EP1161396B1 - Procede et dispositif de bobinage d'une bobine de fil - Google Patents

Procede et dispositif de bobinage d'une bobine de fil Download PDF

Info

Publication number
EP1161396B1
EP1161396B1 EP01909582A EP01909582A EP1161396B1 EP 1161396 B1 EP1161396 B1 EP 1161396B1 EP 01909582 A EP01909582 A EP 01909582A EP 01909582 A EP01909582 A EP 01909582A EP 1161396 B1 EP1161396 B1 EP 1161396B1
Authority
EP
European Patent Office
Prior art keywords
yarn
mass
traversing
thread
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01909582A
Other languages
German (de)
English (en)
Other versions
EP1161396A1 (fr
Inventor
Reinhard Lieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP1161396A1 publication Critical patent/EP1161396A1/fr
Application granted granted Critical
Publication of EP1161396B1 publication Critical patent/EP1161396B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2821Traversing devices driven by belts or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/385Preventing edge raising, e.g. creeping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/12Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding a bobbin according to the Preamble of claim 1 and a device for performing the Method according to the preamble of claim 11.
  • the method and the device are from EP 0 235 557 (Bag. 1509) known.
  • the thread When winding a thread into a thread spool, the thread is inside the Spool width at a substantially constant peripheral speed Thread spool with a variable crossing angle on the surface of the spool stored.
  • the thread is passed through a traversing thread guide before the baffle to the coil surface within a traversing stroke back and forth.
  • a traversing thread guide before the baffle to the coil surface within a traversing stroke back and forth.
  • breathing changes in length of the traverse strokes are called so-called breathing. Breathing creates a high edge build-up (Saddle formation) of the coils prevented.
  • the length is changed the traverse strokes according to a given breathing function.
  • the Breathing function defined by the time period that is needed to Length of the traverse stroke that was set before breathing increased again to reach.
  • the breathing function is achieved through several breaths formed, which is a reciprocating movement of the traversing thread guide Define changed traverse stroke length.
  • the breathing function is the thread in many breaths on the Coil surface deposited. Due to the breathing function, the distribution of the Reversal points of the traversing thread guide or the thread on the Coil surface defined at the coil ends.
  • the breathing function directly affects the mass distribution of the thread.
  • the bobbin density of the thread bobbin is substantially different from that Mass distribution of the thread depends on the bobbin.
  • the within one Traversing stroke per unit of thread deposited on the circumference of the thread spool is however not constant, since the traversing thread guide at the end of the traversing stroke braked out of a traversing speed and after reversing again must be accelerated to the traversing speed.
  • the traversing speed is constant, is the one at the circumference of the Thread bobbin deposited thread mass must also be constant. Outside of this linear range, the one deposited on the circumference of the thread spool changes Thread mass continuously up to a maximum in the area of the turning point.
  • the method according to the invention now provides a connection between the Respiratory function and the mass distribution.
  • the particular advantage of the invention is that the End areas of the thread spool with a defined mass distribution of the thread can be wrapped.
  • Winding parameters are, for example, the thread speed Traversing speed, the crossing angle, the thread titer and the length of the Reversal range specified.
  • the theoretically wound ideal thread spool is ideally wound by calculation, the calculated mass distribution being one does not exceed the specified setpoint. From the calculated mass distribution of the thread on the theoretically wound ideal thread spool calculated distribution of the reversal points of the traversing thread guide in the Breathing function transferred. This process variant can be used predetermined mass distribution in the wound bobbin without a larger one Realize deviation.
  • the calculation of the mass distribution of the thread on the theoretically wound ideal thread spool is advantageously carried out in the following steps.
  • the thread mass deposited during a traverse stroke is calculated from the specified winding parameters. Since the thread mass is proportional to the traversing speed, a certain thread mass can be assigned to each section of the traversing stroke. This assignment is based on the coil width B.
  • the traversing stroke is divided into a plurality of mass segments with a constant width along the coil width. Each mass segment contains the thread mass stored in the mass segment, which is defined as the partial thread mass.
  • a setpoint of the mass distribution of the thread on the theoretically wound ideal thread spool to be calculated and a certain number of traversing strokes are specified.
  • the number of traversing strokes is arbitrary, with a higher number of one small deviation between the calculated theoretically wound ideal Thread spool and the later wound thread spool leads.
  • the calculated mass distribution contains a distribution of the Mass segments that serve as a measure of respiratory function.
  • the absolute The number of mass segments is determined by the number of traversing strokes defined because each traverse stroke is made up of a large number of mass segments is.
  • the breathing function which forms the distribution of the reversal points during the winding travel, can then be derived from the calculated mass distribution by the following steps.
  • the changes in length of the traversing strokes are determined from the distribution of the mass segments within the calculated mass distribution of the thread on the theoretically wound ideal thread spool. Since each point of reversal or each traverse stroke begins with a mass segment S 1 may be solely by the distribution of the mass segments S 1 relative to the package width, the length variations of the traverse strokes derived.
  • a storage algorithm is advantageously included, so that, for example, a certain change between the changes of the individual traversing strokes is maintained.
  • the Mass distribution of the thread determined on the wound thread spool.
  • the actual value of the mass distribution could be by means of a hardness tester or manually determined by a thumb test.
  • the given mass distribution can be determined whether the wound bobbin has the desired density profile.
  • a corrected one is corrected Mass distribution set and the calculation of the theoretically wound ideal bobbin. The calculation is then the Breathing function redefined so that the newly wound bobbin is targeted has changed mass distribution.
  • This process variant is special beneficial to certain profiles of the bobbin density in the wound bobbin to create.
  • a sample coil could be wound first order to quickly optimize the coil density from the actual-target comparison to get.
  • the pattern coil could only have a minimum number of Have thread layers, so that an optimization after a relatively short Winding time is possible.
  • the determination of the Breathing function and thus the distribution of the reversal points as well as the Control of the traversing thread guide carried out by a control device.
  • the Control device is connected to a drive of the traversing thread guide, wherein the drive the traversing movement and the traversing stroke of the Traversing thread guide influenced. Since both the traversing speed and also the length of the traversing stroke by the drive of the traversing thread guide are determined, the respiratory function can be carried out with high precision.
  • the drive of the traversing thread guide is directly dependent controlled by the respiratory function in such a way that the respective changes in length the traversing strokes are carried out.
  • the method according to the invention is independent of the type of winding.
  • the types of winding apply to wild winding, precision winding or Step precision winding.
  • the mean value of the game winding remains The traversing speed is essentially constant during the winding cycle.
  • the winding ratio changes (Spindle speed / traversing speed) steadily during the winding cycle.
  • a precision winding keeps the winding ratio constant.
  • Step precision winding becomes the winding ratio after one predefined program changed in stages.
  • the method according to the invention can be used both in the case of cylindrical thread spools essentially rectangular end faces as well as to form biconical bobbins with sloping faces.
  • the device according to the invention for performing the method draws are characterized by a high flexibility in the manufacture of the thread spools. in this connection the breathing functions can be adjusted individually depending on the predicted mass distributions vary slightly.
  • the control device goes with the specification of the traversing stroke and the traversing speed each from a currently specified respiratory function. This points the control device has a data memory for taking out Winding parameters and a microprocessor to calculate a Mass distribution of the thread on a theoretically wound ideal Thread spool and to determine a breathing function to change the length of the Traverse strokes on.
  • the Traversing thread guide by means of an electric motor, for example one Stepper motor or an electric torque sensor, driven.
  • an electric motor for example one Stepper motor or an electric torque sensor, driven.
  • a shortening of the The traversing stroke can thus take place at a constant traversing speed or at thread masses stored per unit of time.
  • the coupling between the traversing thread guide and the electric motor is advantageously designed as a belt drive.
  • the electric motor has a Drive pulley on which a guided over at least one pulley Belt drives.
  • the traversing thread guide is attached to the belt and is moved back and forth within the coil width.
  • FIG. 1 shows an embodiment of a device according to the invention for Implementation of the method according to the invention, as shown for example can be used in a texturing machine.
  • At the free ends of one fork-shaped coil holder 21 are two opposite centering plates 8 and 9 rotatably mounted.
  • the coil holder 21 is on a pivot axis (not here shown) pivotally mounted in a machine frame.
  • Between Centering plates 8 and 9 is a sleeve 7 for receiving a thread bobbin 6 curious; excited.
  • On the surface of the sleeve 7 or the bobbin 6 is one Driving roller 5 on.
  • the drive roller 5 is fixed on a drive shaft 11.
  • the Drive shaft 11 is coupled to roller motor 10 at one end.
  • the Roller motor 10 drives the drive roller 5 with a substantially constant Speed.
  • the sleeve 7 or the bobbin 6 is now over friction driven by the drive roller 5 at a winding speed that a Winding a thread 1 at a substantially constant thread speed allows.
  • the winding speed remains constant during the winding cycle.
  • a traversing device 2 is arranged in front of the drive roller 5.
  • the Traversing device 2 is constructed as a so-called belt traverse. in this connection a traversing thread guide 3 is attached to an endless belt 16.
  • the Belt 16 is parallel to the sleeve between two pulleys 15.1 and 15.2 7 led. In the belt plane there is a part wrapped around the belt Drive pulley 14 arranged parallel to the pulleys 15.1 and 15.2.
  • the drive pulley 14 is on a drive shaft 13 of an electric motor 12 attached.
  • the electric motor 12 drives the drive pulley 14 in an oscillating manner, so that the traversing thread guide 3 in the area between the pulleys 15.1 and 15.2 back and forth.
  • the electric motor 12 is a Control device 4 controllable.
  • the control device 4 is connected to a arranged on the coil holder 21 sensor 17, which the speed of the Sleeve 7 detects and gives as a signal from the control device 4.
  • the sensor 17 is designed as a pulse generator, who senses a catch groove 19 in the centering plate 8.
  • the catch groove 19 belongs to a catching device 18 which catches and catches the thread 1 at the beginning of the winding travel Angling the thread on the sleeve 7 allows.
  • the pulse generator 17 gives one signal per revolution depending on the always recurring catch groove 19. These pulses are in the control device 4th converted to evaluate the speed of the sleeve 7.
  • the thread 1 becomes the thread spool 6 the sleeve 7 wound.
  • the thread is in a guide groove of the Traversing thread guide 3 out.
  • the traversing thread guide 3 is within the Spool width of the bobbin 6 back and forth by the traversing device 2.
  • the electric motor 12 which can be designed, for example, as a stepper motor could be controlled.
  • the increasing bobbin diameter of the bobbin 6 becomes made possible by a pivoting movement of the coil holder 21.
  • the coil holder for this purpose, 21 has force transmitters (not shown here) which, on the one hand, have a Drive the thread spool required contact pressure between the thread spool 6 and generate the drive roller 5 and on the other hand a pivoting movement of the Allow coil holder 21.
  • the traversing speed of the traversing thread guide 3 and the length of the traversing stroke are predetermined by the controller 4, which leads to a corresponding activation of the electric motor 12.
  • the winding parameter E is given.
  • the winding speed, the diameter of the drive roller, the traversing speed, the course of the traversing speed within a traversing stroke and the thread titer of the thread to be wound can be specified as the winding parameters E.
  • the winding parameters E are stored in a data memory 24 within the control device 4.
  • the control device 4 has a microprocessor 25.
  • a calculation of a mass distribution F of the thread on a theoretically wound ideal thread spool is calculated from a predetermined mass distribution F Soll of the thread on a theoretically wound ideal thread spool and from a predetermined number n of traversing strokes H.
  • a breathing function Z is then derived from the calculation of the mass distribution F, which causes the length changes of the traversing stroke when the electric motor 12 is actuated.
  • the electric motor 12 In order for the traversing thread guide 3 to be positioned as precisely as possible by the To achieve traversing drive 2, the electric motor 12 with the control device 4 connected via a signal line through which the control device 4 an angular position of the rotor shaft of the electric motor 12 is supplied in each case.
  • This actual position of the electric motor is in the control of a target position of the Electric motor included, so that always an adjustment and a very precise Control of the electric motor is guaranteed.
  • a view of a cylindrical thread spool is shown schematically.
  • the thread spool 6 is wound on the sleeve 7.
  • the thread bobbin has a bobbin width B.
  • the bobbin width B is formed by a maximum traversing stroke H max .
  • the traversing stroke H denotes the distance in which the traversing thread guide is guided back and forth.
  • the traversing thread guide is driven at a predetermined traversing speed.
  • the traversing thread guide is braked shortly before reversal and accelerated again in the opposite direction.
  • This thread reversal is shown schematically on the surface of the thread spool 6 using the example of some thread layers in FIG. 2.
  • the point on the bobbin surface that marks the change in direction of the thread deposit due to the reversal of the traversing thread guide is referred to as the thread reversal point U.
  • the thread reversal U at the end of the bobbin can extend over a longer distance on the bobbin surface. In this case the thread reversal point is to be equated with the turning point of the thread deposit.
  • a thread reversal point U 1 is entered as an example on the end face 22 of the bobbin 6.
  • a thread reversal point U ' 1 generated with the same traverse stroke H max is entered on the opposite end face 23.
  • the thread reversal points U 1 and U ' 1 are formed on the outer edge of the thread spool, the traversing thread guide passing through the traversing stroke H max .
  • the traversing stroke H max is first reduced to a minimal traversing stroke according to a predetermined breathing function and then extended to the original value H max of the traversing stroke.
  • an arbitrary traversing stroke H is shown as an example, which is shortened by the change in length A at both coil ends compared to the maximum traversing stroke H max .
  • the thread is deposited in the thread reversal at the reversal points U on the left side of the thread spool 6 and in U 'on the right side of the thread spool 6.
  • a breathing function Z is shown schematically as an example for a cycle L in a diagram.
  • the traverse stroke H is entered on the ordinate and the coil circumference ⁇ * D on the abscissa.
  • the abscissa simultaneously represents one of the end faces of the thread spool 6.
  • the thread is deposited in the thread reversal at point U 1 in a traversing stroke with the traversing stroke length H max .
  • the change in the traversing stroke in the subsequent traversing strokes now takes place according to a breathing function Z.
  • the breathing function Z thus defines the position of the thread reversal points U of the individual traversing strokes H.
  • the course of the breathing function Z shown in FIG. 3 is exemplary. A large number of changes in length A of the traversing strokes are carried out within one breathing cycle L.
  • the cycle L is ended as soon as the original maximum traversing stroke H max is reached again.
  • a large number of breathing cycles are carried out during the winding of the thread spool.
  • a constant thread mass is deposited in the area in which the traversing speed is constant.
  • the deposited thread mass M increases continuously up to a maximum value in the area of the thread reversal U.
  • the traversing stroke H is divided into a large number of mass segments S divided along the coil width B.
  • the mass segments S are given a constant width ⁇ B.
  • a thread mass M deposited within the mass segment S is assigned to each mass segment S thus formed. So the mass segment S 1 receives the thread mass M 1 , the mass segment S 2 the thread mass M 2 etc. up to a mass segment S i with the thread mass M i .
  • the mass segment S i lies in a range in which the traversing speed is constant.
  • the assigned thread mass M i will thus no longer change until the opposite end face of the bobbin is reached.
  • the distribution of the mass distribution on the opposite end face is analogous to that shown in FIG. 4.
  • the mass distribution F is advantageously calculated using standardized and therefore dimensionless thread masses.
  • the partial thread mass m of a mass segment is formed by the ratio between the absolute thread mass M of said mass segment and the absolute thread mass M i of a mass segment S i lying in the central region of the bobbin width, in which a constant traversing speed is present.
  • the partial thread mass of the mass segments will assume the values m> 1.
  • the further procedure for determining the respiratory function Z is shown schematically in FIG. 6 using a signal plan.
  • the mass distribution F of the thread is now calculated on a theoretically wound ideal thread spool.
  • a nominal value of the mass distribution F Soll of the thread is first specified on the theoretically wound ideal thread spool.
  • a maximum number n of the traversing strokes on which the ideal winding of the thread wound is based is predefined.
  • the mass segments S 1 , S 2 to S i are added to a multiple corresponding to the number n of traversing strokes.
  • the mass segments are distributed in compliance with the respective traversing strokes in such a way that the calculated total mass distribution on the spool does not exceed the predetermined target value F target .
  • the calculated distribution of the mass segments includes the traversing stroke changes, so that the calculated mass distribution F is a measure of the sum of the changes in length A of the traversing strokes.
  • the changes in length of the traverse strokes determined from the mass distribution are then determined in the breathing function Z required for the coil travel.
  • a filing algorithm is taken into account, which contains a basic distribution of the length changes, for example to avoid thread overlaps.
  • the length changes A of the traversing strokes can be determined, for example, in such a way that the coil width B is divided into a large number of small coil sections with a constant width.
  • the number of mass segments S 1 contained therein is determined in each bobbin section. This results in a distribution of the mass segments S 1 between the maximum traverse stroke H max and a minimum traverse stroke H min .
  • the number of mass segments S 1 is equal to the number of changes in length A of the traverse strokes.
  • the respiration function Z can thus be determined directly from the distribution of the mass segments S 1 , taking into account a storage algorithm.
  • the wound mass distribution F actual can, for example, be determined manually by measuring means.
  • the determined mass distribution F is the wound thread spool can then be given to the microprocessor.
  • a comparison is made within the microprocessor between the wound mass distribution F actual and the target value of the mass distribution F target .
  • the mass distribution of the thread mass M on the thread spool is shown in a diagram in FIG. 5.
  • the thread mass M is plotted on the ordinate and the bobbin width B on the abscissa.
  • the ordinate while an end of the coil.
  • a target value for the mass distribution of the target value F is determined, which should be in accordance with the diagram of the entire winding width of 100%.
  • the mass distribution F actual determined in the wound bobbin is also entered, with a deviation of maximum 10% between the target value F target and the actual value F actual being found at the ends of the bobbins.
  • a correction value of the mass distribution F Kor can now be generated.
  • the deviation between the target value F target and the actual value F actual is added to the relevant coil sections of the target curve. This results in the corrected specification of the mass distribution F Kor .
  • the breathing function Z is recalculated in accordance with the previous description of FIG. 6. The newly calculated breathing function Z is then used as the basis for the further coil travel to change the length of the traversing strokes.
  • the method according to the invention thus represents a possibility of targeting the Mass distribution of the thread mass on the thread spool to influence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)

Abstract

L'invention concerne un procédé et un dispositif de bobinage d'une bobine de fil (6), dans lequel un fil (1) d'entrée est guidé en va-et-vient au moyen d'un guide-fil (3) à déplacement en va-et-vient suivant une course de va-et-vient déterminée, et est déposé sur la bobine de fil (6). En vue d'éviter la formation d'arêtes élevées, la course de va-et-vient du guide-fil peut être modifiée en longueur, sur une marge portant sur la largeur de la bobine, durant le processus de bobinage. Les variations de longueur de la course de va-et-vient s'effectuent pendant le déplacement de la bobine, suivant une fonction de respiration (Z) prédéterminée. Conformément à l'invention, la fonction de respiration (Z) est déterminée à partir d'une distribution de masse (F) du fil sur une bobine de fil à enroulement théorique idéal, de manière à fournir une densité de bobine prédéterminée de ladite bobine de fil.

Claims (13)

  1. Procédé d'enroulement d'une bobine de fil, dans lequel un fil en marche est guidé en va-et-vient à l'aide d'un guide-fil de va-et-vient à l'intérieur d'une course de va-et-vient (H) et est déposé sur la bobine de fil, dans lequel durant l'enroulement (cycle de bobinage) la course de va-et-vient (H) du guide-fil de va-et-vient est modifiable dans sa longueur à l'intérieur de la largeur de la bobine de fil (largeur de bobine) (B), les modifications de longueur (A) de la course de va-et-vient (H) durant le cycle de bobinage étant effectuées selon une fonction de respiration (Z) prédéterminée, caractérisé en ce que la fonction de respiration (Z) est déterminée à partir d'une distribution de masse (F) du fil sur une bobine idéale de fil enroulée théoriquement.
  2. Procédé selon la revendication 1, caractérisé en ce que la distribution de masse (F) du fil sur la bobine idéale de fil enroulée théoriquement est calculée par un microprocesseur à partir de paramètres d'enroulement prédéterminés (E) et en respectant une valeur désirée prédéterminée (Fsoll) de la distribution de masse et est introduite dans la fonction de respiration (Z).
  3. Procédé selon la revendication 2, caractérisé en ce que le calcul de la distribution de masse(F) du fil sur la bobine idéale de fil enroulée théoriquement est effectué dans les étapes suivantes :
    3.1 Calcul de la masse de fil (M) déposée lors d'une course de va-et-vient (H) à partir des paramètres d'enroulement prédéterminés (E) ;
    3.2 subdivision de la course de va-et-vient (H) le long de la largeur de bobine (B) en une multiplicité de segments de masse (S) à largeurs constantes (δB) et une masse partielle de fil (m) ;
    3.3 prescription d'une valeur désirée (Fsoll) de la distribution de masse du fil sur la bobine idéale de fil enroulée théoriquement et prescription d'un nombre de courses de va-et-vient (Hn) et
    3.4 addition des segments de masse (S) et des masses partielles de fil (m) pour former la distribution de masse (F), de telle manière qu'en respectant le nombre prédéterminé des courses de va-et-vient (Hn) la valeur désirée (Fsoll) de la distribution de masse est obtenue.
  4. Procédé selon la revendication 3, caractérisé en ce que la détermination de la fonction de respiration (Z) est effectuée dans les étapes suivantes :
    4.1 Détermination des modifications de longueur (A) des courses de va-et-vient à partir de la distribution des segments de masse (S) à l'intérieur de la distribution de masse (F) calculée du fil sur la bobine idéale de fil enroulée théoriquement et
    4.2 reproduction des changements de longueur (A) des courses de va-et-vient dans la fonction de respiration (Z) eh considération d'un algorithme de dépose.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce que la masse partielle de fil (m) d'un des segments de masse (S) est formée par le rapport entre la masse absolue de fil (m) du segment de masse (S) et la masse absolue (Mi) d'un segment de masse (S) se trouvant dans la zone centrale de la largeur de bobine.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la distribution de masse (Fist) (Fist, distribution de masse réelle) du fil sur la bobine de fil enroulée est déterminée et est comparée à la distribution de masse prédéterminée (Fsoll) du fil sur la bobine idéale de fil enroulée théoriquement, en ce que dans le cas d'écarts entre la distribution de masse (Fist) du fil sur la bobine de fil enroulée et la distribution de masse (Fsoll) du fil sur la bobine idéale de fil enroulée théoriquement une distribution de masse corrigée (Fkorr) du fil sur la bobine idéale de fil enroulée théoriquement est déterminée et en ce que la fonction de respiration(Z) est déterminée à partir de la distribution de masse corrigée (Fkorr) du fil sur la bobine idéale de fil enroulée théoriquement.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le guide-fil de va-et vient est entraíné de manière oscillante par un entraínement pouvant être commandé qui est commandé par un moyen de commande, le moyen de commande présentant le microprocesseur pour déterminer la fonction de respiration (Z).
  8. Procédé selon la revendication 7, caractérisé en ce que le moyen de commande commande l'entraínement du guide-fil de va-et vient en fonction de la fonction de respiration (Z) pour effectuer les modifications de longueur (A) des courses de va-et-vient.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que lors du cycle de bobinage la vitesse de va-et-vient peut être modifiée selon un programme prédéterminé de commande.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que lors du cycle de bobinage la course de va-et-vient peut être modifiée pour former une bobine biconique.
  11. Dispositif pour la mise en oeuvre du procédé selon l'une des revendications 1 à 10, avec un tube entraíné (7), sur lequel à l'intérieur d'une largeur de bobine (B) le fil (1) est enroulé en une bobine de fil (6), avec un guide-fil de va-et-vient (3) mobile qui à l'aide d'un entraínement (12) peut être guidé en va-et-vient à l'intérieur d'une course de va-et-vient (H) pouvant être modifiée dans sa longueur, et avec un moyen de commande (4) pour commander l'entraínement (12), caractérisé en ce que le moyen de commande (12) présente une mémoire de données (24) pour mémoriser des paramètres d'enroulement (E) et un microprocesseur (25) pour calculer une distribution de masse (F) du fil sur une bobine idéale de fil enroulée théoriquement et pour déterminer une fonction de respiration (Z) pour modifier la longueur des courses de va-et-vient.
  12. Dispositif selon la revendication 11, caractérisé en ce que l'entraínement du guide-fil de va-et-vient (3) est un moteur électrique (12) qui commande le mouvement de va-et-vient et la course de va-et-vient du guide-fil de va-et-vient (3) et qui peut être commandé par le moyen de commande (4).
  13. Dispositif selon la revendication 12, caractérisé en ce que le moteur électrique (12) présente une poulie motrice (14) qui entraíne une courroie (16) guidée par au moins une poulie à courroie (15), courroie (16) sur laquelle le guide-fil de va-et-vient (3) est fixé.
EP01909582A 2000-01-13 2001-01-08 Procede et dispositif de bobinage d'une bobine de fil Expired - Lifetime EP1161396B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10001085 2000-01-13
DE10001085 2000-01-13
PCT/EP2001/000104 WO2001051396A1 (fr) 2000-01-13 2001-01-08 Procede et dispositif de bobinage d'une bobine de fil

Publications (2)

Publication Number Publication Date
EP1161396A1 EP1161396A1 (fr) 2001-12-12
EP1161396B1 true EP1161396B1 (fr) 2003-08-20

Family

ID=7627348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909582A Expired - Lifetime EP1161396B1 (fr) 2000-01-13 2001-01-08 Procede et dispositif de bobinage d'une bobine de fil

Country Status (9)

Country Link
US (1) US7163174B2 (fr)
EP (1) EP1161396B1 (fr)
KR (1) KR100708245B1 (fr)
CN (1) CN1263670C (fr)
AU (1) AU3727801A (fr)
DE (1) DE50100508D1 (fr)
TR (1) TR200301809T4 (fr)
TW (1) TW512124B (fr)
WO (1) WO2001051396A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342266B4 (de) * 2002-09-25 2016-02-04 Saurer Germany Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule
FR2845072B1 (fr) * 2002-09-26 2005-05-20 Rieter Icbt Procede pour la depose d'un fil sur un support
US7802749B2 (en) 2007-01-19 2010-09-28 Automated Creel Systems, Inc. Creel magazine supply system and method
JP2010269915A (ja) * 2009-05-22 2010-12-02 Murata Machinery Ltd 糸巻取装置及びパッケージの回転不良検出のためのアラーム閾値決定方法
CN102069950A (zh) * 2010-12-17 2011-05-25 东莞市协永福实业有限公司 一种新式单丝卷绕成形方法
KR101543679B1 (ko) * 2011-02-21 2015-08-12 무라다기카이가부시끼가이샤 필라멘트 와인딩 장치
CN103496644B (zh) * 2013-09-04 2015-10-21 中国海洋石油总公司 钢丝绳缠绕控制方法及系统
CN105712126B (zh) * 2014-12-05 2019-09-10 舍弗勒技术股份两合公司 纺织机、自动绕线器及纱线引导机构
CN105858332A (zh) * 2016-04-26 2016-08-17 磐安县科力软管有限公司 自动收线装置
CN109573191B (zh) * 2018-11-29 2020-11-24 泉州市惠安县铸铭贸易有限公司 一种封箱设备的胶带卷定位机构
CN110386503A (zh) * 2019-08-22 2019-10-29 江苏工程职业技术学院 一种络筒机卷绕导纱装置
CN111231288B (zh) * 2020-01-17 2021-12-10 大连理工大学 一种橡胶缠绕成型胶带宽度计算方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2937601A1 (de) * 1979-09-18 1981-04-02 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Verfahren zum aufwickeln von faeden
JPS5817066A (ja) * 1981-07-22 1983-02-01 Teijin Seiki Co Ltd 糸条の巻取方法
JPS59133173A (ja) 1983-01-18 1984-07-31 Toray Ind Inc 炭素質繊維パツケ−ジ
EP0173118B1 (fr) * 1984-08-18 1988-04-20 B a r m a g AG Bobine cylindrique à fils croisés
JPS61145075A (ja) 1984-12-19 1986-07-02 Murata Mach Ltd 糸の巻取装置
US4771960A (en) 1985-02-20 1988-09-20 Teijin Seiki Co., Ltd. Method for winding a cross-wound package
EP0235557B1 (fr) 1986-01-31 1990-03-28 B a r m a g AG Méthode pour pelotonner un fil pour former une bobine croisée
DE3825413A1 (de) * 1988-07-27 1990-02-01 Schlafhorst & Co W Verfahren zur fadenverlegung auf einer kreuzspule
JP2511711B2 (ja) * 1989-09-30 1996-07-03 帝人製機株式会社 糸条の巻取方法
DE4310905A1 (de) * 1993-04-02 1994-10-06 Schlafhorst & Co W Verfahren und Vorrichtung zur Fadenverlegung auf einer Kreuzspule
DE19625511A1 (de) * 1996-06-26 1998-01-02 Schlafhorst & Co W Verfahren und Vorrichtung zum Herstellen von Kreuzspulen in wilder Wicklung
DE19625513A1 (de) 1996-06-26 1998-01-02 Schlafhorst & Co W Verfahren und Vorrichtung zum Herstellen von Kreuzspulen
TW368490B (en) * 1997-02-27 1999-09-01 Barmag Barmer Maschf Method of and apparatus for winding a continuously advancing textile yarn into a core supported package by controlling the acceleration and/or deceleration of the yarn guide to modify the yarn deposit in the package edges
TW496849B (en) * 1998-03-20 2002-08-01 Barmag Barmer Maschf Method of and apparatus for winding a continuously advancing textile yarn into a core supported package
DE10021963A1 (de) * 1999-05-14 2000-12-21 Barmag Barmer Maschf Verfahren und Vorrichtung zum Aufwickeln eines kontinuierlich zulaufenden Fadens

Also Published As

Publication number Publication date
EP1161396A1 (fr) 2001-12-12
TW512124B (en) 2002-12-01
US20020033428A1 (en) 2002-03-21
WO2001051396A1 (fr) 2001-07-19
CN1358155A (zh) 2002-07-10
KR20010114220A (ko) 2001-12-31
AU3727801A (en) 2001-07-24
TR200301809T4 (tr) 2004-01-21
US7163174B2 (en) 2007-01-16
DE50100508D1 (de) 2003-09-25
KR100708245B1 (ko) 2007-04-16
CN1263670C (zh) 2006-07-12

Similar Documents

Publication Publication Date Title
DE10021963A1 (de) Verfahren und Vorrichtung zum Aufwickeln eines kontinuierlich zulaufenden Fadens
EP1161396B1 (fr) Procede et dispositif de bobinage d'une bobine de fil
DE112007001233B4 (de) Verfahren und Vorrichtung zur Garnchangierung bei der Aufwicklung des Garns auf eine Spule
EP1175364B1 (fr) Procede et dispositif pour enrouler un fil continu
EP0173118B1 (fr) Bobine cylindrique à fils croisés
DE102008060788A1 (de) Verfahren und Vorrichtung zum Wickeln einer Fadenspule
AT502782B1 (de) Bandaufwickelverfahren
EP2238062B1 (fr) Procédé et dispositif de fabrication de bobines à enroulements croisés
WO2005095246A1 (fr) Procede pour bobiner un fil et machine de bobinage
EP1379462B1 (fr) Procede pour faire fonctionner une machine a enrouler des fils et dispositif d'enroulement associe
EP1758807A1 (fr) Procede et dispositif pour enrouler une bobine de fil
WO2012130647A1 (fr) Procédé et dispositif d'enroulement sur une bobine à joues marginales
DE3513796C2 (fr)
EP0710616A1 (fr) Procédé et dispositif pour enrouler des fils
DD158636A5 (de) Vorrichtung zum aufspulen eines fadens oder dergleichen auf eine spulenhuelse mittels einer kehrgewindewalze
DE3210244A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
DE4024218A1 (de) Verfahren und einrichtung zum herstellen einer kreuzspule
EP1514824A1 (fr) Bobine croiséé et procédé pour la fabrication d'une telle bobine
EP0986511A1 (fr) Procede pour enrouler un fil
DE10104679A1 (de) Verfahren zum Wickeln einer Fadenspule
DE1535094A1 (de) Verfahren und Vorrichtung zum Aufwickeln von Chemiefaeden
EP3374305B1 (fr) Dispositif de pose de fil
DE4430566A1 (de) Verfahren zum Aufwickeln eines Fadens einer geradzylindrischen Kreuzspule
DE19835888B4 (de) Verfahren zum Aufwickeln eines Fadens
DE3219880A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50100508

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030820

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAURER GMBH & CO. KG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070102

Year of fee payment: 7

Ref country code: GB

Payment date: 20070102

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070104

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20070108

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061227

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108