EP1149161A2 - GEGEN DIE KATALYTISCHE UNTEREINHEIT DER HUMANEN TELOMERASE (hTERT) GERICHTETE RIBOZYME - Google Patents
GEGEN DIE KATALYTISCHE UNTEREINHEIT DER HUMANEN TELOMERASE (hTERT) GERICHTETE RIBOZYMEInfo
- Publication number
- EP1149161A2 EP1149161A2 EP00910502A EP00910502A EP1149161A2 EP 1149161 A2 EP1149161 A2 EP 1149161A2 EP 00910502 A EP00910502 A EP 00910502A EP 00910502 A EP00910502 A EP 00910502A EP 1149161 A2 EP1149161 A2 EP 1149161A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cugaugaguccgugaggacgaa
- telomerase
- ribozymes
- htert
- human telomerase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the invention relates to anti-telomerase ribozymes and their use.
- the ribozymes reduce the activity of the catalytic subunit of human telomerase (human telomerase enzyme reverse transcriptase, hTERT). They serve as telomerase inhibitors, limit the proliferative capacity and increase the sensitivity of tumor cells to cytostatics.
- Telomerase is a unique reverse transcriptase that uses an internal RNA component to attach telomer sequences de novo to the 3 'DNA end of the telomeres. It thus counteracts a progressive mitotic telomere shortening, the result of which leads to proliferative senescence in mortal somatic cells.
- telomere length especially in experimentally immortalized cells and in other species, their importance for tumor development in humans is apparently rather small.
- the vast majority of different human tumors have a high telomerase activity, while starting cells and non-invasive tumor precursors usually have only a low activity.
- the telomerase activity can be reconstituted in vitro solely from the RNA component and the catalytic subunit.
- telomerase-specific T motif was detected in the catalytic subunit. Mutations in conserved amino acids of the T motif lead to a drastic loss of function in the cell-free system (Weinrich SL, Pruzan, R .. Ma, L., Oulette, M., Tesmer, VM, Holt, SH, Bodnar, A., Lichtsteiner, S., Kim, NW, Trager, JB, Taylor, RD, Carlos, R., Andrews, WH, Wright, W., Shay, JW, Harley, CB, Morin, GB, Nature Genetics, 17, 1997, 498- 502).
- telomerase incorporation would only lead to telomer-dependent cell cycle blockade after a considerable time delay (Kipling, D., Nature Genet 9, 1995: 104-105).
- telomere inhibition by hTR antisense vectors which leads to a telom lead shortening and senescence of the corresponding culture has been demonstrated only once in HeLa cells (Feng, J., Funk, W., Wang, SS, Weinrich, SL,. Avilion, AA, Chiu, CP, Adams, RR, Chang , E., Allsopp, RC, Yu, J., Le, S., West, MD, Harley, CB, Andrews, WH, Greider, CW, Villeponteau, B, Science 1995, 269: 1236-1241).
- RNA component may not be the best target for telomerase introduction because it is also expressed in normal cells.
- Nucleoside analogs e.g. the known inhibitor of reverse transcriptases azidothymidine, work well in the cell-free system, but show strong non-specific side effects in cells (Ray, C, Blackburn, E., Mol Cell Biol 16, 1996, 53-65; Janta-Lipinski, Matthes, MDC Book, personal communication). Other strategies to inhibit telomerase such as B.
- Antisense technology with peptide-coupled nucleic acids or the use of non-nucleosides have so far only been tested in the cell-free system.
- the GUC sequence is one of the most easily cleavable targets. Inhibition of telomerase and subsequent telomere shortening by ribozymes against hTR have been described (Yokoyama, Y., Takahashi, Y., Shinohara, A., Lian, Z., Wan, X., Niwa, K., Tamaya, T., Cancer Res., 58, 1998: 5406-5410). So far, no reliable inhibition of cell growth has been achieved with ribozymes against hTR. Ribozymes with activity against hTERT, the mRNA of the catalytic subunit of telomerase, have not previously been described.
- telomeres are hypersensitive to oxidative stress (Petersen, S., Saretzki, G., von Zglinicki, T. Exp. Cell Res. 1998, 239: 152-160).
- telomere shortening leads to the induction of apoptosis (Kondo, Y., Kondo, S., Li, G., Silvermann, RH, Cowell, JK, Oncogene 1998, 16: 3323-3330) or to sensitization to cis- Platinum (Kondo, Y., Kondo. S., Tanaka, Y., Haqqi, T., Barna, BP, Cowell, JK, Oncogene 1998, 16: 2243-2248) within a few days. ie before a significant telomere shortening can occur.
- telomerase inhibitors are described several times in the patent literature. They are directed primarily against the RNA component of the enzyme (e.g. EP 666313 WO 97/37691 and WO 98/28442). Methods for cancer treatment using telomerase inhibitors are reported in US Patents US 5767278, US 5770613, US 57031 16, US 5760062 and 5656638.
- the catalytic subunit of human telomerase has the international patent application WO 98/14593 and the resulting European (EP 841396) or German patent application (DE 19743497) to the content.
- the polynucleotides and plasmids described therein are suitable for the diagnosis, prognosis and treatment of human diseases and for changing the proliferation capacity of cells and organisms.
- the patent specifications WO 98/14593 and WO 98/14592 relate to plasmids, including those which span the region of the T motif of hTERT, both expression plasmid (s) and antisense plasmids. Antisense plasmids can be used to inhibit telomerase.
- German patent application DE 19720151 describes a chemically modified oligodeoxynucleotide which on the one hand exerts an antisense effect against hTR and on the other hand reacts at its 5 'end with the protein of the catalytic subunit hTERT.
- Ribozymes i.e. However, polyribonucleotides which connect antisense flanks with a central RNA-cutting structure are described in the abovementioned. Patents not panned. There are no published results on the specific inhibition of the catalytic subunit of telomerase.
- the object of the invention was to reduce the activity of the catalytic subunit of human telomerase (human telomerase enzyme reverse transcriptase, hTERT) and thus to make new telomerase inhibitors available.
- human telomerase human telomerase enzyme reverse transcriptase, hTERT
- the task was solved by new ribozymes, which are directed against the T motif of human telomerase.
- the ribozymes according to the invention contain the following sequences: 1. 5 ' -GCUCGAC CUGAuGAGuCcGUGAgGaCGAA ACGUAC AC A-3 ⁇ 2. 5 ' -GCAGCUC CUGAuGAGuCcGUGAgGaCGAA ACGACGUAC-3 '
- the hammerhead ribozymes according to the invention have catalytic activity in vitro. They cleave the mRNA for human telomerase (hTERT) in the T motif on the sequences planned by the design.
- hTERT human telomerase
- the inhibition of telomerase in cells is achieved by stable transfection of an expression vector into which the ribozyme has been cloned. It can also be achieved with other transfection methods (e.g. transient transfection or infection with a recombinant virus).
- a ribozyme mutated in the catalytic center has no effect. According to the invention, telomere shortening and crisis occur in clones with inhibited telomerase.
- the clones with inhibited telomerase increase the sensitivity to doxorubicin (measured using the XTT assay - colorimetric assay - as a concentration that kills 50% of the cells - LD50) by a factor of 2-3.
- the inhibition of telomerase by the ribozymes according to the invention is achieved both in sole use and in combination with cytostatic administration and / or radiation. This accelerates both the "classic" telomere shortening after inhibition of telomerase, which ultimately leads to the crisis and cell death in the course of several cell divisions, and the rate of telomere shortening due to DNA damage, or it eliminates independent repair properties of telomerase, which increases the rate Sensitivity causes.
- telomere enzyme reverse transcriptase human telomerase enzyme reverse transcriptase
- the ribozymes according to the invention are suitable for use as telomerase inhibitors and for shortening telomeres, also in combination with cytostatic administration and / or radiation or with topoisomerase inhibition and thereby for accelerating the rate of telomeres shortening due to DNA damage and for switching off the repair properties of telomerase .
- the ribozymes according to the invention are suitable for the treatment of tumors and for increasing the sensitivity of tumor cells to cytostatics.
- Ribozymes consist of helices I and III, which hybridize with the target sequences flanking the interface, as well as the catalytic core and the stem loop (Helix II) with the structure CUGAuGAGuCcGUGAgGaCGAA.
- the ribozymes can be produced, for example, as an oligoribonucleotide.
- the sequence is synthesized from the ribonucleotides G, C, A and U as described by known methods.
- stabilization of the 3 'and 5 ' ends by means of modified nucleotides or cap structures is possible; the influence of these modifications on the catalytic activity of the ribozyme must be tested in individual cases.
- These ribozymes can be used directly.
- ribozyme Another possibility is the synthesis of the cDNA for the ribozyme from the deoxyribonucleotides G, C, A and T.
- This form of the ribozymes can be used in connection with suitable promoters and transfection vectors (eg adeno- or retroviral vectors).
- cDNA sequence of the T motif from hTERT (GenBank AF015950): Nucleotides not belonging to the T motif are shown in italics. The possible interfaces and the sequences of the antisense helices for the possible ribozymes 1-13 result from the sequence. The interface of the first ribozyme (Rl) is shown in bold and the flanking sequences are underlined once or twice.
- Example 2 Detection of the catalytic activity of the ribozymes 1-4 in vitro
- a 224 nucleotide (nt) long RNA which includes the sequence of the T motif, was obtained by in vitro transcription from the cDNA of hTERT linked to a T7 promoter produced (target RNA). During the transcription, the radioactive labeling was carried out using P j2 -UTP.
- Ribozymes were synthesized by standard methods from ribonucleotides with 2'-hydroxyl groups protected by Fpmp (1 l- (2-fluorophenyl) -4-methoxy-piperidin-l-yl) and purified by HPLC. They were deprotected before use.
- the target RNA was incubated with ribozyme 1, 2, 3 or 4 or without ribozyme (/) for 60 and 180 min and the reaction products were separated electrophoretically in the polyacrylamide gel.
- the gel was evaluated in the phosphoimager and shows cleavage of the target RNA at the designated sites by the ribozymes 3 and 4 with high efficiency and low effectiveness of the ribozymes 1 and 2 (FIG
- telomere inhibition by stable transfection and expression of ribozyme 4 in HBL100, an immortal mammary epithelial cell line with high telomerase activity, and in MCF-7, a breast tumor cell line.
- a ribozyme imitated in the catalytic center has no effect.
- Both strands of the cDNA coding for the ribozyme R4 (4th ribozyme in the list) and for the ribozyme mutR4 mutated in the catalytic center were synthesized as oligodeoxyribonucleotides by standard methods. They were cloned into the expression vector (plasmid) pCDNA3.1 and stably expressed in MCF-7 (FIG. 2a) or HBL-100 cells (FIG. 2b). The telomerase activity in the numbered clones was measured using a semiquantitative TRAP assay (Telomerase Repeat Amplification Protocol).
- the intensity of the conductor pattern in the respective track in relation to the intensity of the control band is a measure of the activity of the telomerase.
- Example 4 Detection of telomere shortening in clones with inhibited telomerase
- the telomere length in the cell lines MCF-7 (FIG. 3A) and HBL-100 (FIG. 3B) was measured in the Southern blot and quantified as described (Petersen, S., Saretzki, G., by Zglinicki, T. Exp. Cell Res. 1998, 239: 152-160). The number of clones n examined and the respective telomerase activity (in% of the activity in parental / mutR4-transfected cells, X axis) is indicated.
- telomere length in mutR4-transfected clones does not differ significantly from that in parental cells.
- the telomere length in the clones with clearly inhibited telomerase is, however, significantly shorter.
- Net proliferation rates were determined by cell counting in each passage. The number of examined clones n and the respective telomerase activity (in% of the activity in parental / mutR4-transfected cells, X axis) is indicated. In clones with a telomerase activity below 25% of the starting cells, cell growth is inhibited (FIG. 4A). Evidence of an altered morphology in telomerase-incorporated MCF-7 clones. The morphology of living cells was checked in the phase contrast reversal microscope. Clones stably transfected with mutR4 (left) show normal, rapid growth and the same morphology as parental cells.
- Clones with telomerase inhibited by R4 show restricted growth and for the most part, especially on the periphery of the resulting, comparatively small colonies, cells with characteristic senescent morphology (same magnification left and right) (FIG. 4B).
- R4 was cloned into a retroviral expression vector (pBabe) and recombinant viruses were generated according to the standard procedure. 10 MCF-7 cells were infected either with the unmodified vector (left) or with R4-pBabe (right). The mass cultures are shown 2 weeks after infection. Infection with R4-pBabe reduces telomerase activity and blocks growth in the culture. Numerous cells die and detach from the culture dish. The few over- living cells show a senescent phenotype (same magnification left and right) ( Figure 4C).
- Example 6 Detection of a sensitivity of clones with inhibited telomerase to doxorubicin increased by a factor of 2-3
- HBL-100 cells were transfected with R4 or mutR4. Telomerase activity was measured using a TRAP assay. The clones were treated with doxorubicin in concentrations between 10 and 1000 ng / ml for three days and then cell survival was measured with an XTT assay. The doxorubicin concentration resulting in a 50% reduced XTT signal (colorimetric signal) (LD50) was calculated. The number of clones n examined and the respective telomerase activity (in% of the activity in parental / mutR4-transfected cells, X axis) is indicated. Clones with a telomerase activity ⁇ 25% of the starting cells have an LD50 reduced by a factor of 2 (FIG. 5A). Determination of the LD50 for doxorubicin in MCF-7 clones (see above). Clones with a telomerase activity below 25% are three to four times more sensitive to doxorubicin ( Figure 5B).
- the sensitivity to the specified cytostatics was measured as LD50 using the XTT assay.
- the ratio of the LD50 of the telomerase-positive to the telomerase-negative clones is given.
- MutR4-transfected vs. R4-transfected HBL-100 and MCF-7 clones and hTERT-expressing vs parental BJ fibroblasts Bodnar, AG, Oulette, M., Frolkis, M., Holt, SE, Chiu, CP Morin, GB, Harley, CB, Shay, JW, Lichtsteiner, S., Wright, W. Science 1998, 279: 349-352).
- telomeres with reduced telomerase activity are more sensitive than the isogenic clones with active telomerase to all investigated topoisomerase inhibitors (mitoxantrone, etoposide and doxorubicin - Römpp Chemie Lexikon 1995), but not to the cytostatic agents cis-platinum and bleomycin or the alkylating agent N-methyl -N'-nitro-N-nitrosoguanidine (MN G) or oxidative exposure using hydrogen peroxide (H 2 O9) ( Figure 6).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Die Erfindung betrifft Anti-Telomerase-Ribozyme und ihre Verwendung. Die Ribozyme vermindern die Aktivität der katalytischen Untereinheit der humanen Telomerase (human Telomerase Enzyme Reverse Transcriptase, hTERT). Sie dienen als Telomerase-Inhibitoren, begrenzen die proliferative Kapazität und erhöhen die Sensitivität von Tumorzellen gegenüber Zytostatika.
Description
Gegen die katalytische Untereinheit der humanen Telomerase (hTERT) gerichtete Ribozyme
Beschreibung
Die Erfindung betrifft Anti-Telomerase-Ribozyme und ihre Verwendung. Die Ribozyme vermindern die Aktivität der katalytischen Untereinheit der humanen Telomerase (human Telomerase Enzyme Reverse Transcriptase, hTERT). Sie dienen als Telomerase-Inhibitoren, begrenzen die proliferative Kapazität und erhöhen die Sensitivität von Tumorzellen gegenüber Zytostatika.
Die Telomerase ist eine unikale reverse Transkriptase, die mit Hilfe einer internen RNA- Komponente Telomerensequenzen de novo an das 3 'DNA -Ende der Telomeren anhängt. Damit wirkt sie einer progressiven mitotischen Telomerenverkürzung entgegen, deren Ergebnis in mortalen somatischen Zellen zur proliferativen Seneszenz führt. Obwohl es, insbeson- dere bei experimentell immortalisierten Zellen sowie bei anderen Spezies, alternative Möglichkeiten zum Telomerenlängenerhalt gibt, ist deren Bedeutung für die Tumorentstehung beim Menschen offenbar eher gering. Die weit überwiegende Mehrheit unterschiedlicher humaner Tumoren besitzt eine hohe Telomeraseaktivität, während Ausgangszellen und nichtin- vasive Tumorvorstufen meist nur geringe Aktivität aufweisen. Die Telomeraseaktivität kann in vitro allein aus der RNA-Komponente und der katalytischen Untereinheit rekonstituiert werden. In der katalytischen Untereinheit konnte außer 7 konservierten Sequenzmotiven für Reverse Transkriptasen ein telomerasespezifϊsches T-Motiv nachgewiesen werden. Mutationen in konservierten Aminosäuren des T-Motivs führen zu einem drastischen Funktionsverlust im zellfreien System (Weinrich S.L., Pruzan, R.. Ma, L., Oulette, M., Tesmer, V. M., Holt, S.H., Bodnar, A., Lichtsteiner, S., Kim, N.W., Trager, J.B., Taylor, R.D., Carlos, R., Andrews, W. H., Wright, W., Shay, J.W., Harley, C.B., Morin, G.B., Nature Genetics, 17, 1997, 498-502).
Hemmung der Telomerase wurde schon sehr früh als eine potentiell hochspezifische Möglichkeit zur "Remortalisierung" und therapeutischen Kontrolle von Tumorzellen vorgeschla- gen. Es war jedoch klar, daß Telomerase-Inliibition erst nach erheblicher Zeitverzögerung zur telomerenabhängigen Zellzyklusblockade führen würde (Kipling, D., Nature Genet 9, 1995: 104-105).
Die bisherigen Bemühungen, die Aktivität der Telomerase auszuschalten, richteten sich in erster Linie gegen die RNA-Komponente des Enzyms, da diese bereits seit 1995 bekannt ist. Eine erfolgreiche Telomeraseinhibition durch hTR-Antisensevektoren, die zu einer Telome-
renverkürzung und Seneszenz der entsprechenden Kultur führt, ist bisher nur einmal in HeLa Zellen demonstriert worden (Feng, J., Funk, W., Wang, S.S., Weinrich, S.L.,. Avilion, A.A., Chiu, C.P., Adams, R.R., Chang, E., Allsopp, R.C., Yu, J., Le, S., West, M.D., Harley, C.B., Andrews, W.H., Greider, C.W., Villeponteau, B, Science 1995, 269: 1236-1241). Erst in letzter Zeit sind Arbeiten einer Gruppe erschienen, die Telomerase-Inhibition in Gliomzellen mit nachfolgender Induktion von Apoptose oder Differenzierung durch Einsatz modifizierter Antisense-RNA berichten (Kondo, Y., Kondo, S., Li, G., Silvermann, R.H., Cowell, J.K., On- cogene 1998, 16: 3323-3330; Kondo, Y., Kondo, S., Tanaka, Y., Haqqi, T., Barna, B.P., Cowell, J.K., Oncogene 1998, 16:2243-2248). Die Spezifität dieser Effekte ist jedoch unklar, Telomerenerosion wurde nicht nachgewiesen und ist hier wahrscheinlich nicht die Ursache der Apoptoseinduktion. Die RNA-Komponente ist möglicherweise nicht das beste Target für Telomerase-Inliibition, da sie auch in normalen Zellen exprimiert wird.
Nukleosidanaloga, wie z.B. der bekannte Hemmer reverser Transkriptasen Azidothymidin, funktionieren gut im zellfreien System, zeigen in Zellen aber starke unspezifische Nebenwir- kungen (Strahl, C, Blackburn, E., Mol Cell Biol 16, 1996, 53-65; Janta-Lipinski, Matthes, MDC Buch, pers. Mitteilung). Andere Strategien zur Hemmung der Telomerase wie z. B. An- tisense-Technik mit peptidgekoppelten Nukleinsäuren oder Einsatz von Nicht-Nukleosiden sind bislang nur im zellfreien System erprobt. Hammerhead-Ribozyme sind katalytische RNAs mit einer wohldefinierten Struktur, die RNA- Targets mit der Sequenz XUN (N = A, C oder U) spezifisch spalten. Die Sequenz GUC gehört zu den besonders gut spaltbaren Targets. Hemmung der Telomerase und folgende Telomeren- verkürzung durch Ribozyme gegen hTR wurde beschrieben (Yokoyama, Y., Takahashi, Y., Shinohara, A., Lian, Z., Wan, X., Niwa, K., Tamaya, T., Cancer Res., 58, 1998: 5406-5410). Eine verläßliche Inhibition des Zellwachstums wurde bisher mit Ribozymen gegen hTR nicht erreicht. Ribozyme mit Aktivität gegen hTERT, die mRNA der katalytischen Untereinheit der Telomerase, wurden bisher nicht beschrieben.
In letzter Zeit gibt es erste Hinweise auf spezifische Wechselbeziehungen zwischen Telome- ren und Telomerase einerseits und DNA-schädigenden Prozessen andererseits. Das bedeutet, daß Telomerase nicht nur durch Kompensation der "normalen" Telomerenerosion zur unlimi- tierten Proliferation von Tumorzellen beitragen könnte. Telomeren sind hypersensitiv gegenüber oxidativem Streß (Petersen, S., Saretzki, G., von Zglinicki, T. Exp. Cell Res. 1998, 239: 152-160). Inhibition der Telomerase in humanen Glioblastomzellen führt zur Induktion von Apoptose (Kondo, Y., Kondo, S., Li, G., Silvermann, R.H., Cowell, J.K., Oncogene 1998, 16: 3323-3330) oder zur Sensibilisierung gegen cis-Platin (Kondo, Y., Kondo. S., Tanaka, Y.,
Haqqi, T., Barna, B.P., Cowell, J.K., Oncogene 1998, 16:2243-2248) innerhalb weniger Tage. d.h. bevor eine signifikante Telomerenverkürzung auftreten kann.
In der Patentliteratur werden Telomerase-Inhibitoren mehrfach beschrieben. Sie richten sich vorwiegend gegen die RNA-Komponente des Enzyms (z.B. EP 666313 WO 97/37691 und WO 98/28442). Über Methoden zur Krebsbehandlung unter Verwendung von Telomerase- Inhibitoren wird in den US-Patenten US 5767278, US 5770613, US 57031 16, US 5760062 und 5656638 berichtet. Die katalytische Untereinheit der menschlichen Telomerase (hTERT) hat die internationale Patentanmeldung WO 98/14593 und die daraus hervorgegangene europäische (EP 841396) bzw. deutsche Patentanmeldung (DE 19743497) zum Inhalt. Die darin beschriebenen Polynucleotide und Plasmide eignen sich zur Diagnose, Prognose und Behandlung von menschlichen Krankheiten und zur Veränderung der Proliferationskapazität von Zellen und Organismen. Die Patentschriften WO 98/14593 und WO 98/14592 beziehen sich auf Plasmide, darunter auch solche, die den Bereich des T-Motivs von hTERT überspannen, und zwar sowohl Expressionplasmid(e) als auch antisense-Plasmide. Antisense-Plasmide können zur Inhibition der Telomerase eingesetzt werden. Die deutsche Patentanmeldung DE 19720151 beschreibt ein chemisch modifiziertes Oligodesoxynukleotid, das einerseits einen Antisense-Effekt gegen hTR ausübt, andererseits an seinem 5 '-Ende mit dem Protein der katalytischen Untereinheit hTERT reagiert. Ribozyme, d.h. Polyribonukleotide, die antisense-Flanken mit einer zentralen RNA- schneidenden Struktur verbinden, sind jedoch in den o.g. Patenten nicht erwälmt. Zur spezifischen Hemmung der katalytischen Untereinheit der Telomerase existieren bislang keine publizierten Ergebnisse.
Der Erfindung lag die Aufgabe zugrunde, die Aktivität der katalytischen Untereinheit der hu- manen Telomerase (human Telomerase Enzyme Reverse Transcriptase, hTERT) zu vermindern und damit neue Telomerase-Inhibitoren zur Verfügung zu stellen.
Die Aufgabe wurde durch neue Ribozyme, die gegen das T-Motiv der humanen Telomerase gerichtet sind, gelöst. Die erfindungsgemäßen Ribozyme enthalten folgende Sequenzen: 1. 5 '-GCUCGAC CUGAuGAGuCcGUGAgGaCGAA ACGUAC AC A-3 Λ 2. 5 '-GCAGCUC CUGAuGAGuCcGUGAgGaCGAA ACGACGUAC-3'
3. 5 '-AAAGAAA CUGAuGAGuCcGUGAgGaCGAA ACCUGAGCA-3 '
4. 5 '-UCUCCGU CUGAuGAGuCcGUGAgGaCGAA ACAUAAAAG-3 '
5. S'-UGCUCCA CUGAuGAGuCcGUGAgGaCGAA ACACUCUUC-3 '
6. 5 '-GACGACG CUGAuGAGuCcGUGAgGaCGAA ACACACUCA-3 '
7. 5 '-CUUUUGA CUGAuGAGuCcGUGAgGaCGAA ACGUGGUCU-3 '
8. 5 '-GCUUUGC CUGAuGAGuCcGUGAgGaCGAA ACUUGCUCC-3 '
9. 5 '-AAGACCU CUGAuGAGuCcGUGAgGaCGAA AGCAGCUCG-3 '
10. 5'-UGUUUUU CUGAuGAGuCcGUGAgGaCGAA AGCCUGUUC-3 ' 11. 5 '-CAUAAAA CUGAuGAGuCcGUGAgGaCGAA AAAGACCUG-3 '
12. 5'-UUCUUUU CUGAuGAGuCcGUGAgGaCGAA AAACGUGGU-3 '
13. 5'-UCCGGUA CUGAuGAGuCcGUGAgGaCGAA AAAAAGAGC-3 ' (kleine Buchstaben bezeichnen im Rahmen der Komplementarität der Nukleotide im Stemloop frei wählbare Nukleotide). Es hat sich herausgestellt, daß die erfindungsgemäßen Ribozyme das T-Motiv der humanen Telomerase (hTERT) wie designt an einer der Sequenzen GUC, GUA, GUU, CUC oder UUC spalten.
Die erfindungsgemäßen Hammerhead-Ribozyme besitzen katalytische Aktivität in vitro. Sie spalten die mRNA für die humane Telomerase (hTERT) im T-Motiv an den vom Design ge- planten Sequenzen. Die Hemmung der Telomerase in Zellen gelingt durch stabile Transfekti- on eines Expressionsvektors, in den das Ribozym kloniert wurde. Sie gelingt ebenfalls mit anderen Transfektionsverfahren (z.B. transiente Transfektion oder Infektion mit einem re- kombinanten Virus). Ein im katalytischen Zentrum mutiertes Ribozym hat keinen Effekt. Erfindungsgemäß tritt Telomerenverkürzung und Krise in Klonen mit gehemmter Telomerase ein.
Die Klone mit gehemmter Telomerase steigern die Sensitivität gegenüber Doxorubicin (gemessen mit XTT-Assay - kolorimetrischer Assay - als Konzentration, die 50% der Zellen abtötet - LD50) um einen Faktor 2-3. Die Hemmung der Telomerase durch die erfindungsgemäßen Ribozyme wird sowohl in allei- niger Anwendung als auch in Kombination mit Zytostatikagabe und/oder Bestrahlung erreicht. Dadurch wird sowohl die "klassische" Telomerenverkürzung nach Hemmung der Telomerase, die im Verlauf mehrerer Zellteilungen schließlich zur Krise und zum Absterben der Zellen führt, als auch die Telomerenverkürzungsrate durch DNA-Schädigung beschleunigt, oder es werden unabhängige Reparatureigenschaften der Telomerase ausgeschaltet, was eine erhöhte Sensitivität bewirkt.
Das Wesen der Erfindung liegt in einer Kombination bekannter Elemente und neuer Lösungswege, die sich gegenseitig beeinflussen und in ihrer neuen Gesamtwirkung einen Gebrauchsvorteil und den erstrebten Erfolg ergeben, der darin liegt, daß nunmehr Inhibitoren der
katalytischen Untereinheit der humanen Telomerase (human Telomerase Enzyme Reverse Transcriptase, hTERT) zur Verfügung stehen.
Die erfindungsgemäßen Ribozyme eignen sich zur Verwendung als Telomerase-Inhibitoren und zur Telomerenverkürzung, auch in Kombination mit Zytostatikagabe und/oder Bestrah- lung oder mit Topoisomerase-Inhibition und dadurch zur Beschleunigung der Telomerenver- kürzungsrate durch DNA-Schädigung sowie zur Ausschaltung der Reparatureigenschaften der Telomerase. Die erfindungsgemäßen Ribozyme eignen sich zur Behandlung von Tumoren und zur Erhöhung der Sensitivität von Tumorzellen gegenüber Zytostatika.
Die folgenden Beispiele dienen der Verdeutlichung der Erfindung, ohne sie auf diese Beispiele zu beschränken.
Ausführungsbeispiele
Beispiel 1 : Design der Ribozyme
Ribozyme bestehen aus den Helizes I und III, die mit den die Schnittstelle flankierenden Sequenzen des Targets hybridisieren, sowie dem katalytischen Kern und dem Stemloop (Helix II) mit der Struktur CUGAuGAGuCcGUGAgGaCGAA. Die Herstellung der Ribozyme kann z.B. als Oligoribonukleotid erfolgen. Dazu wird die Sequenz wie angegeben aus den Ribonu- kleotiden G, C, A und U nach bekannten Verfahren synthetisiert. Stabilisierung des 3 '- und des 5 '-Endes mittels modifizierter Nukleotide oder cap- Strukturen ist prinzipiell möglich, der Einfluß dieser Modifikationen auf die katalytische Aktivität des Ribozyms muß im Einzelfall getestet werden. Diese Ribozyme können direkt eingesetzt werden. Eine andere Möglichkeit ist die Synthese der cDNA für das Ribozym aus den Desoxyribonukleotiden G, C, A und T. Diese Form der Ribozyme kann in Verbindung mit geeigneten Promotor(en) und Transfekti- onsvektoren (z.B. adeno- oder retrovirale Vektoren) eingesetzt werden.
cDNA-Sequenz des T-Motivs von hTERT (GenBank AF015950): Nicht zum T-Motiv gehörende Nukleotide sind kursiv dargestellt. Aus der Sequenz ergeben sich die möglichen Schnittstellen und die Sequenzen der Antisense-Helizes für die möglichen Ribozyme 1-13. Die Schnittstelle des ersten Ribozyms (Rl) ist fett dargestellt, und die flankierenden Sequenzen sind einmal bzw. zweimal unterstrichen. Darunter befindet sich das zugehörige Ribozym mit entsprechender Darstellung:
1681 caagttcctg cαetggctga tgagtgtgta cgtcgtcgag ctgctcaggt ctttctttta 1741 tgtcacggag accacgtttc aaaagaacag gctctttttc taccggaaga gtgtctggag 1801 caagttgcaa agcattggaa tcagacagca cttgaagαgg gtgcagctgc gggagctgtc
5 -GCUCGAC CUGAuGAGuCcGUGAgGaCGAA ACGUACACA-3'
Beispiel 2: Nachweis der katalytischen Aktivität der Ribozyme 1 - 4 in vitro Eine 224 Nukleotide (nt) lange RNA, die die Sequenz des T-Motivs einschließt, wurde durch in-vitro-Transkription aus der mit einem T7-Promoter verlinkten cDNA von hTERT hergestellt (Target-RNA). Während der Transkription erfolgte die radioaktive Markierung mittels Pj2-UTP. Ribozyme wurden nach Standardverfahren aus Ribonukleotiden mit durch Fpmp (1 l-(2-Fluorophenyl)-4-methoxy-piperidin-l-yl) geschützten 2 '-Hydroxylgruppen synthetisiert und HPLC-gereinigt. Sie wurden vor Gebrauch entschützt. Die Target-RNA wurde mit Ribozym 1, 2, 3 oder 4 bzw. ohne Ribozym (/) für 60 und 180 min inkubiert und die Reaktionsprodukte elektrophoretisch im Polyacrylamid-Gel getrennt. Das Gel wurde im Phosphoi- mager ausgewertet und zeigt Spaltung der Target-RNA an den designierten Stellen durch die Ribozyme 3 und 4 mit hoher Effizienz und geringe Wirksamkeit der Ribozyme 1 und 2 (Figur
1).
Beispiel 3:
Nachweis der Hemmung der Telomerase durch stabile Transfektion und Expression des Ribozyms 4 in HBL100, einer immortalen Mammaepithelzelllinie mit hoher Telomeraseaktivität, und in MCF-7, einer Mammatumorzelllinie. Ein im katalytischen Zentrum imitiertes Ribozym hat keinen Effekt.
Beide Stränge der für das Ribozym R4 (4. Ribozym in der Liste) bzw. der für das im katalytischen Zentrum mutierte Ribozym mutR4 kodierenden cDNA wurden als Oligodesoxyribonu- kleotide nach Standardverfahren synthetisiert. Sie wurden in den Expressionvektor (Plasmid) pCDNA3.1 Moniert und stabil in MCF-7 - (Figur 2a) bzw. HBL-100-Zellen (Figur 2b) - ex- primiert. Die Telomeraseaktivität in den numerierten Klonen wurde mittels semiquantitativen TRAP-Assay (Telomerase Repeat Amplification Protocol) gemessen. Die Intensität des Leitermusters in der jeweiligen Spur im Verhältnis zur Intensität der Kontrollbande (Dreieck) ist ein Maß für die Aktivität der Telomerase. Die HBL-100- bzw. MCF-7-Klone, die mit einem im katalytischen Zentrum mutierten Ribozym transfiziert wurden (mut R4), zeigen etwa die gleiche Telomeraseaktivität wie die parentalen Zellen (p = Parentale Zellen, R8 = Positivkon-
trolle, NC = Negativkontrolle). Expression von R4 reduziert die Telomeraseaktivität auf Werte zwischen <1 und etwa 30%.
Beispiel 4: Nachweis von Telomerenverkürzung in Klonen mit gehemmter Telomerase Die Telomerenlänge in den Zellinien MCF-7 (Figur 3A) und HBL-100 (Figur 3B) wurde im Southernblot gemessen und quantifiziert wie beschrieben (Petersen, S., Saretzki, G., von Zglinicki, T. Exp. Cell Res. 1998, 239: 152-160). Die Anzahl der untersuchten Klone n und die jeweilige Telomeraseaktivität (in % der Aktivität in parentalen/mutR4-transfizierten Zellen, X-Achse) ist angegeben. Die Telomerenlänge in mit mutR4 transfizierten Klonen (mutR4) oder in den R4-transfizierten Klonen, die nur geringfügige Verminderung der Telomeraseaktivität aufweisen, weicht nicht signifikant von der in parentalen Zellen ab. Die Telomerenlänge in den Klonen mit deutlich gehemmter Telomerase ist jedoch signifikant geringer.
Beispiel 5: Nachweis der Inhibition des Zellwachstums in MCF-7-Klonen mit inhibierter Telomerase
Netto-Proliferationsraten wurden durch Zellzählung in jeder Passage ermittelt. Die Anzahl der untersuchten Klone n und die jeweilige Telomeraseaktivität (in % der Aktivität in parenta- len/mutR4-transfizierten Zellen, X-Achse) ist angegeben. In Klonen mit einer Telomerase- Aktivität unter 25% der Ausgangszellen ist das Zellwachstum inhibiert (Figur 4A). Nachweis einer geänderten Morphologie in telomerase-inliibierten MCF-7-Klonen. Die Morphologie lebender Zellen wurde im Phasenkontrast-UmkehrmikiOskop kontrolliert. Mit mutR4 stabil transfizierte Klone (links) zeigen normales, schnelles Wachstum und die gleiche Morphologie wie parentale Zellen. Klone mit durch R4 inhibierter Telomerase (rechts) zeigen eingeschränktes Wachstum und zum überwiegenden Teil, insbesondere an der Peripherie der entstehenden, vergleichsweise kleinen Kolonien, Zellen mit charakteristisch seneszenter Morphologie (gleiche Vergrößerung links und rechts) (Figur 4B).
Nachweis der Erzeugung eines seneszenten Phänotyps durch retrovirale Infektion mit dem Ribozym R4 in einer Massenkultur von MCF-7. R4 wurde in einen retroviralen Expressionsvektor (pBabe) kloniert und rekombinante Viren nach Standard-Prozedur generiert. Jeweils 10 MCF-7-Zellen wurden entweder mit dem unmodifizierten Vektor (links) oder mit R4- pBabe (rechts) infiziert. Dargestellt sind die Massenkulturen 2 Wochen nach Infektion. Infektion mit R4-pBabe vermindert die Telomeraseaktivität und blockiert das Wachstum in der Kultur. Zahlreiche Zellen sterben ab und lösen sich von der Kulturschale. Die wenigen über-
lebenden Zellen zeigen einen seneszenten Phänotyp (gleiche Vergrößerung links und rechts) (Figur 4C).
Beispiel 6: Nachweis einer um einen Faktor 2-3 gesteigerten Sensitivität der Klone mit gehemmter Telomerase gegenüber Doxorubicin
HBL-100-Zellen wurden mit R4 bzw. mutR4 transfiziert. Die Telomeraseaktivität wurde mit TRAP-Assay gemessen. Die Klone wurden mit Doxorubicin in Konzentrationen zwischen 10 und 1000 ng/ml für drei Tage behandelt und dann das Zellüberleben mit XTT-Assay gemes- sen. Die Doxorubicin-Konzentration, die in einem um 50% reduzierten XTT-Signal (kolorimetrisches Signal) resultiert (LD50), wurde berechnet. Die Anzahl der untersuchten Klone n und die jeweilige Telomeraseaktivität (in % der Aktivität in parentalen/mutR4- transfizierten Zellen, X-Achse) ist angegeben. Klone mit einer Telomeraseaktivität <25% der Ausgangszellen weisen eine etwa um den Faktor 2 verminderte LD50 auf (Figur 5A). Bestimmung der LD50 für Doxorubicin in MCF-7-Klonen (s. oben). Klone mit einer Telomeraseaktivität unter 25% sind drei- bis viermal sensitiver gegenüber Doxorubicin (Figur 5B).
Beispiel 7:
Nachweis der erhöhten Sensitivität von telomerase-negativen Zellen gegenüber topoisomera- se-inhibierenden Zytostatika
Die Sensitivität gegenüber den angegebenen Zytostatika wurde als LD50 mittels XTT-Assay pßabe gemessen. Angegeben ist das Verhältnis der LD50 der telomerase-positiven zu den telomerase-negativen Klonen. Untersucht wurden mutR4-transfizierte vs. R4-transfizierte HBL- 100- und MCF-7-Klone und hTERT-exprimierende vs parentale BJ-Fibroblasten (Bodnar, A.G., Oulette, M., Frolkis, M., Holt, S.E., Chiu, C.P. Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., Wright, W. Science 1998, 279: 349-352). Zellen mit verringerter Telomeraseaktivität sind sensitiver als die isogenen Klone mit aktiver Telomerase gegenüber allen untersuchten Topoisomerase-Lnhibitoren (Mitoxantron, Etoposid und Doxorubicin - Römpp Chemie Lexikon 1995), nicht aber gegenüber den anderswirkenden Zytostatika cis-Platin und Bleomycin oder dem alkylierenden Wirkstoff N-Methyl-N'-Nitro-N-Nitrosoguanidin (MN G) oder oxidativer Belastung mittels Wasserstoffperoxid (H2O9) (Figur 6).
Claims
1. Ribozyme, die die Aktivität der katalytischen Untereinheit der humanen Telomerase hTERT (human Telomerase Enzyme Reverse Transcriptase) vermindern.
2. Ribozyme nach Anspruch 1 , dadurch gekemizeiclmet. daß sie gegen das T-Motiv der humanen Telomerase gerichtet sind.
3. Ribozyme nach Anspruch 1 und 2, dadurch gekeimzeichnet, daß sie das T-Motiv der humanen Telomerase (hTERT) an den Sequenzen GUC, GUA, GUU, CUC oder UUC schneiden.
4. Ribozyme nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß es sich um Hammerhead- Ribozyme mit folgenden Sequenzen handelt: a) 5'-GCUCGAC CUGAuGAGuCcGUGAgGaCGAA ACGUACACA-3 b) 5'-GCAGCUC CUGAuGAGuCcGUGAgGaCGAA ACGACGUAC-3 c) 5'-AAAGAAA CUGAuGAGuCcGUGAgGaCGAA ACCUGAGCA-3 d) 5'-UCUCCGU CUGAuGAGuCcGUGAgGaCGAA ACAUAAAAG-3 e) 5'-UGCUCCA CUGAuGAGuCcGUGAgGaCGAA ACACUCUUC-3 f) 5-GACGACG CUGAuGAGuCcGUGAgGaCGAA ACACACUCA-3 g) 5'-CUUUUGA CUGAuGAGuCcGUGAgGaCGAA ACGUGGUCU-3 h) 5'-GCUUUGC CUGAuGAGuCcGUGAgGaCGAA ACUUGCUCC-3 i) 5'-AAGACCU CUGAuGAGuCcGUGAgGaCGAA AGCAGCUCG-3 j) 5'-UGUUUUU CUGAuGAGuCcGUGAgGaCGAA AGCCUGUUC-3 k) 5'-CAUAAAA CUGAuGAGuCcGUGAgGaCGAA AAAGACCUG-3
1) 5'-UUCUUUU CUGAuGAGuCcGUGAgGaCGAA AAACGUGGU-3 m) 5'-UCCGGUA CUGAuGAGuCcGUGAgGaCGAA AAAAAGAGC-3
5. Verwendung von Ribozymen nach Anspruch 1 bis 4 als Telomerase-hihibitoren.
6. Verwendung von Ribozymen nach Anspruch 1 bis 4 zur Telomerenverkürzung.
7. Verwendung von Ribozymen nach Anspruch 1 bis 4 in Kombination mit Zytostatikagabe und/oder Bestrahlung zur Telomerenverkürzung.
8. Verwendung von Ribozymen nach Anspruch 1 bis 4 in Kombination mit Topoisomerase- Lnhibition zur Telomerenverkürzung.
9. Verwendung nach Anspruch 7 oder 8 zur Beschleunigung der Telomerenverkürzungsrate durch DNA-Schädigung sowie zur Ausschaltung der Reparatureigenschaften der Telomerase.
10. Verwendung von Ribozymen nach Anspruch 1 bis 9 zur Behandlung von Tumoren.
11. Verwendung nach Anspruch 1 bis 4 zur Erhöhung der Sensitivität von Tumorzellen gegenüber Zytostatika.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19903961 | 1999-01-22 | ||
DE19903961 | 1999-01-22 | ||
PCT/DE2000/000227 WO2000043501A2 (de) | 1999-01-22 | 2000-01-21 | GEGEN DIE KATALYTISCHE UNTEREINHEIT DER HUMANEN TELOMERASE (hTERT) GERICHTETE RIBOZYME |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1149161A2 true EP1149161A2 (de) | 2001-10-31 |
Family
ID=7896056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00910502A Withdrawn EP1149161A2 (de) | 1999-01-22 | 2000-01-21 | GEGEN DIE KATALYTISCHE UNTEREINHEIT DER HUMANEN TELOMERASE (hTERT) GERICHTETE RIBOZYME |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1149161A2 (de) |
JP (1) | JP2002536967A (de) |
DE (1) | DE10003356A1 (de) |
WO (1) | WO2000043501A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1330759C (zh) * | 2004-08-24 | 2007-08-08 | 四川大学 | 抑制端粒酶活性的核酶基因hTERT-5’RZ cDNA、重组载体与核酶 |
US20110243910A1 (en) * | 2008-08-12 | 2011-10-06 | Japan Health Sciences Foundation | mammalian rna dependent rna polymerase |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656638A (en) * | 1995-04-18 | 1997-08-12 | Geron Corporation | Telomerase inhibitors |
GB2321642B8 (en) * | 1996-10-01 | 2006-08-22 | Geron Corp | Human telomerase reverse transcriptase promoter |
-
2000
- 2000-01-21 JP JP2000594909A patent/JP2002536967A/ja active Pending
- 2000-01-21 WO PCT/DE2000/000227 patent/WO2000043501A2/de not_active Application Discontinuation
- 2000-01-21 DE DE10003356A patent/DE10003356A1/de not_active Withdrawn
- 2000-01-21 EP EP00910502A patent/EP1149161A2/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO0043501A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000043501A3 (de) | 2000-11-16 |
DE10003356A1 (de) | 2000-07-27 |
WO2000043501A2 (de) | 2000-07-27 |
JP2002536967A (ja) | 2002-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3852539T2 (de) | Ribozyme. | |
EP1798285B1 (de) | Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens | |
DE69121391T2 (de) | Methode zur ortsspezifischen änderung von rna und produktion von dadurch kodierten polypeptiden | |
DE3751567T2 (de) | Rns-ribozym restriktionsendoribonukleasen und verfahren. | |
US5589580A (en) | Ribozymes | |
US5543508A (en) | Ribozymes | |
DE69125374T2 (de) | Endonukleasen | |
DE69126311T2 (de) | Therapeutische zusammensetzungen auf der basis von ribozymen | |
DE69303712T2 (de) | Gezielte spaltung von rna mittels eukaryontischer rnase p und externe führungssequenz | |
DE69331946T2 (de) | Nukleozyme | |
DE69933653T2 (de) | Zur Hemmung der Expression des CCR5-Rezeptors befähigte Ribozyme | |
WO1998005770A2 (de) | Anti-sinn-rna mit sekundärstruktur | |
WO2003062432A1 (de) | Verfahren zur erhöhung der wirksamkeit eines inhibitors der aktivität einer tyrosinkinase | |
DE69613336T2 (de) | Chimere ribozym-snRNA Moleküle mit katalytischen Aktivität nuklearer RNAs | |
DE69921609T2 (de) | Ribozymale nukleinsäure die ccr5 oder cxcr4 schneiden | |
EP1149161A2 (de) | GEGEN DIE KATALYTISCHE UNTEREINHEIT DER HUMANEN TELOMERASE (hTERT) GERICHTETE RIBOZYME | |
DE69302369T2 (de) | Erhöhung der katalytischen Aktivität von Ribozymen mit einem benachbartem Oligonukleotid als Heffer | |
DE69432444T2 (de) | Promotor-Sequenz des Rezeptors p55 für Tumor-Nekrosis-Faktor | |
DE69933382T2 (de) | Herstellung von ssdna innerhalb der zelle | |
DE3877212T2 (de) | Antivirale anwendung von alpha-oligonucleotiden. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010821 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20030930 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040414 |