EP1155741B1 - Procédé de préparation de catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non-saturés - Google Patents

Procédé de préparation de catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non-saturés Download PDF

Info

Publication number
EP1155741B1
EP1155741B1 EP01106276A EP01106276A EP1155741B1 EP 1155741 B1 EP1155741 B1 EP 1155741B1 EP 01106276 A EP01106276 A EP 01106276A EP 01106276 A EP01106276 A EP 01106276A EP 1155741 B1 EP1155741 B1 EP 1155741B1
Authority
EP
European Patent Office
Prior art keywords
niobium
catalyst
catalyst precursor
paste
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01106276A
Other languages
German (de)
English (en)
Other versions
EP1155741A1 (fr
Inventor
Mazhar Abdulwahed
Khalid El Yahyaoui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Basic Industries Corp
Original Assignee
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Basic Industries Corp filed Critical Saudi Basic Industries Corp
Publication of EP1155741A1 publication Critical patent/EP1155741A1/fr
Application granted granted Critical
Publication of EP1155741B1 publication Critical patent/EP1155741B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to methods of making improved ammoxidation catalysts for the production of unsaturated nitriles from their corresponding olefins.
  • antimony plays the role of a donor and thus could improve the selectivity of the catalyst. Antimony can also play an additional role of isolating the vanadium active centers which are highly active towards the oxidation reaction. This leads to minimizing the total oxidation reaction and directs the reaction towards the desired product.
  • U.S. Patent No. 4,040,978 relates to a catalyst for ammoxidation reactions containing bismuth molybdate mixed with other elements.
  • U.S. Patent No. 4,405,498 relates to a catalyst for oxidation and ammoxidation reactions containing BiMoVSb with additional elements selected from groups IA, IIA, IVA, VA, VIA, IB, IVB and VIIB of the periodic Table of the Elements. Elements from group VB of the periodic table are not disclosed in this patent.
  • U.S. Patent No. 4,600,541 relates to a catalyst comprising FeBiMo and promoters such as Pd, Pt, Os and Ir.
  • European Patent Publication No. 0 475 351 A1 relates to a catalyst containing KFeSbMo which could be promoted by Nb and W. The best yield was achieved with a catalyst of the formula Fe 10 Sb 10 Mo 9 Bi 2 K 0.6 Ni 5.5 W 0.3 B 0.75 P 0.75 (SiO 2 ) 70 .
  • European Patent Publication No. 0 573 713 B1 relates to a catalyst comprising MoBiFeCoNiCr promoted with at least three other promoters selected from alkali metals, alkaline earth metals, rare earth metals, Nb, Tl and As, with Fe, Co, Ni and Cr as essential catalyst components.
  • U.S. Patent No. 5,688,739 relates to a multi-component catalyst.
  • the base of this catalyst is bismuth molybdenum. Germanium was added as an essential element. The use of niobium was not disclosed in this patent.
  • U.S. Patent No. 6,017,846 is directed to mixed oxide catalysts comprising Bi, Mo, V, Sb, Nb and Ag for the production of unsaturated nitriles prepared from a mixed oxide hydrates solution which has not been subjected to any heat treatment.
  • U.S. Patent No. 5,198,580 is directed to a process for partial oxidation of propane to yield acrylic acid, propylene, acrolein and acetic acid by contacting propane in admixture with a molecular oxygen-containing gas in a reaction zone with an acidic solid catalyst with a similar composition of the catalyst of the present invention.
  • the present invention relates to an improved method for preparing a catalyst for the production of unsaturated nitriles from their corresponding olefins.
  • the catalyst has the following empirical formula set forth below: Bi a Mo b V c Sb d Nb e A f B g O x , wherein
  • the numerical values of a , b, c, d, e, f, g, and x represent the relative gram-atom ratios of the elements, respectively, in the catalyst, where x is a number required to satisfy the valence requirements of the other elements.
  • the elements are present in combination with oxygen, preferably in the form of various oxides.
  • One aspect of the invention relates to methods for preparing catalysts for the production of unsaturated nitrites.
  • One embodiment of the invention relates to a method for preparing a catalyst for olefin ammoxidation, said catalyst containing bismuth, molybdenum, vanadium, antimony, and niobium, comprising the steps of:
  • the catalyst has the following empirical formula: Bi a Mo b V c Sb d Nb e A f B g O x , wherein:
  • the vanadium oxide is V 2 O 5 and/or the antimony oxide is Sb 2 O 3 .
  • the calcining in step (a) is at a temperature ranging from 600 to 950°C, more preferably 700 to 850°C, even more preferably from 740 to 780°C and most preferred about 750°C.
  • the calcining in step (a) is in the presence of air and/or oxygen.
  • the niobium-molybdenum solution is prepared at a pH of 3.0 to 10, more preferably a pH of 3.5 to 9, even more preferably a pH of 3.5 to 5.
  • step (c) comprises adding bismuth to said niobium-molybdenum solution and precipitating said mixed oxide hydrates at room temperature and without heat treating of said mixed oxide hydrates.
  • step (c) comprises rash co-precipitation of bismuth, niobium, and molybdenum mixed oxide hydrates. More preferably, step (c) comprises adding a solution containing bismuth to said niobium-molybdenum solution.
  • the support comprises pre-acidified silica.
  • step (d) comprising incorporating said vanadium antimonate phase and said mixed oxide hydrates in pre-acidified silica colloidal.
  • the method further comprises boiling said catalyst precursor mixture to form said catalyst precursor paste.
  • the stirring in step (e) is vigorous stirring, as opposed to gentle or mild stirring.
  • the catalyst precursor paste is dried at a temperature ranging from 80°C to 200°C, preferably from 100°C to 150°C, more preferably from 110°C to 130°C and most preferred about 120°C.
  • the calcining of said dried catalyst precursor material is at a temperature ranging from 450 to 650°C, more preferably from 500 to 600 °C, even more preferably about 550°C.
  • the calcining of said dried catalyst precursor material is under an airflow or in the presence of air.
  • the catalysts of the invention can be used with or without a support.
  • the catalyst is a supported catalyst.
  • Suitable supports for the catalysts include alumina, silica, titania, zirconia, zeolites, silicon carbide, Mo, carbide, molecular sieves and other micro/nonporous materials, and mixtures thereof.
  • the supported catalyst When used on a support, the supported catalyst usually comprises from about 10 to 50% by weight of the catalyst composition, with the remainder being the support material.
  • the support is selected from silica, alumina, zirconia, titania, alundum, silicon carbide, alumina-silica, inorganic phosphates, silicates, aluminates, borates and carbonates, pumice, montmorillonite, or mixtures thereof. More preferably, the support is silica.
  • the resultant catalyst comprises 40-70% by weight support.
  • the catalyst contains niobium derived from niobium pentoxide or niobium derived from a niobium source soluble in water.
  • the niobium-molybdenum solution is prepared using niobium derived from niobium pentoxide or using niobium derived from a niobium source soluble in water.
  • step (a) comprises drying said paste at temperature ranging from 80°C to 200°C, more preferably from 100°C to 150°C, even more preferably from 110°C to 130°C and most preferred about 120°C.
  • One particularly preferred embodiment of the invention relates to a method of making an improved ammoxidation catalytic system for the production of unsaturated nitriles from their corresponding olefins, in particular, for the production of acrylonitrile from propylene. More specifically, the present invention is directed to a method of making an improved ammoxidation catalyst containing niobium as an essential element for enhancing activity and selectivity of the catalyst system.
  • Another preferred embodiment of the invention relates to methods of making the catalysts described in copending U.S. Patent No. 6,037,304, issued March 14, 2000.
  • ammoxidation catalyst prepared by the method of the invention is used for the catalytic preparation of acrylonitrile or metha acrylonitrile by the reaction of propylene or isobutylene with molecular oxygen and ammonia at a temperature of between about 200 to 600°C
  • the process achieves a propylene conversion of at least 65%, more preferably at least 70% and most preferred at least 75% using the catalytic system of the invention.
  • the selectivity in mol % to acrylonitrile is greater than 80%, more preferably greater than 85%.
  • the yield of acrylonitrile in mol% is preferably greater than 50%, more preferably greater than 55%, even more preferably greater than 60% and most preferred greater than 65%.
  • the examples describe the preferred embodiments of the inventive method, which result in a final catalyst having improved performance.
  • the catalysts prepared in the Examples have the empirical formula: BiMoV 0.095 Sb 0.19 Nb 0.21 O x /50%SiO 2 .
  • the sequences of the preparation method are the same, while the conditions such as temperature and pH of the intermediate solutions are different.
  • Example 1 (This example does not form part of the invention and is for illustrative purpose only)
  • the catalyst of this example was prepared according to the following procedure: Part A: Formation of Vanadium Antimonate 10.2g of Sb 2 O 3 was slurried in 20ml water along with 3.18g V 2 O 5 . The mixture was boiled until a paste was formed. The paste was then dried at 120°C and calcined under airflow at 760°C for 2 hrs.
  • Part B Precipitation of Bismuth, Niobium and Molybdenum Mixed Oxide Hydrates
  • Part A 3.639 g of Part A, and the filter cake of Part B were added to Part C under vigorous stirring. The mixture was kept under vigorous stirring for 1 hour followed by boiling until paste formation. The paste was then dried at 120°C and calcined under an airflow at 550°C.
  • Example 2 The catalyst of Example 2 was prepared according to same procedure followed in Example 1. However, while preparing Part C and after the addition of bismuth nitrate solution and ammonium hydroxide to the niobium/molybdenum solution, the resultant mixture was stirred for one hour without heating.
  • the catalyst of Example 3 was prepared according to same procedure followed in Example 2, except that the pH of niobium/molybdenum solution was adjusted to 2.9.
  • Example 4 The catalyst of Example 4 was prepared according to same procedure followed in Example 3, except that Part A was prepared by boiling the slurry under refluxing until the mixture turns greenish-brown in color according to U.S. Patent 4,405,498.
  • Example 5 The catalyst of Example 5 was prepared according to the same procedures followed in Example 3, except that bismuth nitrate penta hydrate was added directly to the niobium/molybdenum solution without prior dissolving.
  • Example 6 The catalyst of Example 6 was prepared according to same procedure followed in Example 3, except that 148.7g of silica colloidal 30wt% was used for Part C preparation, and the pH of niobium/molybdenum solution was equal to 4.0.
  • Example 7 The catalyst of Example 7 was prepared according to same procedure followed in Example 3, except that 148.7g of silica colloidal 30wt% was used for Part C preparation, and its pH was adjusted to 9.3. Catalyst Activity Results Example No. Propylene Conversion Acrylonitrile Yield (%) Acrylonitrile selectivity (%) 1 (Comparative) 85.0 72.5 85.4 2 96.4 77.0 79.8 3 85.6 72.3 84.5 4 80.8 68.8 85.2 5 86.3 68.8 79.7 6 95.0 77.7 81.8 7 94.9 78.1 82.3
  • heating the precipitation product of bismuth, molybdenum and niobium is not advised at this stage of the preparation. It is believed that the heating decomposes/destroys polymeric molybdenum oxide hydrate species before being grown in an active crystalline form along with the other elements. Preferably, the resultant mixed hydrate oxides are produced without heat post-treatment
  • the pH of the niobium/molybdenum solution is also shown to play an important role in the catalyst preparation. This is demonstrated by comparing the results of Examples 2 and 3, as well as the results of Examples 3 and 6. Increasing the pH from 2.6 (Example 3) to 3.8 (Example 2) or 4.0 (Example 6) results in a dramatic increase of catalyst activity expressed in product yield. Optimum pH is expected to be in the range of 3.5 to 10. However, it is noted in Example 7 that a further increase of the pH to 9.3 did not appreciably change the catalyst performance compared with a pH of 4.0 (Example 6).
  • One preferred embodiment employs the method set forth in the U.S. Patent 4,405,498 which comprises the oxidation/reduction reaction between vanadium oxide (V 2 O 5 ) and antimony oxide (Sb 2 O 3 ), where a slurry of the oxides is boiled until the contained solids turn greenish-brown, indicating the interaction or partial reaction of the two metal oxides. This is followed by further drying and calcination between 550°C and 750°C. Examples 3 and 4 demonstrate that only small induction of the reaction of both metal oxides is advised in the slurry reaction for a better catalyst performance.
  • the mixed oxide hydrates of bismuth, molybdenum, and niobium are coprecipitated rapidly by rash or quick addition of bismuth nitrate solution to the niobium/molybdenum solution.
  • the combining of a solution of bismuth and a niobium/molybdenum solution results in a more rapid precipitation.
  • the rapid coprecipitation improves the resultant mixed oxide hydrates. This is a clearly demonstrated by comparing the results of Examples 3 and 5.
  • Example 5 bismuth nitrate penta hydrate was directly added to the niobium/molybdenum solution without prior dissolving and resulted in delayed/slow precipitation.
  • Example 3 Bi(NO 3 ) 3 5H 2 O was dissolved in 92ml water with 15ml HNO 3 and the bismuth solution was then added to the niobium/molybdenum solution. The yield achieved in Example 3 is greater than that achieved in Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (41)

  1. Procédé de préparation d'un catalyseur pour une ammoxydation d'oléfines, ledit catalyseur contenant du bismuth, du molybdène, du vanadium, de l'antimoine, et du niobium, comprenant les étapes consistant :
    (a) à préparer une phase d'antimoniate de vanadium, en chauffant une suspension d'oxyde de vanadium et d'oxyde d'antimoine, en formant ainsi une pâte de vanadium/antimoine puis en séchant la pâte et en la calcinant pour former ladite phase d'antimoniate de vanadium;
    (b) à préparer une solution niobium/molybdène;
    (c) à préparer des oxydes mixtes hydratés de bismuth, de niobium et de molybdène, à la température ambiante et sans traiter lesdits oxydes mixtes hydratés par la chaleur;
    d) à combiner ladite phase d'antimoniate de vanadium, lesdits oxydes mixtes hydratés et un support en formant ainsi un mélange précurseur de catalyseur;
    (e) à agiter le mélange précurseur de catalyseur pendant une durée suffisante pour former une pâte de précurseur de catalyseur; et
    f) à sécher ladite pâte de précurseur de catalyseur pour former une matière séchée de précurseur de catalyseur, et à calciner ladite matière séchée de précurseur de catalyseur pour former ledit catalyseur.
  2. Procédé selon la revendication 1, dans lequel ledit catalyseur possède la formule empirique : BiaMobVcSbdNbeAfBgOz, dans laquelle
    A = un ou plusieurs éléments choisis dans le groupe formé par les groupes VB, VIB, VIIB, et VIII du Tableau Périodique;
    B = au moins un activateur de métal alcalin choisi dans le groupe formé par les groupes IA et IIA du Tableau Périodique;
    a = 0,01 à 12;
    b = 0,01 à 12;
    c = 0,01 à 2;
    d = 0,01 à 10;
    e = 0,01 à 1;
    f = 0 à 2;
    g = 0 à 1; et
    x = le nombre d'atomes d'oxygène requis pour satisfaire les conditions de valence des éléments présents.
  3. Procédé selon la revendication 2, dans lequel f vaut de 0,01 à 1.
  4. Procédé selon la revendication 2, dans lequel g vaut de 0,001 à 0,5.
  5. Procédé selon la revendication 1, dans lequel ledit oxyde de vanadium est V2O5.
  6. Procédé selon la revendication 1, dans lequel ledit oxyde d'antimoine est Sb2O3.
  7. Procédé selon la revendication 1, dans lequel ladite calcination à l'étape (a) a lieu à une température allant de 600 à 950°C.
  8. Procédé selon la revendication 1, dans lequel ladite calcination à l'étape (a) a lieu à une température allant de 700 à 850°C.
  9. Procédé selon la revendication 1, dans lequel ladite calcination à l'étape (a) a lieu à une température allant de 740 à 780°C.
  10. Procédé selon la revendication 1, dans lequel ladite calcination à l'étape (a) a lieu à une température d'environ 750°C.
  11. Procédé selon la revendication 1, dans lequel ladite calcination à l'étape (a) a lieu en présence d'air.
  12. Procédé selon la revendication 1, dans lequel ladite solution de niobium/molybdène est préparée à un pH de 3,0 à 10.
  13. Procédé selon la revendication 1, dans lequel ladite solution de niobium/molybdène est préparée à un pH de 3,5 à 9.
  14. Procédé selon la revendication 1, dans lequel ladite solution de niobium/molybdène est préparée à un pH de 3,5 à 5.
  15. Procédé selon la revendication 1, dans lequel l'étape (c) comprend l'addition de bismuth à ladite solution de niobium/molybdène et la précipitation desdits oxydes mixtes hydratés à la température ambiante et sans traitement des oxydes mixtes hydratés par la chaleur.
  16. Procédé selon la revendication 1, dans lequel l'étape (c) comprend la co-précipitation rapide des oxydes mixtes hydratés de bismuth, de niobium, et de molybdène.
  17. Procédé selon la revendication 1, dans lequel l'étape (c) comprend l'addition d'une solution contenant du bismuth à ladite solution de niobium/molybdène.
  18. Procédé selon la revendication 1, dans lequel ledit support comprend de la silice pré-acidifiée.
  19. Procédé selon la revendication 1, dans lequel l'étape (d) comprend l'incorporation de ladite phase d'antimoniate de vanadium et lesdits oxydes mixtes hydratés dans de la silice colloïdale pré-acidifiée.
  20. Procédé selon la revendication 1, comprenant de plus l'ébullition dudit mélange précurseur de catalyseur pour former ladite pâte de précurseur de catalyseur.
  21. Procédé selon la revendication 1, dans lequel ladite agitation dans l'étape (e) est l'agitation vigoureuse.
  22. Procédé selon la revendication 1, dans lequel ladite pâte de précurseur de catalyseur est séchée à une température allant de 80°C à 200°C.
  23. Procédé selon la revendication 1, dans lequel ladite pâte de précurseur de catalyseur est séchée à une température allant de 100°C à 150°C.
  24. Procédé selon la revendication 1, dans lequel ladite pâte de précurseur de catalyseur est séchée à une température allant de 110°C à 130°C.
  25. Procédé selon la revendication 1, dans lequel ladite pâte de précurseur de catalyseur est séchée à une température d'environ 120°C.
  26. Procédé selon la revendication 1, dans lequel ladite calcination de la matière de précurseur de catalyseur a lieu à une température allant de 450°C à 650°C.
  27. Procédé selon la revendication 1, dans lequel ladite calcination de la matière de précurseur de catalyseur a lieu à une température allant de 500°C à 600°C.
  28. Procédé selon la revendication 1, dans lequel ladite calcination de la matière de précurseur de catalyseur a lieu à une température d'environ 550°C.
  29. Procédé selon la revendication 1, dans lequel ladite calcination de la matière de précurseur de catalyseur a lieu sous une circulation d'air.
  30. Procédé selon la revendication 1, dans lequel ladite calcination de la matière de précurseur de catalyseur a lieu en présence d'air.
  31. Procédé selon la revendication 1, dans lequel ledit support est choisi parmi la silice, l'alumine, la zircone, l'oxyde de titane, l'alundum, le carbure de silicium, l'alumine/silice, les phosphates inorganiques, les silicates, les aluminates, les borates et les carbonates, la ponce, la montmorillonite ou leurs mélanges.
  32. Procédé selon la revendication 1, dans lequel ledit support est la silice.
  33. Procédé selon la revendication 1, dans lequel ledit catalyseur comprend 40 à 70% en poids de support.
  34. Procédé selon la revendication 1, dans lequel ledit catalyseur contient du niobium issu du pentoxyde de niobium.
  35. Procédé selon la revendication 1, dans lequel ledit catalyseur contient du niobium issu d'une source de niobium hydrosoluble.
  36. Procédé selon la revendication 1, dans lequel ladite solution de niobium/molybdène est préparée en employant du niobium issu du pentoxyde de niobium.
  37. Procédé selon la revendication 1, dans lequel ladite solution de niobium/molybdène est préparée en employant du niobium issu d'une source de niobium hydrosoluble.
  38. Procédé selon la revendication 1, dans lequel l'étape (a) comprend le séchage de ladite pâte à une température allant de 80°C à 200°C.
  39. Procédé selon la revendication 1, dans lequel l'étape (a) comprend le séchage de ladite pâte à une température allant de 100°C à 150°C.
  40. Procédé selon la revendication 1, dans lequel l'étape (a) comprend le séchage de ladite pâte à une température allant de 110°C à 130°C.
  41. Procédé selon la revendication 1, dans lequel l'étape (a) comprend le séchage de ladite pâte à une température d'environ 120°C.
EP01106276A 2000-03-14 2001-03-14 Procédé de préparation de catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non-saturés Expired - Lifetime EP1155741B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18921500P 2000-03-14 2000-03-14
US189215P 2000-03-14

Publications (2)

Publication Number Publication Date
EP1155741A1 EP1155741A1 (fr) 2001-11-21
EP1155741B1 true EP1155741B1 (fr) 2003-05-14

Family

ID=22696417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01106276A Expired - Lifetime EP1155741B1 (fr) 2000-03-14 2001-03-14 Procédé de préparation de catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non-saturés

Country Status (5)

Country Link
US (1) US6486091B1 (fr)
EP (1) EP1155741B1 (fr)
JP (1) JP4410954B2 (fr)
DE (1) DE60100265T2 (fr)
SA (1) SA05260374B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4242197B2 (ja) * 2003-04-18 2009-03-18 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
US7294734B2 (en) * 2003-05-02 2007-11-13 Velocys, Inc. Process for converting a hydrocarbon to an oxygenate or a nitrile
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
WO2010087262A1 (fr) * 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 Procédé de fabrication de catalyseur à support de silice, et procédé de fabrication d'un acide carboxylique insaturé et d'un nitrile insaturé

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131223A (en) 1957-01-04 1964-04-28 Consortium Elektrochem Ind Process for the production of aldehydes and ketones
DE1129469B (de) 1957-09-28 1962-05-17 Hoechst Ag Verfahren zur Herstellung von Aldehyden, Ketonen oder den Aldehyden entsprechenden Saeuren
US3057915A (en) 1957-09-14 1962-10-09 Hoechst Ag Process for oxidizing olefins to aldehydes, ketones and acids
US3240805A (en) 1961-10-13 1966-03-15 Halcon International Inc Process for producing acetic acid
JPS509772B2 (fr) 1972-08-04 1975-04-16
US4190556A (en) 1973-07-19 1980-02-26 Standard Oil Company Production of unsaturated nitriles using catalysts promoted with various metals
US4018713A (en) * 1975-04-15 1977-04-19 Sun Ventures, Inc. Ammoxidation catalyst
US4339355A (en) 1975-10-09 1982-07-13 Union Carbide Corporation Catalytic oxide of molybdenum, vanadium, niobium and optional 4th metal
US4040978A (en) 1975-11-28 1977-08-09 Monsanto Company Production of (amm)oxidation catalyst
DE2627068C3 (de) 1976-06-16 1980-01-17 Institut Neftechimitscheskich Processov Imeni Akademika Ju. G. Mamedalieva Akademii Nauk Azerbaidschanskoj Ssr, Baku (Sowjetunion) Verfahren zur Herstellung von Phthalsäuredinitril
US4292203A (en) 1977-04-04 1981-09-29 The Standard Oil Company Oxidation catalysts
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
US4413155A (en) * 1977-12-20 1983-11-01 The Standard Oil Co. Ammoxidation of olefins with novel antimonate catalysts
DE3066658D1 (en) 1979-12-17 1984-03-22 Monsanto Co Oxidation and ammoxidation catalysts and their use
US4405498A (en) 1979-12-17 1983-09-20 Monsanto Company Oxidation and ammoxidation catalysts
JPS56140931A (en) 1980-04-04 1981-11-04 Nippon Zeon Co Ltd Preparation of conjugated diolefin
US4250346A (en) 1980-04-14 1981-02-10 Union Carbide Corporation Low temperature oxydehydrogenation of ethane to ethylene
JPS59204164A (ja) 1983-05-06 1984-11-19 Asahi Chem Ind Co Ltd 不飽和ニトリルの製法
US4487850A (en) 1984-01-06 1984-12-11 Monsanto Company Catalysts for the oxidation and ammoxidation of olefins
US4547484A (en) 1984-04-09 1985-10-15 Monsanto Company Method of preparing a catalyst for the oxidation and ammoxidation of olefins
US4524236A (en) 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4568790A (en) 1984-06-28 1986-02-04 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4746641A (en) * 1984-08-22 1988-05-24 Standard Oil Company Ammoxidation of paraffins and catalysts therefor
US4596787A (en) 1985-04-11 1986-06-24 Union Carbide Corporation Process for preparing a supported catalyst for the oxydehydrogenation of ethane to ethylene
US4899003A (en) 1985-07-11 1990-02-06 Union Carbide Chemicals And Plastics Company Inc. Process for oxydehydrogenation of ethane to ethylene
US4788173A (en) 1985-12-20 1988-11-29 The Standard Oil Company Catalytic mixtures for ammoxidation of paraffins
US5162578A (en) 1987-06-12 1992-11-10 Union Carbide Chemicals & Plastics Technology Corporation Acetic acid from ethane, ethylene and oxygen
US5049692A (en) 1987-11-25 1991-09-17 Mitsubishi Kasei Corporation Catalytic conversion of alkanes to nitriles, and a catalyst therefor
US5134105A (en) 1990-03-19 1992-07-28 The Standard Oil Company Catalyst for propylene ammoxidation to acrylonitrile
JP3142549B2 (ja) 1990-09-10 2001-03-07 三菱レイヨン株式会社 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
US5300682A (en) 1991-06-10 1994-04-05 The Standard Oil Co. Catalytic oxidation of ethane to acetic acid
US5472925A (en) 1991-08-08 1995-12-05 Mitsubishi Chemical Corporation Catalyst for the production of nitriles
US5198580A (en) 1991-11-18 1993-03-30 The Standard Oil Company Process for oxidation of propane
DE4220859A1 (de) 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
EP0603836B1 (fr) 1992-12-24 1998-05-20 Mitsubishi Chemical Corporation Procédé de préparation d'un catalyseur pour la production de nitriles
DE4332542A1 (de) 1993-09-24 1995-03-30 Basf Ag Katalysator auf der Basis von Fe-, Co-, Bi- und Mo-Oxiden
US5688739A (en) 1995-05-01 1997-11-18 The Standard Oil Company Ammoxidation catalysts containing germanium to produce high yields of acrylonitrile
US5821192A (en) 1996-09-23 1998-10-13 The Standard Oil Company Method of improving the attrition resistance of V/SB oxide based catalyst
US5866502A (en) 1997-03-27 1999-02-02 The Standard Oil Co. Process for the preparation of antimonate catalysts for (AMM) oxidation of alkanes and alkenes
ID20670A (id) * 1997-08-05 1999-02-11 Asahi Chemical Ind Katalis amoksidasi untuk digunakan dalam memproduksi akrilonitril atau metakrilonitril dari propana atau isobutana dengan amoksidasi
UA57721C2 (uk) 1997-08-11 2003-07-15 Асахі Касеі Кабусікі Кайся Спосіб виготовлення акрилонітрилу або метакрилонітрилу із пропану або ізобутану
US6156920A (en) 1998-03-26 2000-12-05 The Standard Oil Company Molybdenum promoted vanadium-antimony-oxide based catalyst for selective paraffin ammoxidation
US6143690A (en) * 1998-05-07 2000-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
US6017846A (en) * 1999-01-11 2000-01-25 Saudi Basic Industries Corporation Highly active and selective catalysts for the production of unsaturated nitriles, methods of making and using the same
US6037304A (en) * 1999-01-11 2000-03-14 Saudi Basic Industries Corporation Highly active and selective catalysts for the production of unsaturated nitriles, methods of making and using the same
US6043185A (en) * 1999-04-02 2000-03-28 The Standard Oil Company Gallium promoted molybdenum vanadium-antimony-oxide based catalyst for selective paraffin ammoxidation

Also Published As

Publication number Publication date
JP4410954B2 (ja) 2010-02-10
US6486091B1 (en) 2002-11-26
DE60100265T2 (de) 2003-10-09
EP1155741A1 (fr) 2001-11-21
SA05260374B1 (ar) 2006-09-25
DE60100265D1 (de) 2003-06-18
JP2001259420A (ja) 2001-09-25

Similar Documents

Publication Publication Date Title
US7319179B2 (en) Method for the oxidative dehydrogenation of ethane
EP0767164B1 (fr) Procédé pour la préparation de nitrile
EP0025715B1 (fr) Procédé de production d'un catalyseur complexe d'oxydes solides sur support et son utilisation
JP5608263B2 (ja) 不飽和ニトリル類の製造のための高度な活性および選択性を有する触媒系、並びに対応するオレフィン類から不飽和ニトリル類を生成する方法
US6458742B1 (en) Catalyst for the manufacture of acrylonitrile
GB1564545A (en) Production and use of an oxidation or ammoxidation catalyst
US4405498A (en) Oxidation and ammoxidation catalysts
US5959124A (en) Method of preparing maleic anhydride by vapor phase oxidation of hydrocarbon
EP0032012B1 (fr) Catalyseurs d'oxydation et d'ammoxydation et leurs utilisations
US4453006A (en) Oxidation of propylene or isobutylene with attrition resistant catalysts
US7449426B2 (en) Catalyst composition without antimony or molybdenum for ammoxidation of alkanes, a process of making and a process of using thereof
EP1155741B1 (fr) Procédé de préparation de catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non-saturés
EP0032618B1 (fr) Catalyseurs d'oxydation et d'ammoxydation et leurs applications
EP1020432B1 (fr) Catalyseurs hautement actifs et sélectifs pour la préparation de nitriles non saturés, et procéde de leur utilisation
JPH1157479A (ja) 炭化水素の気相接触酸化反応触媒の製造方法
JP3502526B2 (ja) バナジウム−リン系酸化物、その製造方法、該酸化物からなる気相酸化用触媒および炭化水素類の部分気相酸化方法
US4565658A (en) Oxidation and ammoxidation process
GB2090156A (en) Ammoxidation Catalysts and Their Use in Ammoxidation Processes
JP2000117103A (ja) アルカンを酸化するための触媒

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011023

17Q First examination report despatched

Effective date: 20020211

AKX Designation fees paid

Free format text: DE FR GB IT NL SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 60100265

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170320

Year of fee payment: 17

Ref country code: FR

Payment date: 20170213

Year of fee payment: 17

Ref country code: DE

Payment date: 20170307

Year of fee payment: 17

Ref country code: SE

Payment date: 20170313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170308

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170320

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60100265

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180315

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331