensor
    DE69907423T2 (de) Druckdifferenzwandler
    EP0759547B1 (de) Drucksensor
    DE69521890T2 (de) Stabilisierter drucksensor
    DE2237535C2 (de) Druckwandler
    DE3505924C2 (de) Kapazitiver Druckmesser
    DE2117271C2 (de) Beschleunigungskompensierter kapazitiver Druckwandler
    DE10035346B4 (de) Druckmesszelle mit Temperatursensor
    DE102013209674A1 (de) Druckmessvorrichtung mit stufenförmigem hohlraum zur minimierung thermischen rauschens
    DE102013200106A1 (de) Halbleitermessvorrichtung zur Minimierung von thermischem Rauschen
    WO1986001291A1 (en) Transducer for the electrical measurement of forces, torques, accelerations, pressures and mechanical stresses
    EP2784462A1 (de) Kapazitive Druckmesszelle zur Erfassung des Druckes eines an die Messzelle angrenzenden Mediums
    DE112012000991T5 (de) Widerstandsfähige Ausführung einer Hochdrucksensoreinrichtung
    DE4103704A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
    DE4016872C2 (de) Druckaufnehmer
    DE102014211771A1 (de) Temperaturmessvorrichtung zur Erfassung einer Temperatur eines strömenden fluiden Mediums
    DE3514491C2 (de)
    DE3820878C2 (de)
    DE102013204470B4 (de) Wärmeübergangsmessgerät
    WO2009106537A1 (de) Druckwandler mit einer membran
    EP2784461B1 (de) Druckmesszelle zur Erfassung des Druckes eines an die Messzelle angrenzenden Mediums
    DE102018006392A1 (de) Sensor

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20030423

    AKX Designation fees paid

    Designated state(s): DE FR GB

    17Q First examination report despatched

    Effective date: 20051103

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 50116078

    Country of ref document: DE

    Effective date: 20120524

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20130103

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 50116078

    Country of ref document: DE

    Effective date: 20130103

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20200724

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20200727

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20200723

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50116078

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20210717

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20210717