EP1145415A1 - A synchronous flyback converter - Google Patents

A synchronous flyback converter

Info

Publication number
EP1145415A1
EP1145415A1 EP99964889A EP99964889A EP1145415A1 EP 1145415 A1 EP1145415 A1 EP 1145415A1 EP 99964889 A EP99964889 A EP 99964889A EP 99964889 A EP99964889 A EP 99964889A EP 1145415 A1 EP1145415 A1 EP 1145415A1
Authority
EP
European Patent Office
Prior art keywords
transistor
terminal
converter
secondary side
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99964889A
Other languages
German (de)
English (en)
French (fr)
Inventor
Bo Hedenskog
Claes SVÄRDSJÖ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP1145415A1 publication Critical patent/EP1145415A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer

Definitions

  • the present invention relates to a DC-DC converter circuit, and in particular to a synchronous flyback converter circuit for operation in a continuous mode.
  • flyback topology One way of obtaining a suitable rectifier circuit is to use flyback topology.
  • a flyback topology a primary side stores magnetic energy in a magnetisable core or the like during a charging interval . The energy is then fed to a secondary side during the so called flyback interval .
  • the main advantage of a power rectifier circuit having a flyback topology compared to other rectifier circuits is its simple construction, which makes it cheap to manufacture.
  • flyback converters can be divided into two different kinds:
  • a conventional flyback converter comprises, on the primary side, a primary winding of a transformer and a switch, and on the secondary side a secondary winding of the transformer connected to a diode and an output capacitor over which a load can be connected.
  • Such a converter has a large voltage drop over the diode.
  • the voltage drop over the diode becomes a significant part of the overall voltage, which makes the power converter inefficient for such low voltage applications.
  • a FET transistor which has a much lower voltage drop can be used on the secondary side .
  • the FET transistor can for example be directly connected to an auxiliary winding arranged in series with the secondary winding of the transformer.
  • a converter designed according to these principles is for example described in the co-pending Swedish patent application No. 9801595-1.
  • a drive pulse is generated by an inverting buffer circuit, which is fed from the output voltage.
  • the drive signal to the synchronous switch becomes independent of the input voltage and the drive losses can thereby be minimized.
  • - Fig. 1 is a circuit diagram of a continuous mode DC-DC converter .
  • Figs. 2a - 2c are timing diagrams.
  • a DC-DC converter is shown.
  • the power converter comprises, on the primary side, a primary winding 101 and a switch 103.
  • the primary winding is supplied with power from a DC voltage source 105.
  • the switch can for example be an n-channel MOSFET transistor Ql as shown in the figure.
  • the drain terminal of the transistor Ql is connected to a first terminal of the primary winding 101 and the source is connected to the low voltage input terminal of the voltage source 105.
  • the switch is controlled by a control device (not shown) connected to the gate of the transistor Ql, and is arranged to switch the transistor Ql on and off at desired times .
  • the control device can for example collect control data from the output terminals of the secondary side of the converter.
  • the DC-voltage source 105 can in turn be connected to an AC- voltage supply (not shown) via a rectifying circuit.
  • the primary side feeds a secondary side with energy via a transformer M2.
  • the secondary side comprises a secondary winding 109 having an opposite winding direction than the winding on the primary side.
  • a first terminal 111 of the winding 109 is connected to a first terminal 113 of a resistor Rl, the emitter 115 of a PNP transistor Q3 , and to a first terminal 117 of an output capacitor CO .
  • the second terminal 119 of the resistor Rl is connected to a first terminal 121 of a resistor R2 , the second terminal 123 of which is connected to the second terminal 125 of the winding 109.
  • the base 127 of the transistor Q3 is connected to a point 129 between the second terminal 119 of the resistor Rl and the first terminal 121 of the resistor R2.
  • the collector 131 of the transistor Q3 is connected to the collector 133 of a NPN transistor Q4.
  • the base 135 of the transistor Q4 is in a preferred embodiment connected to the second terminal 125 of the winding 109 via a resistor R3 and a capacitor Cl connected in series.
  • the emitter 137 of the transistor Q4 is connected to the second terminal 139 of the capacitor CO and to the source 141 of a FET transistor Q2.
  • the gate 143 of the transistor Q2 is connected to a point 145 between the collector terminals of the transistors Q3 and Q4.
  • the drain of the transistor Q2 is connected to the second terminal 125 of the winding 109.
  • a load ZL can be connected between the terminals of the output capacitor CO.
  • Fig. 2b the voltage appearing between the terminals of the secondary winding of the transformer M2 at the corresponding time is shown.
  • Fig. 2c the voltage appearing between the gate and source terminals of the transistor Q2 at the corresponding time is shown.
  • the pulse generating circuit arrangement generates a drive signal to the synchronous switch which is independent of the input voltage and the drive losses can thereby be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
EP99964889A 1998-12-21 1999-12-16 A synchronous flyback converter Withdrawn EP1145415A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9804454 1998-12-21
SE9804454A SE517220C2 (sv) 1998-12-21 1998-12-21 Synkron flybackomvandlare
PCT/SE1999/002390 WO2000038305A1 (en) 1998-12-21 1999-12-16 A synchronous flyback converter

Publications (1)

Publication Number Publication Date
EP1145415A1 true EP1145415A1 (en) 2001-10-17

Family

ID=20413780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964889A Withdrawn EP1145415A1 (en) 1998-12-21 1999-12-16 A synchronous flyback converter

Country Status (10)

Country Link
EP (1) EP1145415A1 (zh)
JP (1) JP2002534049A (zh)
KR (1) KR20010093856A (zh)
CN (1) CN1135682C (zh)
AU (1) AU3092000A (zh)
CA (1) CA2356187A1 (zh)
HK (1) HK1043447B (zh)
SE (1) SE517220C2 (zh)
TW (1) TW456096B (zh)
WO (1) WO2000038305A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568319B1 (ko) * 2004-10-22 2006-04-05 삼성전기주식회사 동기 정류기를 갖는 플라이백 컨버터
DE602007011834D1 (de) * 2007-05-30 2011-02-17 Power One Italy Spa Synchron-sperrwandler mit mehreren ausgängen
CN101359873B (zh) * 2007-08-02 2010-09-08 洋鑫科技股份有限公司 具有自驱式同步整流器的回扫电压变换器
AT14080U1 (de) * 2013-08-12 2015-04-15 Tridonic Gmbh & Co Kg Ansteuerschaltung für ein Betriebsgerät für Leuchtmittel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3422777A1 (de) * 1984-06-20 1986-01-02 ANT Nachrichtentechnik GmbH, 7150 Backnang Mit einer induktivitaet beschaltetes gesteuertes gleichrichterelement, sowie dessen verwendung
US4870555A (en) * 1988-10-14 1989-09-26 Compaq Computer Corporation High-efficiency DC-to-DC power supply with synchronous rectification
JP2845188B2 (ja) * 1995-12-11 1999-01-13 サンケン電気株式会社 Dc−dcコンバ−タ
US5818704A (en) * 1997-04-17 1998-10-06 International Rectifier Corporation Synchronizing/driving circuit for a forward synchronous rectifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0038305A1 *

Also Published As

Publication number Publication date
SE9804454D0 (sv) 1998-12-21
CN1331863A (zh) 2002-01-16
HK1043447B (zh) 2004-12-03
CA2356187A1 (en) 2000-06-29
AU3092000A (en) 2000-07-12
TW456096B (en) 2001-09-21
KR20010093856A (ko) 2001-10-29
WO2000038305A1 (en) 2000-06-29
WO2000038305A9 (en) 2000-12-07
SE517220C2 (sv) 2002-05-07
CN1135682C (zh) 2004-01-21
HK1043447A1 (en) 2002-09-13
SE9804454L (sv) 2000-06-22
JP2002534049A (ja) 2002-10-08

Similar Documents

Publication Publication Date Title
US6373727B1 (en) Synchronous rectification in a flyback converter
US6760235B2 (en) Soft start for a synchronous rectifier in a power converter
USRE37510E1 (en) Self-synchronized drive circuit for a synchronized rectifier in a clamped-mode power converter
US5781420A (en) Single ended forward DC-to-DC converter providing enhanced resetting for synchronous rectification
US6831847B2 (en) Synchronous rectifier drive circuit and power supply including same
US6570268B1 (en) Synchronous rectifier drive circuit and power supply including same
US20030185021A1 (en) Combined transformer-inductor device for application to DC-to-DC converter with synchronous rectifier
US7596003B2 (en) Electric power converter
US6859372B2 (en) Bridge-buck converter with self-driven synchronous rectifiers
US7400519B2 (en) Switching power supply
JP3346543B2 (ja) スイッチング電源装置
EP1092261A1 (en) A continuous mode flyback converter
US7092260B2 (en) Short-circuiting rectifier for a switched-mode power supply
WO2000038305A1 (en) A synchronous flyback converter
JP4201161B2 (ja) スイッチング電源装置
JPH1118426A (ja) スイッチング電源回路
JP2000050625A (ja) スイッチング電源回路
JP7286295B2 (ja) ゲートドライブ装置、絶縁型dc/dcコンバータ、ac/dcコンバータ、電源アダプタ及び電気機器
JP2740476B2 (ja) Fet整流回路
JP2002119058A (ja) 多出力同期整流式スイッチング電源装置
JP3518386B2 (ja) スイッチング電源装置
JP3419343B2 (ja) Dc−dcコンバータ
JP3302808B2 (ja) スイッチング電源装置
JPS642556Y2 (zh)
JP2002136121A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091229