EP1142003A1 - Verfahren zur speicherung eines scheibenträgers für halbleiterscheiben- poliermaschine - Google Patents
Verfahren zur speicherung eines scheibenträgers für halbleiterscheiben- poliermaschineInfo
- Publication number
- EP1142003A1 EP1142003A1 EP99964166A EP99964166A EP1142003A1 EP 1142003 A1 EP1142003 A1 EP 1142003A1 EP 99964166 A EP99964166 A EP 99964166A EP 99964166 A EP99964166 A EP 99964166A EP 1142003 A1 EP1142003 A1 EP 1142003A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carrier
- set forth
- mixture
- polishing
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005498 polishing Methods 0.000 title claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000008367 deionised water Substances 0.000 claims abstract description 24
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 24
- 239000010703 silicon Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims description 20
- 239000004094 surface-active agent Substances 0.000 claims description 15
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 14
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 5
- 235000012431 wafers Nutrition 0.000 description 33
- 239000000356 contaminant Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 239000000969 carrier Substances 0.000 description 5
- 238000007517 polishing process Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/34—Accessories
- B24B37/345—Feeding, loading or unloading work specially adapted to lapping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
Definitions
- the present invention relates to a method for storing a carrier used in polishing a silicon wafer. In some polishing processes, both surfaces of the wafer are polished simultaneously.
- Carriers have hitherto been stored in a dry condition, for example, as shown in Fig. 3, where carriers 3 are placed horizontally on a plurality of carrier setters 2 disposed on rollers 4 in a carrier repository 1. It has been found that because of such dry storage, scratches continue to occur at unacceptable levels. Further, the number of scratches on a silicon wafer increases with the number of times a carrier is used in the polishing process.
- the present invention aims to provide a method for storing a wafer polishing carrier, which carrier is stored in a manner that will reduce scratches on a silicon wafer which scratches are created during polishing the silicon wafer particularly when polished on both of its surfaces simultaneously.
- the present invention provides for a method of polishing a silicon wafer that results in fewer scratches on the wafer; the provision of such a method of using a wafer carrier that can be utilized with current polishing equipment without significant modification; the provision of such a method that is economical to use; and the provision of such a method that can be used in wafer polishing processes that polish both sides of a wafer simultaneously.
- the present invention provides a method for storing a carrier used in polishing a silicon wafer.
- the method includes storing the carrier completely immersed in a liquid containing deionized water prior to use with a wafer in a wafer polishing step.
- Fig. 1 is a schematic explanatory view showing an embodiment of a method for storing a carrier of the present invention.
- Fig. 2 is a schematic explanatory view showing another embodiment of a method for storing a carrier of the present invention.
- Fig. 3 is a schematic explanatory view showing an embodiment of a conventional method for storing a carrier.
- Fig. 4 is a graph showing a correlation between number of polishing and rate of occurrence of scratches.
- the present invention provides a method for storing a carrier that is used during the silicon wafer polishing step of the polishing process.
- the wafers are preferably simultaneously polished on both surfaces.
- the method includes storing the carrier completely immersed in a storage liquid such deionized water or a liquid mixture including deionized water prior to use in the polishing step.
- the storage liquid be at a temperature in the range of about 20°C through about 80°C during storage of the carriers. It is also preferred that the storage liquid be subjected to filter-circulation cleaning during carrier storage, however, it is envisioned that the storage liquid may be filtered at other times in addition to or instead of during carrier storage .
- a further method for storing a carrier for simultaneously polishing both surfaces of silicon wafer characterized in that the carrier is stored completely immersed in storage liquid including a mixture of liquids and also one or more liquids containing dissolved solids.
- the major component of the storage liquid is deionized water. It is preferable that the following components be added to the deionized water to obtain the liquid mixture and added in the indicated amounts by weight of deionized water: surface active agent (0.1 - 5% by weight); aqueous ammonia and hydrogen peroxide; and surface active agent (0.1 - 5% by weight + aqueous ammonia and hydrogen peroxide) .
- the surface active agent may be a soluble solid.
- the storage liquid has pH preferably of 7 - 12. Further, the storage liquid is preferably subjected to filter-circulation cleaning.
- a carrier and a brush for cleaning abrasive polishing pads are stored under the condition that a carrier and a brush are completely immersed in the storage liquid.
- a carrier is stored completely immersed in storage liquid. Therefore, the carrier can be stored and removed from storage in a clean condition since the carrier can be isolated from contaminants.
- the carrier can be easily washed of contaminants since contaminants are preferably not allowed to dry on the carrier and do not adhere as readily to the carrier even if the carrier is initially contaminated. Thus, the contaminants available to cause scratches during polishing are reduced as is the number of scratches .
- the method of the present invention can be applied not only to the aforementioned carrier for polishing, but also to a brush used to clean an abrasive polishing pad.
- Deionized water used in the present invention is preferably super deionized water refined by the use of an electric recuperation type ion-exchanger in which an ion- exchange resin and an ion- -exchange film are used in combination or refined with a reverse permeation apparatus.
- the liquid mixture of the present invention is preferably prepared by adding a surface active agent in an amount of about 0.1 - 5% by weight (absent any water) of deionized water in the resulting mixture.
- a volume ratio of aqueous ammonia : aqueous hydrogen peroxide : deionized water is controlled within the approximate range of from 1:1:10 to 1:1:200.
- a surface active agent usable in the present invention is selected from cationic surface-active agents, anionic surface- active agents, nonionic surface-active agents and amphoteric surface-active agents. Nonionic surface-active agents and amphoteric surface-active agents are preferable for removing contaminants .
- a vessel 13 for storing a carrier is filled with storage liquid which is preferably first filter- cleaned.
- a part of the aforementioned deionized water or liquid mixture (storage liquid) is introduced to a filter 10 from a water-suction port 11 arranged at the bottom of the vessel 13 by the use of a circulation pump 9, filter-cleaned by the filter 10, and continuously supplied to the vessel 13 through a water-supply port 12 arranged in the upper portion of the vessel 13.
- the filter 10 it is preferable to use a filter of 0.05 - l.O ⁇ m filtration.
- a carrier should be placed in the vessel before drying after use to help in particle removal from the carrier. Because the particles are not dry, they do not readily adhere to the carrier and even if particles adhere to the carrier, the carrier can be easily washed away prior to use or reuse of the carrier. It is preferable that a carrier is taken out of and placed in the vessel for storing a carrier by the use of, for example, an arm 5 shown in Fig. 1.
- the arm 5 includes a plurality of grooves 6 each for holding a carrier 3 , a stopper 7 fixing the arm 5 during a time when the arm 5 is positioned for removing or introducing a carrier, and a supporting portion 8 capable of supporting the arm 5 at predetermined portions of the vessel 13 in such a manner that the arm 5 (or the supporting portion 8) can slide up and down.
- the carrier 3 may be introduced into the vessel for storing the carrier immersed in the storage liquid.
- a carrier 3 may be suspended from a rack-shaped repository shelf 14.
- the shelf is suspended in the vessel 13 as with a wire 16 which is also connected to a winch means 18 and operable to move the shelf up and down to predetermined positions within the vessel 13 as shown in Fig. 2.
- the wire 16 be made of a material having low dusting characteristics.
- nylon or the like can be suitably used as the material.
- an open top of the vessel 13 be normally sealed during carrier storage to prevent particles in the ambient atmosphere from being introduced into the vessel 13. It is also preferred the vessel 13 be disposed in a clean air environment such as in a clean room.
- the present invention is described in more detail on the basis of Examples. However, the present invention is by no means limited to these Examples.
- the rate of occurrence of scratches (count/si) per a silicon wafer was obtained by subjecting silicon wafers to eye-observation in a darkroom by the use of collimate light having a luminous intensity of 10 5 lux and determining observable scratches as scratches caused by contaminants.
- a carrier 3 was stored, by use of the vessel 13 shown in Fig. 1 in such a manner that it was completely immersed in deionized water having a temperature of 40°C while circulating deionized water cleaned by the filter 10 (1.0 filtration filter) .
- a carrier 3 was stored, by the use of the vessel 13 shown in Fig. 1 in such a manner that it was completely immersed in a liquid mixture having a temperature of 40°C and pH of about 10 while circulating a filter-cleaned mixed liquid by a filter 10 (1.0 ⁇ m filtration filter).
- the liquid mixture was prepared by adding 0.5 wt% of L-64 (produced by BASF) as a surface active agent, 0.5 wt% of 30% aqueous ammonia, and 0.5 wt% of 30% aqueous hydrogen peroxide (based on total weight of deionized water in the resulting mixture) to deionized water.
- a carrier 3 was stored in a dry condition by the use of a container 1 for storing a carrier shown in Fig. 3.
- a silicon wafer was subjected to polishing (normal manner) several times on both surfaces simultaneously by the use of the carrier.
- FIG. 4 A correlation between number of polishing steps on the wafer and rate of occurrence of scratches is shown in Fig. 4. As Fig. 4 shows, the rate of occurrence of scratches on a silicon wafer was reduced in Examples 1 and 2 in comparison with Comparative Example.
- Example 2 a rate of occurrence of scratches on a silicon wafer was reduced the most by adding a surface active agent, aqueous ammonia and aqueous hydrogen peroxide to deionized water in comparison with the case where only deionized water was used.
- a carrier can be stored in a clean condition, and scratches on a silicon wafer which are sustained during polishing of the silicon wafer on both surfaces simultaneously can be reached.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Prevention Of Fouling (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36687398A JP2000190208A (ja) | 1998-12-24 | 1998-12-24 | 研磨用キャリアーの保管方法 |
JP36687398 | 1998-12-24 | ||
PCT/US1999/029078 WO2000039841A1 (en) | 1998-12-24 | 1999-12-08 | Method for storing carrier for polishing wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1142003A1 true EP1142003A1 (de) | 2001-10-10 |
Family
ID=18487905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99964166A Withdrawn EP1142003A1 (de) | 1998-12-24 | 1999-12-08 | Verfahren zur speicherung eines scheibenträgers für halbleiterscheiben- poliermaschine |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1142003A1 (de) |
JP (1) | JP2000190208A (de) |
KR (1) | KR20010080964A (de) |
CN (1) | CN1331838A (de) |
MY (1) | MY130885A (de) |
TW (1) | TW439137B (de) |
WO (1) | WO2000039841A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10060697B4 (de) | 2000-12-07 | 2005-10-06 | Siltronic Ag | Doppelseiten-Polierverfahren mit reduzierter Kratzerrate und Vorrichtung zur Durchführung des Verfahrens |
CN101797717B (zh) * | 2009-02-10 | 2011-12-07 | 和舰科技(苏州)有限公司 | 侦测化学机械研磨机台水槽上/下位置的装置及方法 |
JP6977657B2 (ja) * | 2018-05-08 | 2021-12-08 | 信越半導体株式会社 | 両面研磨装置用キャリアの保管方法及びウェーハの両面研磨方法 |
JP7349352B2 (ja) * | 2019-12-27 | 2023-09-22 | グローバルウェーハズ・ジャパン株式会社 | シリコンウェーハの研磨方法 |
CN118238065B (zh) * | 2024-05-29 | 2024-08-27 | 四川上特科技有限公司 | 一种晶圆存储装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06226618A (ja) * | 1993-01-27 | 1994-08-16 | Hitachi Cable Ltd | 半導体ウエハの研磨方法 |
US5520205A (en) * | 1994-07-01 | 1996-05-28 | Texas Instruments Incorporated | Apparatus for wafer cleaning with rotation |
JP2832171B2 (ja) * | 1995-04-28 | 1998-12-02 | 信越半導体株式会社 | 半導体基板の洗浄装置および洗浄方法 |
US6045624A (en) * | 1996-09-27 | 2000-04-04 | Tokyo Electron Limited | Apparatus for and method of cleaning objects to be processed |
-
1998
- 1998-12-24 JP JP36687398A patent/JP2000190208A/ja not_active Withdrawn
-
1999
- 1999-12-08 EP EP99964166A patent/EP1142003A1/de not_active Withdrawn
- 1999-12-08 WO PCT/US1999/029078 patent/WO2000039841A1/en not_active Application Discontinuation
- 1999-12-08 CN CN99814852A patent/CN1331838A/zh active Pending
- 1999-12-08 KR KR1020017005828A patent/KR20010080964A/ko not_active Application Discontinuation
- 1999-12-23 MY MYPI99005694A patent/MY130885A/en unknown
- 1999-12-24 TW TW088122945A patent/TW439137B/zh active
Non-Patent Citations (1)
Title |
---|
See references of WO0039841A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2000039841A1 (en) | 2000-07-06 |
CN1331838A (zh) | 2002-01-16 |
MY130885A (en) | 2007-07-31 |
JP2000190208A (ja) | 2000-07-11 |
KR20010080964A (ko) | 2001-08-25 |
TW439137B (en) | 2001-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW525221B (en) | Substrate processing method | |
ES2238769T3 (es) | Metodo fluorometrico para aumentar la eficacia del proceso de lavado y recuperacion del agua en la fabricacion de chips de semiconductores. | |
KR100373062B1 (ko) | 가공물세정방법및장치 | |
US20060213536A1 (en) | Substrate cleaning apparatus and substrate cleaning method | |
EP1044467A1 (de) | Reinigunsverfahren für siliziumsubstrate nach dem läppen | |
US20020142617A1 (en) | Method for evaluating a wafer cleaning operation | |
WO1999040612A1 (en) | Post-cmp wet-hf cleaning station | |
JP3384530B2 (ja) | 半導体ウェーハの研磨装置および研磨方法 | |
EP1142003A1 (de) | Verfahren zur speicherung eines scheibenträgers für halbleiterscheiben- poliermaschine | |
WO2000039841A9 (en) | Method for storing carrier for polishing wafer | |
US6379226B1 (en) | Method for storing carrier for polishing wafer | |
JP3759706B2 (ja) | 研磨パッドコンディショナの洗浄方法および研磨パッドコンディショナ洗浄装置 | |
CN1550034A (zh) | 恒定ph的抛光和擦洗 | |
CN109318114A (zh) | 一种半导体晶圆的最终抛光机以及最终抛光及清洗方法 | |
KR100329115B1 (ko) | 반도체웨이퍼의연마직후연마반도체웨이퍼의처리방법 | |
US6416393B2 (en) | Process for producing a semiconductor wafer | |
JPS63110732A (ja) | 半導体基板の洗浄方法 | |
CN210187878U (zh) | 用于晶片抛光后的存储装置 | |
JP3099907B2 (ja) | 半導体処理装置 | |
KR20100080162A (ko) | Cmp 장치 및 cmp 방법 | |
JPH06124934A (ja) | ウエット洗浄装置 | |
JPS63178531A (ja) | 水洗式中間ステ−ジ | |
JP4306217B2 (ja) | 洗浄後の半導体基板の乾燥方法 | |
JPH03159123A (ja) | 半導体ウエーハの洗浄方法 | |
Huynh et al. | A study of post-chemical-mechanical polish cleaning strategies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010425 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20031107 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040318 |