EP1144104A1 - Verfahren und vorrichtung zur herstellung von formaldehyd - Google Patents

Verfahren und vorrichtung zur herstellung von formaldehyd

Info

Publication number
EP1144104A1
EP1144104A1 EP99957687A EP99957687A EP1144104A1 EP 1144104 A1 EP1144104 A1 EP 1144104A1 EP 99957687 A EP99957687 A EP 99957687A EP 99957687 A EP99957687 A EP 99957687A EP 1144104 A1 EP1144104 A1 EP 1144104A1
Authority
EP
European Patent Office
Prior art keywords
reaction gas
cooler
cooled
formaldehyde
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99957687A
Other languages
English (en)
French (fr)
Inventor
Wladimir Linzer
Thomas Schmid
Ralph Peter Theuer
Josef Schreiber
Wilfried Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krems Chemie GmbH
Original Assignee
Krems Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krems Chemie GmbH filed Critical Krems Chemie GmbH
Publication of EP1144104A1 publication Critical patent/EP1144104A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00194Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor

Definitions

  • the present invention relates to a process for the production of formaldehyde from air, methanol and optionally water.
  • the exothermic reaction is carried out in a special device on a silver catalyst.
  • the hot reaction gases are generated in a specially designed heat exchanger package in less than 60 msec. cooled to below 300 ° C. Further cooling takes place via additional heat exchanger surfaces and / or by injecting a cooled formaldehyde solution.
  • a slightly inclined tube bundle apparatus in which the vapor bubbles can escape faster due to the inclination.
  • the catalyst that is inclined at the same time is more difficult to insert and can easily slip, especially in the initial phase in the case of vapor bubble vibrations, which can lead to considerable reductions in yield or require a restart.
  • these known constructions require a cooling time which is far too long, which means that additional losses in yield and poor product quality have to be accepted.
  • US Pat. No. 4,358,623 it is proposed to fill the balls on the gas side with inert balls in order to shorten the residence time.
  • a porous plate between the perforated plate and the catalyst is recommended to eliminate the above defect.
  • German laid-open specification 25 46 104 describes a reactor which uses a tube bundle apparatus for cooling the reaction gases and through which the cooling medium flows on the tube side.
  • the apparatus is inclined at an angle, preferably rectangular, and supplied with cooling medium via external collectors.
  • Collectors and rectangular designs welded to the housing lead to pressure and thermal stress problems both on the reaction gas side and on the steam side.
  • the thermal stresses and the rectangular construction easily lead to sealing problems, so that there is a risk of escaping from methanol vapors or formaldehyde gas.
  • German Offenlegungsschrift 20 02 789 a reaction gas cooler is described, which is arranged directly under the catalyst bed, serves as a catalyst carrier and consists of elongated, multi-wound snakes.
  • a reaction gas cooler which is arranged directly under the catalyst bed, serves as a catalyst carrier and consists of elongated, multi-wound snakes.
  • rectangular designs are preferred and compartments are made in order to increase reaction gas speeds and shorten cooling times.
  • the rectangular design tion has the disadvantages known in pressure vessels and already mentioned above. A division into chambers is difficult to manufacture and difficult to clean.
  • the object of the invention is to provide a method and a device for producing formaldehyde by means of a new reaction gas cooler construction, as a result of which the reaction gas is produced in less than 60 msec. , preferably less than 30 msec., is cooled and high yields, good product qualities and problem-free apparatus life are ensured.
  • reaction gas in the formaldehyde reactor with an internally cooled horizontal tube heat exchanger in less than 60 msec. is cooled from 550-700 ° C to below 300 ° C. If necessary, the cooled reaction gas can then be further cooled in a spray cooler to a temperature of approximately 80 ° C., for example by injecting a formalin product solution or a mixture of formalin product and water.
  • a tube bundle with horizontal tubes is used for heat dissipation or for steam generation, in which boiling water is circulated on the tube side and the steam quench is separated from the water in a steam drum. The steam is released to the consumers, and the water is returned to the tube bundle apparatus via a circulation pump.
  • the design of the boiler essentially corresponds to that of a water tube boiler.
  • the unusual thing about this reaction gas cooler is that, due to the round design of the reactor, the evaporator tubes are not of the same length and are arranged horizontally.
  • the pipes are preferably equipped with throttles individually or in groups.
  • the reaction gas cooler designed according to the invention enables the generation of high pressure steam with a pressure of up to 40 bar.
  • the arrangement of throttles on the evaporator tubes stabilizes the flow rate of the cooling medium in the tubes, thereby making tube sections of different lengths possible, which lead to formaldehyde reactor shapes other than rectangular designs, preferably cylindrical reactors.
  • the tube bundle apparatus can be kept vibration-free by arranging tube support rings around the cooling tubes and additional support rings on the reactor wall.
  • the tube bundle serves as a support for the catalyst carrier.
  • the catalyst carrier expediently rests on the uppermost layer of the cooling tubes, as a result of which an uncooled gas space between the catalyst carrier and cooling tubes is avoided and rapid and efficient cooling of the hot reaction gases is ensured.
  • a very low carbon monoxide content of typically less than 0.1% by volume can be achieved in the cooled reaction gas, even if the catalyst temperature is above 680 ° C. If, according to a preferred embodiment, the horizontal tube heat exchanger according to the invention is combined with a spray cooler for the cooled reaction gas, the carbon monoxide content in the cooled reaction gas can be reduced to values of typically 0.05% by volume.
  • the gaseous starting materials enter the reactor at the gas inlet port 1 and react in the catalyst bed 2 to form a reaction gas containing about 680 ° C. which, after cooling in the tube bundle reaction gas cooler 3 and further cooling by a spray cooler 4 fed with formaldehyde solution, the reactor through the gas outlet port 5 leaves.
  • the cooling water flows from the steam drum 6 to the circulation pump 7 and passes through the throttles 8 into the lowest horizontal tube set of the tube bundle reaction gas cooler 3 and emerges from the topmost one, arranged directly under the catalyst bed 2. Neten coulter from the reactor and gets into the
  • the steam is drawn off from the steam drum 6 via a steam outlet 9 for further use, the amount of cooling water is supplemented to the required extent via a cooling water inlet 10.
  • the invention is illustrated by the following example.
  • 18,480 kg of starting mixture are passed through the reactor every hour.
  • the gas mixture After distribution in the upper reactor space, the gas mixture passes through the bed of catalyst silver 2 and the tube bundle gas cooler 3 located immediately below it.
  • the starting materials When passing through the catalyst bed 2, the starting materials react to form hydrogen or water to formaldehyde.
  • formaldehyde typically, 4,625 kg / h formaldehyde, 127.5 kg / h H, 610 kg / h CO + CO2 are produced from 18,480 kg / h starting mixture, the rest consists of nitrogen, water vapor and residual methanol. Since it is an exothermic reaction overall, a temperature of 680 ° C occurs on the catalyst bed.
  • reaction mixture passes immediately after the catalyst through the reaction gas cooler 3, which has already been described in more detail, and is cooled to about 280.degree.
  • the boiling boiler water emerges from the higher-lying steam drum 6 and is pumped to the reaction cooler 3 by pumps 7 on the ground floor in forced circulation through distributor 8.
  • the steam / water mixture that forms in the heated cooler tubes has a steam content of 10% by weight and leaves the cooler via a header tube and associated riser Lines to the steam drum 6.
  • the steam separated from the water leaves the drum through a shut-off valve in the steam line 9.
  • the steam production is 4,780 kg / h under the specified operating conditions.
  • the saturated steam generated has a pressure of 10 bar gauge pressure and a temperature of 184 ° C.
  • the amount of steam generated is supplemented by adding feed water via the feed water line 10.
  • reaction mixture After cooling to 280 ° C., the reaction mixture is cooled further to about 95 ° C. by injecting a cooled formalin solution 4.
  • the gas mixture finally leaves the reactor through the outlet connection 5 and is fed to the other parts of the plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In einem Verfahren zur Herstellung von Formaldehyd aus Luft, Methanol und gegebenenfalls Wasser in einem Formaldehydreaktor an einem Silberkatalysator (2) wird mittels einer speziellen Reaktionsgaskühlerkonstruktion (3) die Abkühlung des Reaktionsgases in weniger als 60 Millisekunden vorgenommen. Der Reaktionsgaskühler ist als ein innengekühlter Horizontalrohrwärmetauscher (3) ausgebildet. Unterhalb des Reaktionskühlers (3) kann ein Sprühkühler (4) angeordnet sein. Mit dem erfindungsgemässen Verfahren werden hohe Ausbeuten, gute Produktqualitäten und problemlose Apparatestandzeiten sichergestellt.

Description

Verfahren und Vorrichtung zur Herstellung von Formaldehyd
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von Formaldehyd aus Luft, Methanol und gegebenenfalls Wasser. Die exotherme Reaktion wird in einer speziellen Vorrichtung an einem Silberkatalysator ausgeführt. Die heißen Reaktionsgase werden hiebei in einem speziell ausgebildeten Wärmetauscherpaket in weniger als 60 msek. auf unter 300°C abgekühlt. Die weitere Abkühlung erfolgt über zusätzliche Wärmetauscherflächen und/oder durch Einspritzen einer gekühlten For- aldehydlösung .
Beim Formalinverfahren mit Silberkatalysatoren (oxidierende Dehydrierung von Methanol) ist es üblich und bekannt, die Reaktionswärme über einen Wärmetauscher abzuführen und in Form von Dampf, Heißwasser oder Wärmeträgeröl weiter zu nutzen. Um Neben- und Zerfallsreaktionen zu vermeiden, muß die Abkühlung der 550-700°C heißen Reaktionsgase möglichst rasch erfolgen. Die am häufigsten eingesetzte Konstruktionsform ist ein stehender Rohrbündelapparat, bei dem oben auf der Lochplatte der Katalysator aufliegt. Diese Bauform hat den Nachteil, daß die obere Lochplatte durch Dampfblasen schlecht gekühlt wird und daher thermisch hoch belastet ist. Apparateschäden und Rußablagerungen sind die Folge. Frühere Vorschläge, wie das tschechische Patent CS-224017, das ein Zwischensieb auf der Lochplatte vorsieht, oder das DDR-Patent DD-249473, welches eine gekühlte Dichtung vorschlägt, versuchen mit eingeschränktem Erfolg, diesen Mißstand zu beheben.
Als weitere technische Variante ist ein leicht schräg geneigter Rohrbündelapparat bekannt, bei dem infolge der Neigung die Dampfbläschen schneller entweichen können. Der dadurch gleichzeitig schräg liegende Katalysator ist schwerer einzubringen und kann vor allem in der Anfangsphase bei Dampfbläschenvibrationen leicht verrutschen, was zu erheblichen Ausbeuteverminderungen führen kann bzw. einen Neustart erfordert. Weiterhin bedingen diese bekannten Konstruktionen eine viel zu lange Abkühlzeit, wodurch zusätzliche Ausbeuteverluste und mangelnde Produktqualität in Kauf genommen werden müssen. Im US- Patent 4358623 wird vorgeschlagen, in die Rohre gasseitig Inertkugeln einzufüllen, um die Verweilzeit zu verkürzen. Im tschechischen Patent CS-227155 wird zur Beseitigung des vorstehenden Mangels eine poröse Platte zwischen Lochplatte und Katalysator empfohlen.
Allen vorstehend erwähnten Konstruktionen haftet nach wie vor der Nachteil an, daß nur unbefriedigend lange Abkühlzeiten von einigen Zehntelsekunden erreicht werden, bei gleichzeitig hohen erforderlichen Katalysatorbelastungen. Ein weiterer Nachteil dieser Konstruktionen liegt darin, daß die Apparate infolge der relativ schlechten Wärmeübergangskoeffizienten verhältnismäßig groß, schwer und teuer sind. Soll die Abwärme in Form von Dampf genutzt werden, so sind aus Festigkeitsgründen nur relativ niedrige Sattdampfdrücke von wenigen bar möglich.
In der deutschen Offenlegungsschrift 25 46 104 wird ein Reaktor beschrieben, der zur Abkühlung der Reaktionsgase einen Rohrbündelapparat verwendet, der rohrseitig vom Kühlmedium durchströmt wird. Um instabile Strömungsverhältnisse im Rohrbündel zu vermeiden, wird der Apparat schräg geneigt, vorzugsweise rechteckig ausgeführt und über außenliegende Sammler mit Kühlmedium versorgt. Der Nachteil der schrägen Anordnung wurde bereits oben dargestellt. Am Gehäuse angeschweißte Sammler und rechteckige Ausführungen führen sowohl reaktionsgasseitig als auch dampfseitig zu Druck- und Wärmespannungsproblemen. Weiterhin führen die WärmeSpannungen und die rechteckige Konstruktion leicht zu Dichtungsproblemen, sodaß die Gefahr eines Entwei- chens von Methanoldämpfen oder Formaldehydgas gegeben ist.
Schließlich wird in der deutschen Offenlegungsschrift 20 02 789 ein Reaktionsgaskühler beschrieben, der direkt unter dem Katalysatorbett angeordnet ist, als Katalysatorträger dient und aus langgestreckten, mehrfach gewundenen Schlangen besteht. Auch hier werden rechteckige Ausführungen bevorzugt und Unterteilungen in Kammern vorgenommen, um Reaktionsgasgeschwindigkeiten zu erhöhen und Abkühlzeiten zu verkürzen. Die rechteckige Ausfüh- rung hat die bei Druckbehältern bekannten und oben bereits erwähnten Nachteile. Eine Unterteilung in Kammern ist schwierig zu fertigen und schwer zu reinigen.
Der Erfindung liegt die Aufgabe zugrunde, durch eine neue Reak- tionsgas-Kühlerkonstruktion ein Verfahren und eine Vorrichtung zur Herstellung von Formaldehyd zur Verfügung zu stellen, wodurch das Reaktionsgas in weniger als 60 msek. , bevorzugt weniger als 30 msek., abgekühlt wird und hohe Ausbeuten, gute Pro- duktqualitäten und problemlose Apparatestandzeiten sichergestellt werden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Reaktionsgas im Formaldehydreaktor mit einem innengekühlten Horizontal-Rohrwärmetauscher in weniger als 60 msek. von 550- 700°C auf unter 300°C abgekühlt wird. Gegebenenfalls kann das abgekühlte Reaktionsgas anschließend in einem Sprühkühler weiter auf eine Temperatur von etwa 80 °C abgekühlt werden, beispielsweise durch Einspritzen einer Formalinproduktlösung oder eines Gemisches aus Formalinprodukt und Wasser.
Im erfindungsgemäß ausgestalteten Reaktionsgaskühler wird zur Wärmeabfuhr bzw. zur Dampferzeugung ein Rohrbündelapparat mit waagrechten Rohren eingesetzt, in dem rohrseitig Siedewasser zirkuliert und in einer Dampftrommel die Dampf läschen vom Wasser getrennt werden. Der Dampf wird zu den Verbrauchern abgegeben, das Wasser wird über eine Umlaufpumpe wieder dem Rohrbündelapparat zugeführt. Die Bauart des Kessels entspricht im wesentlichen derjenigen eines Wasserrohrkessels. Das ungewöhnliche an diesem Reaktionsgaskühler ist, daß die Verdampferrohre, bedingt durch die runde Bauart des Reaktors, ungleich lang und waagrecht angeordnet sind. Um ein Verbiegen der Rohre und eine ungleichmäßige Wasserbeaufschlagung zu verhindern, werden die Rohre vorzugsweise einzeln oder in Gruppen mit Drosseln ausgestattet . Weiterhin sind die Rohrdurchtritte durch das Gehäuse in vorteilhafter Weise so knapp gesetzt, daß Dehnhülsen entfallen können und trotzdem die WärmeSpannungen im zulässigen Bereich bleiben. Vorteilhaft sind die Abstände der Rohre untereinander so knapp gesetzt, daß sie erst nach mindestens einer internen Umleitung wieder nach außen geleitet werden können. Der erfindungsgemäß ausgestaltete Reaktionsgaskühler ermöglicht die Erzeugung von Hochdruckdampf mit bis zu 40 bar Druck. Durch die Anordnung von Drosseln an den Verdampferröhren wird die Strömungsgeschwindigkeit des Kühlmediums in den Rohren stabilisiert, wodurch unterschiedlich lange beheizte Rohrabschnitte ermöglicht werden, die zu anderen Formaldehydreaktorformen als rechteckige Ausführungen führen, vorzugsweise zu zylindrischen Reaktoren. Durch eine Anordnung von Rohrstützringen um die Kühlrohre und durch zusätzliche Stützringe an der Reaktorwand kann der Rohrbündelapparat vibrationsfrei gehalten werden. Darüber hinaus dient das Rohrbündel als Auflage für den Katalysatorträger. Der Katalysatorträger liegt zweckmäßig auf der obersten Lage der Kühlrohre auf, wodurch ein ungekühlter Gas- raum zwischen Katalysatorträger und Kühlrohren vermieden und ein rasches und effizientes Abkühlen der heißen Reaktionsgase sichergestellt wird.
Mit der erfindungsgemäßen Verfahrensführung kann im gekühlten Reaktionsgas ein sehr niedriger Kohlenmonoxidgehalt von typisch unter 0,1 Vol.-% erreicht werden, selbst wenn die Katalysatortemperatur über 680°C liegt. Wird gemäß einer bevorzugten Ausführungsform der erfindungsgemäße Horizontal-Rohrwärmetauscher mit einem Sprühkühler für das abgekühlte Reaktionsgas kombiniert, so kann der Kohlenmonoxidgehalt auf Werte von typisch 0,05 Vol.-% im abgekühlten Reaktionsgas erniedrigt werden.
In der angeschlossenen Zeichnung ist eine bevorzugte Ausführungsform der Erfindung schematisch dargestellt.
Die gasförmigen Ausgangsstoffe treten am Gaseintrittsstutzen 1 in den Reaktor ein und reagieren im Katalysatorbett 2 zu einem ca. 680°C heißen formaldehydhaltigen Reaktionsgas, das nach Kühlung im Rohrbündel-Reaktionsgaskühler 3 und weiterer Abkühlung durch einen mit Formaldehydlösung gespeisten Sprühkühler 4 den Reaktor durch den Gasaustrittsstutzen 5 verläßt.
Das Kühlwasser fließt aus der Dampftrommel 6 zur Umlaufpumpe 7 und gelangt durch die Drosseln 8 in die unterste waagrechte Rohrschar des Rohrbündel-Reaktionsgaskühlers 3 und tritt aus der obersten, unmittelbar unter dem Katalysatorbett 2 angeord- neten Rohrschar wieder aus dem Reaktor aus und gelangt in die
Dampftrommel 6.
Der Dampf wird über einen Dampfaustritt 9 zur weiteren Verwendung aus der Dampftrommel 6 abgezogen, die Kühlwassermenge wird im erforderlichen Ausmaß über einen Kühlwasserzulauf 10 ergänzt.
Die Erfindung wird durch das nachfolgende Beispiel weiter erläutert.
Beispiel :
Die Ausgangsstoffe Methanol, Wasser und Luft treten im gas- bzw. dampfförmigen Zustand durch den Eintrittsstutzen 1 in den Reaktor ein. Für eine Produktion von 100.000 Tonnen/Jahr 37 igem Formalin werden stündlich 18.480 kg Ausgangsgemisch durch den Reaktor geleitet .
Nach Verteilung im oberen Reaktorraum tritt das Gasgemisch durch die Schüttung aus Katalysatorsilber 2 und den unmittelbar darunter liegenden Rohrbündel-Gaskühler 3 hindurch.
Beim Passieren des Katalysatorbettes 2 reagieren die Ausgangs- Stoffe unter Bildung von Wasserstoff bzw. Wasser zu Formaldehyd. Aus 18.480 kg/h Ausgangsgemisch entstehen dabei typischerweise 4.625 kg/h Formaldehyd, 127,5 kg/h H , 610 kg/h CO+CO2, der Rest besteht aus Stickstoff, Wasserdampf und Restmethanol. Da es sich insgesamt um eine exotherme Reaktion handelt, tritt am Katalysatorbett eine Temperatur von 680°C auf.
Um ein Weiterreagieren des entstandenen Formalins zu CO2 zu verhindern, passiert das Reaktionsgemisch unmittelbar nach dem Katalysator den bereits näher beschriebenen Reaktionsgaskühler 3 und wird dabei auf ca. 280°C abgekühlt.
Das siedende Kesselwasser tritt aus der höher gelegenen Dampf- trommel 6 nach unten aus und wird durch im Erdgeschoß stehende Pumpen 7 im Zwangsumlauf durch Verteiler 8 dem Reaktionskühler 3 zugeführt. Das in den erhitzten Kühlerrohren entstehende Dampf/Wasser-Gemisch hat einen Dampfanteil von 10 Gew.-% und verläßt den Kühler über ein Sammelrohr und dazugehörige Steig- leitungen zur Dampftrommel 6. Der vom Wasser getrennte Dampf verläßt die Trommel durch ein Absperrventil in die Dampfleitung 9. Die DampfProduk ion beträgt bei den angegebenen Betriebsbedingungen 4.780 kg/h. Der erzeugte Sattdampf hat einen Druck von 10 bar Überdruck und eine Temperatur von 184°C. Die erzeugte Dampfmenge wird durch Speisewasserzugabe über die Speisewasserleitung 10 ergänzt.
Nach der Abkühlung auf 280°C wird das Reaktionsgemisch durch Einspritzen einer gekühlten Formalinlösung 4 weiter auf etwa 95°C gekühlt.
Das Gasgemisch verläßt den Reaktor zuletzt durch den Austritts- stutzen 5 und wird den weiteren Anlagenteilen zugeführt.

Claims

PATENTANSPRUCHE
Verfahren zur Herstellung von Formaldehyd aus Luft, Methanol und gegebenenfalls Wasser in einem Formaldehydreaktor an einem Silberkatalysator mit einem darunter liegenden Kühler mit Horizontalrohren, dadurch gekennzeichnet, daß das Reaktionsgas im Formaldehydreaktor mit einem innengekühlten Horizontalrohrwärmetauscher in weniger als 60 Millisekunden von 550-700°C auf unter 300°C abgekühlt wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das abgekühlte Reaktionsgas durch Einspritzen einer Formalin- produktlösung oder eines Gemisches aus Formalinprodukt und Wasser in einem Sprühkühler weiter auf eine Temperatur von etwa 80°C abgekühlt wird.
Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 oder 2, bestehend aus mit einem Gaseintrittsstutzen (1) für das Einsatzgemisch versehenen Kopfraum, dessen untere Begrenzung aus einem Katalysatorbett (2) besteht, unter dem sich ein Reaktionsgaskühler (3) mit Horizontalrohren sowie ein Gasaustrittsstutzen (5) für das abgekühlte for- maldehydhaltige Reaktionsgas befinden, dadurch gekennzeichnet, daß der Reaktionsgaskühler (3) als ein im Querschnitt runder, innengekühlter Horizontalrohrwärmetauscher mit vom Reaktionsgas beheizten, unterschiedlich langen Wärme auschrohren ausgestattet ist.
Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß im Bereich unterhalb des Reaktionsgaskühlers (3) ein Sprühkühler (4) angeordnet ist.
Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der den Katalysator aufnehmende Katalysatorträger auf der obersten Lage der Kühlrohre des Reaktionsgas- kühlers (3) aufliegt.
Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die mit dem Reaktionsgas beaufschlagten Teile des Reaktors aus rostfreiem Stahl, Kupfer oder kupferplattiertem Stahl bestehen.
EP99957687A 1998-12-10 1999-12-10 Verfahren und vorrichtung zur herstellung von formaldehyd Ceased EP1144104A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT207398A AT412871B (de) 1998-12-10 1998-12-10 Verfahren und vorrichtung zur herstellung von formaldehyd
AT207398 1998-12-10
PCT/AT1999/000303 WO2000033952A1 (de) 1998-12-10 1999-12-10 Verfahren und vorrichtung zur herstellung von formaldehyd

Publications (1)

Publication Number Publication Date
EP1144104A1 true EP1144104A1 (de) 2001-10-17

Family

ID=3527206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99957687A Ceased EP1144104A1 (de) 1998-12-10 1999-12-10 Verfahren und vorrichtung zur herstellung von formaldehyd

Country Status (4)

Country Link
EP (1) EP1144104A1 (de)
AT (1) AT412871B (de)
AU (1) AU1531000A (de)
WO (1) WO2000033952A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0907502D0 (en) * 2009-05-01 2009-06-10 Dynea Oy Catalyst reaction apparatus and process
CN108913896A (zh) * 2018-09-14 2018-11-30 谢以贵 一种新型节能且不消耗反应器的海绵钛还原蒸馏系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504402A (en) * 1945-10-27 1950-04-18 Du Pont Formaldehyde synthesis
US2908715A (en) * 1956-07-05 1959-10-13 Eguchi Takashi Process for preparing formalin by oxidation of methanol
DE1642955A1 (de) * 1968-03-05 1971-06-03 Basf Ag Verfahren zur Abfuehrung von Waerme
DE2002789A1 (de) * 1970-01-16 1971-07-22 Charbonnages Ste Chimique Vorrichtung zur Synthese von Formaldehyd
DE2137938A1 (de) * 1971-07-29 1973-02-15 Basf Ag Reaktor zur herstellung von aldehyden
DE2444586C3 (de) * 1974-09-18 1986-07-10 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von konzentrierten, wäßrigen Lösungen von Formaldehyd
DE2546104C3 (de) * 1975-10-15 1980-10-23 Bayer Ag, 5090 Leverkusen Vorrichtung zum Herstellen von Formaldehyd
DD249473B1 (de) * 1986-05-28 1989-12-13 Leipzig Chemieanlagen Verfahren zur herstellung von formaldehyd
JPH0764774B2 (ja) * 1987-07-24 1995-07-12 三井東圧化学株式会社 メタクロレインの後酸化防止方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0033952A1 *

Also Published As

Publication number Publication date
AT412871B (de) 2005-08-25
ATA207398A (de) 2005-01-15
WO2000033952A1 (de) 2000-06-15
AU1531000A (en) 2000-06-26

Similar Documents

Publication Publication Date Title
EP1485195B1 (de) Verfahren zur herstellung von phosgen
EP3164443B1 (de) Verfahren zur reinigung von polycarbonatpolyolen und reinigungsvorrichtung hierfür
US4418236A (en) Method of producing gasoline hydrocarbons from methanol
EP3401299B1 (de) Reaktor zum durchführen exothermer gleichgewichtsreaktionen
DE602004004908T2 (de) Vorrichtung und verfahren zum kühlen von heissgas
DE3442053C2 (de)
DE2348108A1 (de) Verfahren und vorrichtung zur absorption von so tief 3
WO2019233673A1 (de) Verfahren, rohrbündelreaktor und reaktorsystem zur durchführung katalytischer gasphasenreaktionen
DE1667187C3 (de) Hochdruckreaktor mit Katalysatorschich ten fur exotherme katalytische Reaktionen
DE2711897B2 (de) Verfahren und Vorrichtung zur katalytischen Oxidation von gasförmigen Schwefelverbindungen zu Schwefeltrioxid
EP0320440B1 (de) Vorwärmung von Kohlenwasserstoff/Wasserdampf-Gemischen
DE2420949C3 (de) Verfahren und Reaktor zur Herstellung von Äthylenoxid durch katalytische Oxidation von Äthylen
WO2019233674A1 (de) Verfahren und reaktorsystem zur durchführung katalytischer gasphasenreaktionen
DE69010716T2 (de) Verfahren und Reaktor für die exotherme heterogene Synthese mit Hilfe verschiedener katalytischer Betten und mit Wärmeaustausch.
DE69105986T2 (de) Ammoniaksyntheseapparat.
DE3590168C2 (de)
DE3420579A1 (de) Hochleistungs-methanierungsvorrichtung
AT412871B (de) Verfahren und vorrichtung zur herstellung von formaldehyd
DE10156092A1 (de) Verfahren zur katalytischen Methanolherstellung sowie Vorrichtung zur Duchführung des Verfahrens
WO2017032880A1 (de) Reaktor und verfahren zur katalytischen umsetzung eines gasgemisches
EP0272378B1 (de) Verfahren und Vorrichtung zum Kühlen von Spaltgas
DE69116286T2 (de) Katalytisches Verfahren zur Herstellung von Olefinen
DE10345902B4 (de) Verfahren zur Herstellung von Synthesegas aus Erdgas und Reaktor zur Durchführung des Verfahrens
EP1031373B1 (de) Reaktor zur katalytischen Umsetzung von Gasgemischen und Verfahren zur Benutzung des Reaktors
DE2317893B2 (de) Vorrichtung zur Durchführung katalytischer endothermer Reaktionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 20010709;LV PAYMENT 20010709;RO PAYMENT 20010709;SI PAYMENT 20010709

17Q First examination report despatched

Effective date: 20011026

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020629