EP1130116A9 - Methode und Gerät zur Detektion von Nukleinsäuren unter Verwendung von totaler interner Reflektion - Google Patents

Methode und Gerät zur Detektion von Nukleinsäuren unter Verwendung von totaler interner Reflektion Download PDF

Info

Publication number
EP1130116A9
EP1130116A9 EP01107485A EP01107485A EP1130116A9 EP 1130116 A9 EP1130116 A9 EP 1130116A9 EP 01107485 A EP01107485 A EP 01107485A EP 01107485 A EP01107485 A EP 01107485A EP 1130116 A9 EP1130116 A9 EP 1130116A9
Authority
EP
European Patent Office
Prior art keywords
initiator
tir
reaction
nucleic acid
label
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01107485A
Other languages
English (en)
French (fr)
Other versions
EP1130116A2 (de
EP1130116A3 (de
Inventor
Stanley R. Bouma
Omar S. Khalil
Edward K. Pabich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott Laboratories
Original Assignee
Abbott Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Laboratories filed Critical Abbott Laboratories
Publication of EP1130116A2 publication Critical patent/EP1130116A2/de
Publication of EP1130116A9 publication Critical patent/EP1130116A9/de
Publication of EP1130116A3 publication Critical patent/EP1130116A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6862Ligase chain reaction [LCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Definitions

  • the present invention relates to methods, apparatus, and kits for amplifying and/or detecting target nucleic acid using total internal reflection ("TIR") techniques.
  • TIR total internal reflection
  • the invention also relates to an improved TIR device and method for specific binding assays, including immunoassays.
  • nucleic acid amplification methods have been used in the identification of genetic disorders such as sickle-cell anemia and cystic fibrosis, in detecting the presence of infectious organisms, and in typing and quantification of DNA and RNA for cloning and sequencing.
  • PCR polymerase chain reaction
  • LCR ligase chain reaction
  • Amplification of nucleic acids using such methods is usually performed in a closed reaction vessel such as a snap-top vial. After the amplification, the reaction vessel is then opened and the amplified product is transferred to a detection apparatus where standard detection methodologies are used.
  • the amplified product is detected by denaturing the double-stranded amplification products, and treating those products with one or more hybridizing probes having a detectable label.
  • the unhybridized probes are typically separated from the hybridized probe, requiring an extra separation step.
  • the primer or probes may be labeled with a hapten as a reporter group. Following amplification, the hapten, which has been incorporated into the amplification product, can be used for separation and/or detection.
  • the amplification products may be detected by gels stained with ethidium bromide.
  • enzyme immunoassay [Keller et al., J. Clin. Microbiology , 28 :1411-6 (1990)]
  • fluorescence [Urdea et al., Nucleic Acids Research, 16 :4937-56 (1988); Smith et al., Nucleic Acids Research, 13 :2399-412 (1985)]
  • chemiluminescence assays and the like can be performed to detect nucleic acids in a heterogeneous manner [Bornstein and Voyta, Clin. Chem.
  • contamination may involve the work areas and equipment used for sample preparation, preparation of the reaction reagents, amplification, and analysis of the reaction products. Such contamination may also occur through contact transfer (carryover), or by aerosol generation.
  • a need emerges for detecting amplified nucleic acids in a closed system in order to eliminate the potential for contamination. Also, a need emerges for a method of amplifying and detecting the target nucleic acid in an operationally simple, yet highly sensitive manner.
  • the ability to detect the amplification product in a sealed vessel, or in a closed system offers useful advantages over existing prior art methods, including the ability to monitor the amplification of target nucleic acid throughout the course of the reaction.
  • the invention can monitor the presence and/or concentration of target molecules in real time. This is particularly of interest in nucleic acid amplification reactions.
  • a still further object of the present invention is to provide relatively simple and sensitive methods and apparatus for detecting target nucleic acid or other molecules of interest in a reaction sample.
  • the inventon is a method of detecting amplified target nucleic acid using total internal reflection, comprising the steps of:
  • the invention contemplates both covalent attachment and specific binding member attachment of initiators to the element to bring the fluorophore within the penetration depth. Both immunoreactive and polynucleotide specific binding pairs are contemplated. i It is preferred that the amplification initiators double as either capture means or label means or both.
  • the reaction vessel may be selected from the group consisting of a flow cell, a capillary tube and a static-volumetric cell.
  • a plurality of at least one member of the initiator sequence set can be coupled to a specific binding member which serves also as the capture means or label means.
  • said specific binding member comprises a hapten and either the capture means further comprises antihapten antibody immobilized on the element, or the label means further comprises antihapten conjugated to a fluorophore.
  • said specific binding member comprises a polynucleotide tail and either the capture means further comprises a complementary polynucleotide tail immobilized on the element, or the label means further comprises a complementary polynucleotide tail conjugated to a fluorophore.
  • a plurality of at least one member of an initiator sequence may be coupled to the TIR element by covalent bonding, and more particularly via a spacer molecule.
  • a capture probe complementary to a portion of the amplified target may be immobilized on said TIR element.
  • the reaction vessel is a sealed, static-volumetric vessel.
  • the reaction sample, initiator sequence sets and amplification reagents are reacted under thermal cycling conditions and, more particularly, the amplification reagents may include an enzymatic agent that induces amplification, said enzymatic agent being selected from thermostable DNA polymerase, thermostable DNA ligase or a combination thereof, and still more particularly the target nucleic acid present in the reaction sample may be amplified by polymerase chain reaction or ligase chain reaction.
  • the reaction sample, initiator sequence sets and amplification reagents may be reacted under isothermal conditions.
  • the step of producing an evanescent wave adjacent to the TIR element comprises directing a beam emitted by an excitation source onto the TIR element and totally internally reflecting the beam in the TIR element.
  • the invention also provides an apparatus for amplification and detection of nucleic acid targets comprising:
  • reaction vessel and the TIR element are separated from one another by a distance that precludes capillary migration.
  • a distance of 1.7 mm or more is sufficient.
  • the reaction vessel may be sealed by a sealing member having a throughbore for the TIR element, or by an integral cap/TIR element.
  • the means for producing the evanescent electromagnetic wave comprises an excitation source and optics, wherein a beam emitted from the excitation source is directed by the optics onto the protruding portion of the TIR element, the beam being totally internally reflected in the TIR element.
  • the means for detecting the change in fluorescence comprises a photodetector and, optionally, optics for chanelling the fluorescence from the TIR element to the photodetector.
  • the means for reacting the reaction sample and initiator sequences comprises a thermocycler device having a reaction vessel disposed therein.
  • the static-volumetric reaction vessel may be sealed with an integral cap/TIR element.
  • the static-volumetric reaction vessel and TIR element may be dimensioned such that the space between the element surface and the interior wall of the reaction vessel is too great to support capillary migration of an aqueous fluid.
  • the reaction vessel and TIR element may be made of wettable materials with the distance between the element surface and the interior wall of the reaction vessel being at least about 1.7 mm, or more particularly about 2.0 mm.
  • the invention in another aspect, relates to a method and apparatus for detecting nucleic acid in a sample by means of signal amplification achieved by destroying, as a function of the amount of target present, a scissile link that holds fluorophore near the TIR element.
  • a decrease in the totally internally reflected fluorescence will occur in the presence of target.
  • the invention provides a method of detecting target nucleic acid in a reaction vessel using total internal reflection, comprising the steps of:
  • the invention also provides an apparatus for detecting target nucleic acid, comprising:
  • the invention relates to an improved method for detecting a target molecule in a specific binding assay using fluorescence total internal reflection, said method comprising:
  • the specific binding assay may be an assay for nucleic acid molecules selected from DNA and RNA. Also in such method, the specific binding assay may be an assay for immunoreactive molecules selected from antigens, haptens and antibodies.
  • the invention in another aspect, relates to an improved method and apparatus for conducting specific binding assays with fluorophore labels that are detected or monitored by total internal reflectance means.
  • This embodiment of the invention includes:
  • the reaction vessel and TIR element are made of wettable materials and the distance between the element surface and the interior wall of the reaction vessel is at least about 1.7 mm.
  • the apparatus can comprise an excitation source and optics and a detector means and optics.
  • the apparatus can comprise means for varying the temperature of the reaction vessel.
  • kits for detecting amplified nucleic acids comprising PCR or LCR amplification reagents and a TIR element having a plurality of coupling sites that allow attachment of amplified target nucleic acid.
  • One kit for amplification and detection of a target nucleic acid comprises:
  • a second kit for amplification and detection of a target nucleic acid comprises:
  • an electromagnetic waveform known as an evanescent wave is generated in the less dense medium, and the electric field associated with the excitation light forms a standing sinusoidal wave, normal to the interface, is established in the denser medium.
  • the evanescent wave penetrates into the less dense medium, but its energy dissipates exponentially as a function of distance from the interface.
  • a parameter known as "penetration depth" (dp) is defined as the distance from the interface at which the evanescent wave energy has fallen to 0.368 times the energy value at the interface. [ See , Sutherland et al., J. Immunol. Meth. , 74 :253-265 (1984)]. Penetration depth is calculated as follows:
  • the maximum acceptance angle with regard to the TIR element axis, B, for the radiation entering the TIR element and so propagated within it, is established by the refractive indices of the TIR element and the surrounding medium.
  • the evanescent wave in the less dense medium can excite fluorescence in the sample.
  • the fluorescence tunnels back into the TIR element propagates within the TIR element along the same path as the standing sinusoidal wave (but at a different wavelength) and is detected. All of the radiation that tunnels back into the TIR element is within the total internal reflection angle and is thus trapped within the TIR element. Accordingly, TIR allows detection of a fluorophore-labeled target of interest as a function of the amount of the target in the reaction sample that is within the penetration depth of the TIR element.
  • total internal reflection is used to detect amplified target nucleic acid in a reaction vessel.
  • the reaction vessel preferably is sealed although a flow cell or a capillary tube may be used. Both amplification and detection can take place within the same closed reaction vessel, thus minimizing contamination risks.
  • FIG. 1 illustrates a an amplification and detection system 10 in accordance with one embodiment of the present invention.
  • the system includes a thermal cycling device generally represented as 12, a reaction unit generally represented as 14, fluorescence excitation source and optics 16 and fluorescence detection optics 18.
  • the unit 14 includes a reaction vessel 20, a sealing member 22 and a total internal reflection (TIR) element 24.
  • the reaction vessel 20 is placed in a thermal cycling device 12 and is supported by tab members 26.
  • thermocycler device 12 is shown.
  • the details of the method of thermocycling are not critical to the invention.
  • the temperature of the amplification reaction may be controlled manually, such as by air or water baths, or regulated automatically by a thermocycler device specifically designed for nucleic acid amplification.
  • Thermocycler devices are commercially available from Perkin-Elmer Corporation, (Norwalk, CT) and Coy Laboratories, (Ann Arbor, MI).
  • the reaction vessel 20 is made of glass or polymeric materials such as polystyrene, polyacrylate and the like, and is preferably made of a thermostable material.
  • the size of the reaction vessel 20 is selected so as to contain relatively small quantities of reaction sample. More preferably, the reaction vessel 20 is selected to so as to contain from about 50 ul to about 200 ul reaction sample.
  • the reaction vessel 20 is a microcentrifuge tube, although other configurations are possible and within the invention.
  • reaction vessel be a "static-volumetric" vessel, having a composition (with regard to wettability) and a distance between the element surface 38 and the walls of the reaction vessel 20 that is sufficiently great to prohibit capillary action of an aqueous sample therebetween.
  • the TIR element 24 may be preferably any of a number of optically transparent materials, including but not limited to, glass, quartz, and transparent polymers such as polystyrene or polystyrene copolymers and polyacrylic acids or the like, chosen to have an index of refraction greater than that of the medium in which it is placed.
  • the medium is an aqueous reaction sample comprising amplification reaction reagents and target nucleic acids.
  • Such a reaction medium typically will have a refractive index ranging from about 1.30 to about 1.38, more typically, about 1.34.
  • the preferred TIR elements according to the invention have refractive indices ranging from about 1.4 to 1.6.
  • Exemplary materials and their approximate refractive indices are given in Table 1 below: Element Material Refractive Index Quartz 1.6 Polystyrene 1.59 Glass 1.52 Polymethylmethacrylate 1.49 Pyrex 1.47
  • the TIR element 24 is further chosen to be insoluble and non-reactive with the reaction sample.
  • An exemplary TIR element 24 is a glass rod with a wide surface area and a diameter of approximately 1 millimeter. It will be understood that the dimensions of the TIR element 24 accommodate the reaction being undertaken and the size of the reaction vessel 20. Those skilled in the art will appreciate that the surface area of the TIR element 24 should be considered and it is believed that to obtain maximum surface area binding, the reaction vessel 20 and the TIR element 24 are preferably long and cylindrical.
  • a sealing member 22 is configured and dimensioned to fit on the open end of the reaction vessel 20.
  • a centrally disposed bore 30 in the sealing member 22 is adapted to support an upper end portion of the TIR element 24 substantially coaxially within the vessel 20.
  • the sealing member 22 preferably provides a sturdy locating surface (e.g. tab members 26) for positioning the unit 14 with respect to the excitation source and optics 16 and detection optics 18, which will be described in more detail in connection with figure 2.
  • the sealing member 22 is preferably a rubber septum or a polymer or polymer laminate.
  • the TIR element 24 passes through and is supported by the sealing member 22 so as to expose as much as possible of the TIR element 24 to the interior of the reaction vessel 20, leaving only an end face 32 unobscured and approximately coterminous with the extremity of the bore 30 external to the vessel 20.
  • the end face 32 of the TIR element 24, however, does not have to be coterminous with the extremity of the bore 30 as can be seen from alternative TIR elements shown in figures 3 and 4. It is important, however, that a minimum amount of the TIR element is exposed above the sealing member 22 to reduce the dissipation of signals received and transmitted by the TIR element 24.
  • the end face 32 is highly transparent and free of blemishes which would tend to scatter light incident upon its face.
  • the end face 32 may be optically polished, or alternatively, a fused quartz TIR element 24 may be cleaved to provide an adequate optical surface.
  • Other TIR element configurations will be described with reference to Figures 3 and 4.
  • the TIR element may be fabricated by injection molding of chemically activated transparent polymers into an appropriate shape and finish.
  • Chemically-activated transparent polymers include surface treated homopolymers (e.g. polystyrene), and copolymers of styrene such as styrene maleic anhydride (commercially available from ARCO Chemical Company). It is very likely that other polymers and copolymers are suitable provided they are transparent and chemically activatable.
  • opposite end face 34 of the TIR element 24 is also polished flat or cleaved and, preferably, is further provided with a black coating, a mirror coating or a separate mirror disposed substantially normal to the TIR element 24 axis. It is important in the operation of the invention to avoid fluorescent excitation of the bulk reaction solution by light exiting the TIR element 24 through the end face 34. Thus, a black coating (to absorb) or a mirror coating (to reflect) are preferred. The mirror coating or separate mirror has the added advantage of causing radiation trapped in the TIR element 24 to double pass the TIR element 24.
  • the end face 34 need not be flat or normal to the axis of the element, however, as shown from figure 3.
  • the reaction sample 36 typically includes a buffered solution of sample components, label means and reagents for amplification (described further below). Examples of typical reaction samples for particular amplification reactions are provided in Examples 4-11 below.
  • the outer surface 38 of the TIR element 24 is modified, as described further below, having a plurality of coupling sites that allow attachment of the amplification reaction products or other members of specific binding pairs that can capture amplification reaction products.
  • the amplified product typically a double-stranded nucleic acid, comprises a pendent fluorophore, as described more fully below.
  • the amplified product and associated fluorophore is brought within the penetration depth of the TIR element 24 so that a fluorescent signal may be detected.
  • the target nucleic acid of the present invention is that nucleic acid sequence sought to be detected. It may comprise deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), or may be natural or synthetic analogs, fragments, and/or derivatives thereof.
  • the target is preferably a naturally-occurring nucleic acid of prokaryotic or eukaryotic origin, including but not limited to, human, human immunodeficiency virus (HIV), human papilloma virus (HPV), herpes simplex virus (HSV), Chlamydia, Mycobacterium, Streptococcus, and Neisseria.
  • HCV human immunodeficiency virus
  • HPV human papilloma virus
  • HSV herpes simplex virus
  • Chlamydia Mycobacterium
  • Streptococcus and Neisseria.
  • the outer surface 38 of the TIR element 24 is modified to include a plurality of coupling sites for attachment of "capture means” for bringing fluorophore within the penetration depth.
  • capture means are described below, and include covalent bonding and specific binding pair attachment.
  • label means for absorbing and re-emitting the fluorescent energy.
  • the label means comprises a fluorophore, which is capable of absorbing fluorescent energy at one wavelength and re-emitting energy at a different wavelength, as is known in the art. Either the capture means or the label means, or both, must be specifically associated with the presence or amount of target.
  • the present TIR invention depends on the ability to bring the label means within the penetration depth in amounts that correspond to the presence or amount of the target.
  • a third reagent system is necessary for amplification of the target.
  • Amplification reactions contemplated by the present invention include, but are not limited to, thermal. cycling reactions such as PCR and LCR, and isothermal reactions such as Q-beta and restriction/polymerase amplification. Other amplification systems yet to be developed may also be useful.
  • Target amplification typically requires a polynucleotide complementary to a region of the target molecule.
  • the term "initiator”, as used in the present invention, is intended to refer generally to such a polynucleotide which is capable of sufficiently hybridizing with the target nucleic acid to commence the amplification process. Initiators are selected to be complementary to various portions of the target nucleic acid. For purposes of this invention, no distinction is drawn between “polynucleotide” and "oligonucleotide”.
  • the initiator serves different functions depending upon the type of amplification reaction employed.
  • the initiator (typically referred to in the art as a primer) acts as a point of hybridization and initiation of the enzymatic polymerization step that results in extension.
  • Each initiator is then extended by a polymerase using the target nucleic acid as a template.
  • the extension products become target sequences themselves, following dissociation from the original target strand.
  • the initiators (typically referred to in the art as probes) comprise four polynucleotides, two of which (primary) hybridize to the target strand such that they become ligated together, and two of which (secondary) hybridize to the target complement or the ligated primary product and are similarly ligated. Both PCR and LCR are amply described in the art and need not be detailed here.
  • a PCR primer labeled with a hapten at its 5' end might fulfill the function of initiator while the hapten serves as a capture means.
  • the primer is referred to as a "capture initiator”.
  • an LCR probe labeled with a fluorophore might fulfill the function of initiator and label means, and is thereby called a "label initiator”. Table 2, below, provides several possible configurations and reaction protocols, all of which are within the present invention.
  • the initiators serve all three functions (initiation of amplification, capture means and label means). Capture and label initiators for PCR are illustrated generally in figure 5A. At the end of several cycles in the presence of target (to serve as template for initial extension), the predominant product is a bihaptenated duplex. Other examples of capture and label initiators that may be utilized for PCR amplification reactions in the present invention are provided in Table 3 of Example 1 below. Analogously, capture and label initiator pairs for LCR are illustrated generally in Figure 5B, although they need not be blunt ended as shown.
  • initiator (1) and initiator (3) are designated capture initiator sequences and initiators (2) and (4) (referred to in Table 2 as “right probes") are designated label initiator sequences.
  • the fused product is bihaptenated, bearing a first hapten (H1) on one end and a second hapten (H2) on the other.
  • H1 first hapten
  • H2 second hapten
  • One hapten is used for capture and the other is used for labeling.
  • Initiators (2) and (4) might also have been labelled directly with a fluorophore.
  • Other examples of capture and label initiators that may be utilized for LCR in the present invention are provided in Table 3 of Example 1 below.
  • the initiator is synthesized using nucleotide phosphoramidite or phosphonate chemistry techniques known in the art and/or instruments commercially available from Applied Biosystems, Inc. (Foster City, CA), DuPont (Wilmington, DE) or Milligen (Bedford, MA). Initiator synthesis using such techniques is described further in Example 1 below.
  • the initiator may be obtained by digesting naturally-occurring nucleic acids and isolating fragments of interest.
  • haptens are known, and virtually any hapten may be used with the present invention. Many methods of adding haptens to probes are known in the literature. Enzo Biochemical (New York) and Clontech (Palo Alto) both have described and commercialized probe labelling techniques. For example, a primary amine can be attached to a 3' oligo end using 3'-Amine-ON CPGTM (Clontech, Palo Alto, CA). Similarly, a primary amine can be attached to a 5' oligo end using Aminomodifier II® (Clontech). The amines can be reacted to various haptens using conventional activation and linking chemistries. Alternatively, certain haptens and labels are commercially available as phosphoramidite reagents and can be incorporated directly into initiators during synthesis.
  • haptens include many drugs (eg. digoxin, theophylline, phencyclidine (PCP), salicylate, etc.), T3, biotin, fluorescein (FITC), dansyl, 2,4-dinitrophenol (DNP); and modified nucleotides such as bromouracil and bases modified by incorporation of a N-acetyl-7-iodo-2-fluorenylamino (AIF) group; as well as many others.
  • drugs eg. digoxin, theophylline, phencyclidine (PCP), salicylate, etc.
  • FITC fluorescein
  • DNP 2,4-dinitrophenol
  • modified nucleotides such as bromouracil and bases modified by incorporation of a N-acetyl-7-iodo-2-fluorenylamino (AIF) group
  • haptens described herein are disclosed in co-pending, co-owned patent applications U.S. 07/808,508 (adamantaneacetic acid), U.S. 07/808,839 (carbazole and dibenzofuran), both filed December 17, 1991, U.S. 07/858,929 (acridines), and U.S. 07/ 858,820 (quinolines), both filed March 27, 1992 (collectively referred to herein as the "hapten applications").
  • the entire disclosure of each of the above hapten applications is incorporated herein by reference.
  • the length of the amplification products should not exceed the penetration depth. Otherwise, the fluorophore label will not become excited.
  • Relatively short amplified targets are produced in LCR so that, even when end-labeled, exceeding the penetration depth is usually not a factor. For example, two 25-mer initiators ligated together and forming an alpha helix duplex will have a length of about 17 nm. Even with allowances for spacers and conjugation partners, this is well within the typical 150 nm penetration depth (see above).
  • PCR typically amplifies longer target nucleic acid sequences to generate amplification products having from about 100 to several thousand or more nucleotides, including sequences not complementary to the initiator.
  • primers that are relatively close together, or to label the amplification product at internal positions, away from the extreme ends.
  • the length of the initiator sequence will also depend on various factors, including but not limited to, amplification reaction temperature, source of the initiator sequence, complexity of the target sequence, and the method of amplification.
  • the initiator sequence is sufficiently long to provide desired specificity in order to avoid hybridization with random sequences that may be present in the reaction sample. However, particularly with PCR the specificity can be improved using a specific capture or label probe internal to the primers.
  • the initiator sequence comprises from about 15 to about 100 bases, and more preferably, from about 15 to about 40 bases.
  • the amount of initiator added to the reaction sample or, in the case of bound capture initiators, coupled to the TIR element, may be determined empirically by those persons skilled in the art. Generally, the amount of initiator added will be similar to that typically used in nucleic acid amplification reactions, i.e. a molar excess of about 10 8 to 10 12 over the anticipated amount of target nucleic acid in the reaction sample (which inevitably is unknown in the first place).
  • bound capture initiators or bound components of capture means e.g. anti-hapten or complementary polynucleotide
  • the TIR element 24 may be modified by various means so as to allow attachment of the amplification products or other members of specific binding pairs that can capture the amplification products. It will be apparent to those persons skilled in the art that means for attaching the amplification reaction products to the TIR element should be selected in view of the amplification reaction conditions. For instance, for an amplification reaction that utilizes thermal cycling, thermostable coupling mechanisms such as covalent linkages or polynucleotide linkages should be selected, while thermolabile linkages such as antibody-hapten should be avoided. Such considerations are less critical for isothermal processes.
  • the TIR element 24 modifications described below are provided by way of example and are not intended to be limiting.
  • At least part of the capture means is generally coupled to the TIR element 24 by covalent bonding, although antibodies may be adsorbed onto the element surface.
  • covalent bonding Methods of covalently bonding antibody to glass through silyl coupling are known in the art and are described further by Weetall, U.S. Patent 3,652,761. Methods of adsorbing or covalently binding antibody to polymers and chemically-activated polymers are also known in the art.
  • a capture polynucleotide may be coupled to quartz or glass TIR elements using, for example, methods described in WO89/10977 and/or WO 90/03382.
  • Chemical binding of nucleotide base pairs to a glass surface typically involves reacting the hydroxyl moieties of the quartz or glass surface with trimethyl siloxane, substituted with a chain of methylene groups and terminating with a reactive organic functional group.
  • Prior art silation reactions for derivatizing a glass surface are further described in GB 2,190,189A.
  • Chemical reagents may also be reacted with a diisothiocyanate to produce amino, benzyl chloridem or isothiocyanate terminal groups on the derivatized glass surface 38 of TIR element 24. These reactive groups may then attach the capture polynucleotide (initiator or specific binding member) to the TIR element 24. Reagents for chemical binding of nucleotides to the TIR surface are commercially available from companies such as Hüls America, Inc. (Piscataway, NJ), PCR Inc., (Gainesville, FL) or Petrarch Chemical Co., among others.
  • Polynucleotides may also be coupled to chemically-activated polymeric TIR elements.
  • styrene maleic anhydride available from ARCO Chemical Company
  • styrene maleic anhydride comprises functional groups that allow coupling of the capture means to the TIR element. Attachment of initiators to such chemically-activated TIR elements is further described in Example 2 below. Other methods of attaching polynucleotides to polystyrene are described in Rasmussen, et al., Anal. Biochem. , 198 :138-142 (1991).
  • capture means may be coupled to the TIR element 24 via spacer arm linkers.
  • spacer or “spacer arm linker” refers to a molecule that extends the capture means, and thus the captured, amplified target away from the surface of the TIR element, and that does not absorb fluorescence.
  • One form of a "spacer” is specific binding member, such as an antibody or polynucleotide, used to capture the amplification product. Examples of specific binding member pairs include, but are not limited to, antibiotin antibodies, avidin, carbohydrates and lectin, polynucleotides.
  • spacer is a chemical linker such as a heterobifunctional linker, or poly(same nucleotide) tail.
  • polynucleotides are preferred spacers since they are thermostable and encounter less steric constraints and competition for the binding sites.
  • poly T spacer arms may be used to attach initiator sequences to TIR elements, as described further in Examples 5, 7, 9, and 11 below. Specific binding pairs, including antibodies, may also be coupled to the TIR element using prior art spacer arm chemistry.
  • Label means preferably comprise a detectable fluorescent label attached to at least one nucleotide or a specific binding partner. Label means are typically added to the reaction solution. It will be recalled that in some cases, it is desired to have an initiator that serves part of the label means function.
  • a fluorophore is covalently coupled to the label initiator sequence using standard chemistry techniques known in the art [See, e.g. , Goodchild, Bioconjugate Chemistry, 1 :165-186 (1990); or Urdea, et al., Nucl. Acids Res. , 16 : 4937-4956 (1988)].
  • an "indirect" label initiator” can be prepared by haptenating one or more initiators with a hapten that is differentiable from any capture hapten that might be used.
  • fluorophore-labeled nucleoside triphosphates dATP, dCTP, dTTP, dGTP (commercially available from e.g. Pharmacia-LKB Nuclear, Inc, Gaithersburg, MD) may be incorporated into the label initiator during synthesis of the sequence. This method is particularly useful for PCR and gap filling LCR.
  • Fluorophores contemplated by the present invention include, but are not limited to, fluorescein, rhodamine, acridine orange, and Texas red. Such fluorophores are commercially available from Sigma Chemical Company (St. Louis, MO), Aldrich Chemical Company (Milwaukee, WI), and Molecular Probes (Junction City, OR). Intercalating fluorophores may also be useful in the present invention.
  • the present invention contemplates that single or multiple fluorophores may be coupled to a label means (whether initiator or label conjugate). It is believed that it may be advantageous to couple multiple fluorophores to the label initiator in order to enhance the fluorescent signal, particularly when the reaction sample is turbid. If multiple fluorophores are coupled to the label initiator, the fluorophores should not interfere with hybridization, polymerization or ligation. To detect multiple target nucleic acid sequences, or to detect a single target along with a control nucleic acid sequence, two different fluorophores specific to each target may be coupled to respective label initiator sequences.
  • a fluorophore or other label means
  • PCR amplification it is preferable to label a label initiator at the 5' hydroxyl group, since the 3' terminus is needed for extension during amplification.
  • LCR it is preferable to couple the label means to the distal (from the element) 5' and 3' termini of the label initiators.
  • the label means may also be coupled to the label initiator internally, as long as the internal coupling does not interfere with hybridization or ligation.
  • the fluorophore may be coupled to the label initiator directly through sites present in the sequence, such as amino groups on the bases, hydroxyl groups, and phosphate groups. Alternatively, the fluorophore may be coupled to the label initiator through some other reactive linker group introduced for that purpose. Common reactive linker groups include primary amines, thiols, or aldehydes. Reactive linker groups may also be attached to the label initiator by a spacer arm either to facilitate coupling or to distance the label means from the initiator. For instance, a hapten may be attached to the label initiator and the fluorophore may then be coupled to the initiator via anti-hapten-fluorophore conjugate binding [ See , e.g. , EP-A-357 011,and EP-A-439 182].
  • fluorophore coupling techniques should be chosen in view of the amplification reaction conditions, some methods being more preferable. For example, if PCR or LCR amplification is employed, the coupling of the fluorophore or fluorophores should involve thermostable bonds since both PCR and LCR require thermal cycling.
  • Figure 2 illustrates the reaction vessel 20 and, from figure 1, the associated fluorescence excitation source and optics 16 and detection optics 18.
  • the fluorescence excitation source and optics and the detection optics are conventional and well known and, in this regard, are not part of the present invention. For completeness, however, a particular configuration of the optics will be described hereinafter for exemplary purposes only. Many other configurations are possible as is well known to those skilled in the art.
  • the excitation source and optics 16 includes a light source 40 and appropriate beam shaping optics 42, as will be well understood by those skilled in the art, to permit the source 40 to be imaged on the end face 32 of the TIR element 24.
  • the angle of incidence of the ray on the end face 32 of the TIR 32 is within the numerical aperture of the TIR element 24 and greater than the critical angle described above.
  • the appropriate beam shaping optics 42 may include a collimating lens 44, an excitation wavelength selection means 46 and a focusing lens 48 as is well known to those skilled in the art.
  • the light source 40 may be a direct current-driven tungsten-halogen lamp, a phosphor-coated mercury lamp, a pulsed Xenon flash lamp or a laser.
  • the excitation wavelength selection means 46 can be a prior art narrow band multicavity interference filter having a maximum wavelength transmission chosen to allow optimum excitation of the fluorophore or fluorophores selected.
  • the light source 40 and wavelength selection means 46 provide optical radiation of the appropriate frequency, chosen on the basis of the fluorophore or fluorophores employed, to excite fluorescence in the label means associated with amplified target nucleic acid.
  • the light source 40 preferably provides this radiation only over a narrow wavelength band chosen to maximize fluorescence.
  • multiple fluorophores may be used.
  • the light source 40 may provide optical radiation of multiple frequencies to excite multiple fluorophores. If multiple fluorophores are used, each of the fluorophores is selected so that the absorption maximum of one fluorophore is not near the emission maximum of another fluorophore, and so that the emission wavelengths are distinguishable.
  • the fluorescence detection optics 18 includes a detector 50, field optics 52 and detector electronics 54.
  • the detector 50 is chosen to have maximum sensitivity in the region of peak fluorescence emission of the fluorophore; the field optics 52 restrict the detector's 50 field of view to the end face 32 of the TIR element 24, as is well known by those skilled in the art.
  • the field optics 52 include a collimating lens 56, a fluorescence wavelength selection means 58 and a focusing lens 60.
  • the detector 50 can be a photodiode, an avalanche photodiode, or a photomultiplier tube. When using a pulsed light source, time-gated detection can be used to improve the signal to noise characteristics of the system.
  • the fluorescence wavelength selection filter 58 is chosen to maximize transmission of the emission fluorescence beam(s) and to have maximum blocking at other wavelengths, especially the excitation wavelength.
  • multiple fluorophores may be excited at different wavelengths or each of the fluorophores may be excited at the same wavelength, but emit at different wavelengths, provided the absorption maximum of one fluorophore is not near the emission maximum of another fluorophore. If multiple fluorophores are used, detection will require multiple detectors or, alternatively, a single detector with a rotating or oscillating multiple wavelength filter. Filters situated in front of each detector are chosen to limit the radiation incident on the corresponding detector to the emission maxima of the fluorescent label while respectively blocking the fluorescence of the other material.
  • a dichroic beam splitter 64 Interposed between the light source 40 and an objective 62 is a dichroic beam splitter 64.
  • the dichroic beam splitter 64 is a low-pass interference filter with a cut-off frequency chosen to be between the frequencies of maximum absorption and maximum fluorescence emission of a fluorophore of interest.
  • the dichroic beam splitter 64 thus reflects high frequency fluorescence exciting radiation from the light source 40 and transmits the low frequency radiation corresponding to the fluorescence maximum of the fluorophore.
  • a dichroic beam splitter may not be necessary. (See, e.g. Figure 4).
  • the objective 62 is selected to image the light source 40 on the end face 32 of the TIR element 24 so as to fill the end face 32 with an image of the beam shaping aperture of the source 40, the maximum angle of incidence of the ray being selected to be less than that corresponding to the numerical aperture of the TIR element 24.
  • the objective 62 is also selected so as to collect substantially all of the radiation exciting the end face 32 over the numerical aperture of the TIR element 24 and to image the end face 32 on detector 50.
  • the excitation source and optics 16 and detection optics 18 are preferably provided with a positioning means, such as aperture plate (not shown), dimensioned to accept the bore 30 of the sealing member 22 and dimensioned to position the end face 32 appropriately relative to the objective 62.
  • the detection electronics 54 can be chosen from prior art direct current measurements or photon counting measurements. Those skilled in the art can make any combination of excitation and detection elements to achieve optimum detection without deviating or departing from the spirit of this invention.
  • the excitation source and optics 16 and detection optics 18 can be mounted in a stationary position, where a multiplicity of reaction vessels with the total internal reflection elements are brought into alignment with the excitation and detection optics at periodic intervals.
  • Those skilled in the art can design thermal cycling carousels (not shown) or X-Y arrays (not shown) such that the TIR elements of the respective reaction units are appropriately aligned with the optics.
  • the excitation and detection optics can be located on a moving platform, preferably under microprocessor control, which aligns with each individual reaction vessel kept in a stationary position.
  • FIG. 3 illustrates a fused lens TIR element 64.
  • the TIR element 64 comprises a polished cylindrical rod 66, which is made of high refractive index material.
  • a semispherical lens 68 At one end of the rod 66 is a semispherical lens 68 that can be glued to the rod 66, or preferably molded as an integral extrusion of the rod 66.
  • a sealing member 70 having threads 72 is provided.
  • the sealing member 70 is preferably formed as an extension of the semispherical lens 68.
  • the rod 66, lens 68 and sealing member 70 are all formed as one piece of the same material, such as by injection molding.
  • the threads 72 on the sealing member 70 allow the TIR element 64 to be placed in and secured to a reaction vessel (not shown). Attached to the surface of the rod 66 are coupling sites as described above.
  • FIG. 4 illustrates a flat or planar TIR element 74 in accordance with another embodiment of the present invention.
  • the TIR element 74 has a beveled entrance surface 76 and exit surface 78 for the excitation and emission beams respectively, thus eliminating the need for a dichroic beam-splitting mirror.
  • a sealing member 80 having threads 82 is provided.
  • the sealing member 80 is preferably formed as an extension of the TIR element 74. More preferably, the TIR element 74 and the sealing member 80 are formed as one piece of the same material, such as by injection molding.
  • the threads 82 on the sealing member 80 allow the TIR element 74 to be placed in and secured to a reaction vessel (not shown). Attached to the surface of the TIR element 74 are coupling sites as described above.
  • total internal reflection is used to detect target nucleic acid in a reaction vessel by a degradative process rather than a target amplification process.
  • This reaction may be viewed as signal amplification, however, to the extent signal amplification occurs when each molecule of target can be responsible for multiple events which cause a change in signal.
  • the apparatus used for detecting the target nucleic acid is substantially the same as shown in Figures 1-4 and the same numerical references will made to that apparatus although the present embodiment employ an amplification reaction.
  • a reaction vessel 20, sealing member 22, and TIR element 24 are provided as described above. In the interior of the reaction vessel 20, the TIR element 24 is exposed to a reaction sample 36.
  • the reaction sample 36 contains the same buffers and sample components as before.
  • a capture initiator having a portion of nucleotide sequences which are capable of hybridizing with the target nucleic acid, is bound to the element 24 by any of the methods described above, preferably covalently.
  • the label initiator having nucleotide sequences which hybridize with an adjacent segment of target, starts out linked to the capture initiator by a scissile linkage, such that the label is within the penetration depth.
  • a scissile linkage is a connecting chemical structure which joins two nucleic acid sequences and which is capable of being selectively cleaved in the presence of an appropriate enzyme and complementary target strands without cleavage of the nucleic acid sequences to which it is joined.
  • Examples of scissile linkage include, but are not limited to, RNA, DNA, amino acid sequences, and carbohydrate polymers such as cellulose or starch.
  • the reaction sample is then treated under conditions sufficient to hybridize the linked initiator sequences and target nucleic acid, if present in the reaction sample.
  • an agent capable of cleaving the scissile linkage when it is hybridized to target is also present in the reaction sample.
  • the scissile linkage is an RNA sequence
  • an RNase is present in the reaction sample. It is within the skill in the art to determine empirically the types of agents needed to cleave certain scissile linkages, as well as the amount of agent to be added to the reaction sample.
  • the agent cleaves the scissile linkage, the fluorescing label initiator is free to dissociate from the TIR element 24 and move outside of the penetration depth.
  • a change (decrease) in fluorescence may be detected using the total internal reflection techniques described above as a measure of the presence and concentration of target nucleic acid present in the reaction sample 36.
  • an improved method and apparatus for performing TIR detection of specific binding assays including immunoassays, to detect or quantitate a target molecule or analyte using total internal reflection and differential temperature cycling are provided.
  • immunoassays using total internal reflection techniques are known in the art. Such immunoassays typically detect the presence of diverse target molecules of interest such as haptens, antigens and antibodies in reaction samples.
  • the apparatus used for performing the immunoassay is substantially the same as shown in Figures 1-2 and the same numerical references will made to that apparatus although the present embodiment need not employ a nucleic acid amplification reaction.
  • a reaction vessel 20, a sealing member 22, and TIR element 24 are provided as discussed above. Alternatively, the integral element and sealing means shown in figures 3 and 4 may be used in this embodiment.
  • a TIR element 24 is exposed to a reaction sample 36.
  • reaction vessel or cell 20 of the present invention is considerably different from the TIR vessels of the prior art.
  • prior art vessels consisted of flow cells or capillary devices due to the need to minimize diffusion distances.
  • the present reaction vessel is termed a "static-volumetric" cell.
  • the modifier “static” is selected because the cell is sealed or closed to other chambers; there is no flow into or out of the cell as in prior art flow cells.
  • the modifier “volumetric” is selected because the cell encompasses a greater volume than a capillary tube. Shapes that are “volumetric” include spheres, cylinders, cubes and the like.
  • volumetric is used to define a relationship between the element surface and the vessel wall that is not conducive to and even prohibits capillary migration.
  • Capillary TIR systems utilize the capillary migration of the fluid to flow across the element. Capillary migration is dependent on the surface tension of the fluid, the distance between the walls of the channel and the hydrophilicity of the wall surfaces
  • a distance of 1.5 mm or less between channel walls is essential to permit capillary action. This distance increases as the surface tension of the sample decreases or as the hydrophilicity of the channel walls increases.
  • preferred volumetric cells made of glass or similar wettable materials have channel sizes of 1.7 mm or more, preferably 2.0 mm or more.
  • the term "static-volumetric" excludes the prior art flow cells and capillary tubes.
  • the reaction sample 36 may comprise various specific binding reagents known in the art and preferably includes a target molecule.
  • the target molecule may be, for example, a nucleic acid, an antigen or hapten, an immunoglobulin, or any other protein of interest.
  • the assay is performed using the TIR element 24 as a solid support for immobilizing reaction sample 36 components.
  • appropriate assay configurations e.g. sandwich or competitive
  • select appropriate reaction sample 36 components e.g. anti-analyte antibodies which may be conjugated to a fluorophore.
  • the prior art provides much guidance in this regard.
  • the assay is performed while the reaction vessel 20 is exposed to differential temperature cycling. It will be apparent to those skilled in the art that temperatures applied to the reaction vessel 20 should be selected in view of the temperature sensitivity requirements of the reaction sample 36 components and target molecule. For instance, if the target molecule is an immunoglobulin, excessive temperatures, either low or high, should not be applied so as to avoid adverse affects on the target. Nevertheless, cycling of temperature within tolerable ranges is acceptable and within the scope of the present invention.
  • the binding assay temperature may be controlled manually or regulated automatically by a thermal cycler device.
  • temperature cycling promotes efficient diffusion of the reaction sample to and from the surface 38 of the TIR element 24. It is also believed that the differential temperature cycling induces convection currents in the fluid medium, and that the convection currents enhance the diffusion of target molecules in the reaction sample to the TIR element surface 38, and thus enhance binding and detection of fluorescent signals. In this manner, a "static-volumetric" cell can be used for TIR detection of a binding assay.
  • this temperature cycling provides for additional diffusion (and benefit) in nucleic acid amplification reactions such as PCR and LCR, but neither is essential to the other.
  • the nucleic acid embodiment can operate without temperature cycling and without a "static-volumetric" cell, but these are both preferments for amplification.
  • the "static-volumetric" cell embodiment is not dependent on amplification, or even on nucleic acids for that matter, but they are preferments for this embodiment.
  • Initiator sequences are synthesized according to standard protocols using ⁇ cyanoethylphosphoramidite chemistry and a model 380B DNA synthesizer (Applied Biosystems, Foster City, CA).
  • PCR and LCR sequences identified when used in PCR or LCR respectively, will amplify or capture by hybridization, portions of the L1 region of human papilloma virus (HPV).
  • HPV human papilloma virus
  • TIR elements Chemically activated TIR elements are prepared as described in the specification above using styrene maleic anhydride (commercially available from ARCO Chemical Company). Initiator sequence 3, 4, 5, 6, 10, 11, 13, or 14 (described in Table 3, Example 1) is separately dissolved in sodium carbonate buffer (0.1 M Na 2 CO 3 , pH 9.0) to a concentration of 16 ⁇ M (1 x 10 15 molecules/100 ⁇ l).
  • sodium carbonate buffer 0.1 M Na 2 CO 3 , pH 9.0
  • Glass elements made from commercially available glass rods are chemically derivatized utilizing 3-amino propyl triethoxysilane (Aldrich Chemical Company) in 1% methanol-0.001% 1M hydrochloric acid with oven heating at 75-100° C overnight. TIR elements are then rinsed in 0.1M sodium phosphate buffer pH 7.5 followed by 3-4 rinsings in distilled water and are air dried. The derivatized glass TIR elements are then reacted with succinic anhydride for 20 - 60 minutes to provide a linkage site for initiator sequences.
  • Initiator sequence 3, 4, 5, 6, 10, 11, 13, or 14 (described in Table 3, Example 1) is separately dissolved in 0.1 M sodium phosphate buffer, pH 7.5, to a concentration of 32 ⁇ M (2 x 10 15 molecules/100 ⁇ l). That portion of the TIR element 24 ( Figure 1) which protrudes into the reaction sample 36 is immersed in 100 ⁇ l of a solution of 0.02 M 1-3-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC) in phosphate buffer for 30 minutes at room temperature, and 100 ⁇ l of initiator is then added. Incubation proceeds overnight at room temperature to couple the aminated 5' or 3' end of the sequence to the TIR element as in the previous example. Each TIR element is washed 3-5 times with a stream of water to remove uncoupled initiator sequences.
  • EDAC 1-3-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
  • Reaction units 14 are assembled comprising TIR elements 24 with PCR3 (described in Table 3, Example 1) covalently attached, and the reaction vessels 20.
  • the following reagents are added to each reaction vessel 20 to a total volume of 100 ⁇ l, at 90°C: 1 pmole PCR2; 1 unit Thermus thermophilus DNA polymerase; 100 nmole each dATP, dCTP, dGTP, and dTTP; and either 1 ng human placental DNA or a sample containing approximately 1 ng of Human Papilloma Virus DNA; all in a buffer of 100 nM NaCl, 50 mM MgCl 2 , pH 8.0.
  • PCR proceeds essentially as described by Saiki, et al., Science, 230 :1350-1354 (1985).
  • the reaction vessels 20 are subjected to 35 cycles of alternating temperature: 1 minute at 94°C, 1 minute at 65°C, and 2.5 minutes at 72°C.
  • the reaction vessels 20 are cooled to 25°C, and the fluorescence along the TIR elements is measured.
  • Reaction units are assembled and PCR is performed as described in Example 4 above, except that PCR4 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • PCR4 consists of a 3' segment identical to PCR3 that is coupled to a 5' spacer segment of poly T. Following PCR, the reaction vessels are cooled to 25°C, and the fluorescence along the TIR elements is measured.
  • Reaction units are assembled and PCR is performed as described in Example 4 above, except that capture initiator 1 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • the reaction sample is as in Example 4, except 1 pmole PCR1 is also added.
  • the PCR proceeds with PCR1 and PCR2 as initiator pairs for 35 cycles as described in Example 4.
  • the reaction vessels are cooled to 25°C, resulting in hybridization of capture initiator 1 to the fluorescein-labeled (-) strand of the amplicon. The fluorescence along the TIR elements is then measured.
  • Reaction units are assembled as described in Example 4 above, except that capture initiator 2 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • Capture initiator 2 is identical to capture initiator 1 except that it is coupled to a poly T spacer segment.
  • the reaction sample is as in Example 6, and PCR proceeds for 35 cycles as described in Example 4.
  • the reaction vessels are cooled to 25°C, resulting in hybridization of the 25-base HPV recognition portion of capture initiator 2 to the fluorescein-labeled (-) strand of the amplicon. The fluorescence along the TIR elements is then measured.
  • Reaction units are assembled as described in Example 4 above, except that LCR4 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • the reaction sample includes 1700 units Thermus thermophilus DNA ligase, 10 ⁇ M NAD, 0.1 pmole each initiator sequence LCR1, LCR2, and LCR3 in a buffer comprising 50 mM N-(2-hydroxyethyl)piperazine-N'-(3-propanesulfonic acid) (EPPS), 30 mM MgCl 2 , 0.01% bovine serum albumin, pH 8.0.
  • the reaction sample is assembled at 85°C.
  • the ligase chain reaction (LCR) proceeds essentially as described by Backman and Wang [EP-A-320 308 (1988)].
  • the reaction vessels are subjected to 35 cycles of alternating temperature: 1 minute at 85°C and 1.5 minute at 50°C. Following LCR, the reaction vessels are cooled to 25°C and the fluorescence along the TIR elements is measured.
  • Reaction units are assembled as described in Example 4 above, except that LCR5 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • LCR5 consists of a 3' segment identical to LCR4 that is coupled to a 5' spacer segment of poly T.
  • the reaction sample is assembled and LCR is performed as in Example 8. Following LCR, the reaction vessels are cooled to 25°C, and the fluorescence along the TIR elements is measured.
  • Reaction units are assembled as described in Example 4 above, except that capture initiator 3 (described in Table 3, Example 1) is covalently attached to TIR elements.
  • the reaction sample is as in Example 8 above, except 0.1 pmole LCR6 is also added.
  • LCR6 consists of a 3' segment identical to LCR4 that is coupled to a 5' segment complementary to and hybridizable with capture initiator 3.
  • LCR proceeds for 35 cycles as described in Example 8.
  • the reaction vessels are cooled to 25°C, resulting in hybridization of the 12-base single-stranded segment of LCR6 to the capture initiator coupled to the surface of the TIR element. The fluorescence along the TIR elements is then measured.
  • Reaction units are assembled as described in Example 4 above, except that capture initiator 4 (described Table 3, Example 1) is covalently attached to TIR elements.
  • Capture initiator 4 is identical to capture initiator 3 except for a poly T spacer segment at the element (aminated) end.
  • the reaction sample is as in Example 10.
  • the LCR proceeds for 35 cycles as described in Example 8.
  • the reaction vessels are cooled to 25°C, resulting in hybridization of the 12-base single-stranded tail of LCR6 to the 12-base tail-complementary portion of capture initiator 4 coupled to the surface of the TIR element. The fluorescence along the TIR elements is then measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
EP20010107485 1992-04-06 1993-04-05 Methode und Gerät zur Detektion von Nukleinsäuren unter Verwendung von totaler interner Reflektion Withdrawn EP1130116A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US86355392A 1992-04-06 1992-04-06
US863553 1992-04-06
EP93911608A EP0717779B1 (de) 1992-04-06 1993-04-05 Verfahren und vorrichtung zum nachweis von nukleinsäure oder analysen unter verwendung der internen totalreflexion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP93911608A Division EP0717779B1 (de) 1992-04-06 1993-04-05 Verfahren und vorrichtung zum nachweis von nukleinsäure oder analysen unter verwendung der internen totalreflexion

Publications (3)

Publication Number Publication Date
EP1130116A2 EP1130116A2 (de) 2001-09-05
EP1130116A9 true EP1130116A9 (de) 2002-02-27
EP1130116A3 EP1130116A3 (de) 2004-01-14

Family

ID=25341287

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20010107486 Withdrawn EP1130117A3 (de) 1992-04-06 1993-04-05 Verfahren und Vorrichtung zum Nachweis von Nukleinsäure unter Verwendung der internen Totalreflexion
EP93911608A Expired - Lifetime EP0717779B1 (de) 1992-04-06 1993-04-05 Verfahren und vorrichtung zum nachweis von nukleinsäure oder analysen unter verwendung der internen totalreflexion
EP20010107485 Withdrawn EP1130116A3 (de) 1992-04-06 1993-04-05 Methode und Gerät zur Detektion von Nukleinsäuren unter Verwendung von totaler interner Reflektion

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP20010107486 Withdrawn EP1130117A3 (de) 1992-04-06 1993-04-05 Verfahren und Vorrichtung zum Nachweis von Nukleinsäure unter Verwendung der internen Totalreflexion
EP93911608A Expired - Lifetime EP0717779B1 (de) 1992-04-06 1993-04-05 Verfahren und vorrichtung zum nachweis von nukleinsäure oder analysen unter verwendung der internen totalreflexion

Country Status (8)

Country Link
US (1) US5585242A (de)
EP (3) EP1130117A3 (de)
JP (1) JPH07505297A (de)
AU (1) AU4047893A (de)
CA (1) CA2133643A1 (de)
DE (1) DE69331067T2 (de)
ES (1) ES2168275T3 (de)
WO (1) WO1993020240A1 (de)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935522A (en) * 1990-06-04 1999-08-10 University Of Utah Research Foundation On-line DNA analysis system with rapid thermal cycling
US7273749B1 (en) 1990-06-04 2007-09-25 University Of Utah Research Foundation Container for carrying out and monitoring biological processes
US7081226B1 (en) 1996-06-04 2006-07-25 University Of Utah Research Foundation System and method for fluorescence monitoring
WO1995026416A1 (en) * 1994-03-25 1995-10-05 Research Corporation Technologies, Inc. Nucleic acid biosensor diagnostics
JP2909216B2 (ja) * 1994-04-29 1999-06-23 パーキン‐エルマー コーポレイション 核酸増幅生成物のリアルタイム検出装置
US5599668A (en) * 1994-09-22 1997-02-04 Abbott Laboratories Light scattering optical waveguide method for detecting specific binding events
WO1996019587A2 (en) * 1994-12-22 1996-06-27 Abbott Laboratories Methods of immobilizing oligonucleotides to solid support materials and methods of using support bound oligonucleotides
US5601997A (en) 1995-02-03 1997-02-11 Tchao; Ruy Chemotaxis assay procedure
DE19521628A1 (de) * 1995-06-14 1997-01-09 Hoechst Ag Optische Sonde mit Sensor aus einem optischen Polymeren
US5888731A (en) * 1995-08-30 1999-03-30 Visible Genetics Inc. Method for identification of mutations using ligation of multiple oligonucleotide probes
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
WO1997036681A1 (en) * 1996-04-03 1997-10-09 The Perkin-Elmer Corporation Device and method for multiple analyte detection
US7235406B1 (en) 1996-04-03 2007-06-26 Applera Corporation Nucleic acid analysis device
US6825047B1 (en) * 1996-04-03 2004-11-30 Applera Corporation Device and method for multiple analyte detection
US7244622B2 (en) * 1996-04-03 2007-07-17 Applera Corporation Device and method for multiple analyte detection
ES2304573T3 (es) * 1996-06-04 2008-10-16 University Of Utah Research Foundation Recipiente para llevar a cabo y controlar procesos biologicos.
US6174670B1 (en) 1996-06-04 2001-01-16 University Of Utah Research Foundation Monitoring amplification of DNA during PCR
US5832165A (en) * 1996-08-28 1998-11-03 University Of Utah Research Foundation Composite waveguide for solid phase binding assays
US6503711B1 (en) 1997-06-18 2003-01-07 Ulrich J. Krull Nucleic acid biosensor diagnostics
DE19730359A1 (de) * 1997-07-15 1999-01-21 Boehringer Mannheim Gmbh Integriertes Verfahren und System zur Amplifizierung und zum Nachweis von Nukleinsäuren
WO1999044045A1 (en) * 1998-02-27 1999-09-02 Massachusetts Institute Of Technology Single molecule detection with surface-enhanced raman scattering and applications in dna or rna sequencing
US5912129A (en) * 1998-03-05 1999-06-15 Vinayagamoorthy; Thuraiayah Multi-zone polymerase/ligase chain reaction
EP2316571A3 (de) 1998-05-01 2011-07-27 Gen-Probe Incorporated Automatisches Diagnoseanalysegerät und Verfahren
EP3093649B1 (de) * 1998-05-16 2019-05-08 Life Technologies Corporation Eine kombination einer reaktionsvorrichtung und eines optischen instruments zur überwachung von dns-polymerasekettenreaktionen
US6818437B1 (en) * 1998-05-16 2004-11-16 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US7498164B2 (en) 1998-05-16 2009-03-03 Applied Biosystems, Llc Instrument for monitoring nucleic acid sequence amplification reaction
DE19826153C2 (de) 1998-06-12 2002-11-07 November Ag Molekulare Medizin Verfahren und Vorrichtung zum Nachweis einer in einer Probe ggf. enthaltenen Nukleotidsequenz
DE19848515A1 (de) 1998-10-21 2000-04-27 November Ag Molekulare Medizin Vorrichtung zur Durchführung biochemischer und mikrobiologischer Reaktionen
CA2403427C (en) * 2000-03-22 2013-04-30 M. Cynthia Goh Method and apparatus for assay for multiple analytes
CN1419584A (zh) * 2000-03-30 2003-05-21 通用电气公司 透明、阻燃的聚芳撑醚共混物
CA2356123A1 (en) * 2000-08-25 2002-02-25 Riken Method of preparing normalized and/or subtracted cdna
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
DE10162536A1 (de) * 2001-12-19 2003-07-17 Gnothis Holding Sa Ecublens Evaneszenz-basierendes Multiplex-Sequenzierungsverfahren
US7148043B2 (en) * 2003-05-08 2006-12-12 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
DE10324063A1 (de) * 2003-05-27 2004-12-23 Robert Heinrich Verfahren zur Herstellung von auf porösem Glas gebundenen Nucleotiden
JP4996248B2 (ja) 2003-07-31 2012-08-08 ハンディーラブ インコーポレイテッド 粒子含有サンプルの処理
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
ES2572382T3 (es) 2004-05-03 2016-05-31 Handylab Inc Un dispositivo microfluídico para el procesamiento de muestras que contienen polinucleótidos
US20060020192A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
GB0419325D0 (en) * 2004-09-01 2004-09-29 Perkinelmer Ltd A method of analysing a sample including fluorescent labels and apparatus therefor
US20060088844A1 (en) * 2004-10-22 2006-04-27 Honeywell International Inc. Real-time PCR microarray based on evanescent wave biosensor
US7429923B2 (en) * 2004-10-22 2008-09-30 Honeywell International Inc. Neuronal sensor networks
US7754148B2 (en) 2006-12-27 2010-07-13 Progentech Limited Instrument for cassette for sample preparation
US7727473B2 (en) 2005-10-19 2010-06-01 Progentech Limited Cassette for sample preparation
US8088616B2 (en) * 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
DK2001990T3 (en) 2006-03-24 2016-10-03 Handylab Inc Integrated microfluidic sample processing system and method for its use
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US8765076B2 (en) 2006-11-14 2014-07-01 Handylab, Inc. Microfluidic valve and method of making same
WO2008060604A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
EP2097738B1 (de) * 2006-12-21 2013-11-20 Koninklijke Philips N.V. Öffnungsbiosensor mit rillen
CN101589303B (zh) * 2007-01-17 2012-01-11 霍尼韦尔国际公司 基于倏逝波检测的微阵列读取器和读取微阵列的方法
WO2008102417A1 (ja) * 2007-02-19 2008-08-28 Japan Science And Technology Agency 蛍光読取装置及び蛍光読取方法
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
AU2008276211B2 (en) 2007-07-13 2015-01-22 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
EP2017354A1 (de) * 2007-07-20 2009-01-21 Eppendorf Ag Erkennung und/oder Quantifizierung von Zielmolekülen auf einem festen Träger
WO2009103003A2 (en) * 2008-02-15 2009-08-20 Bio-Rad Laboratories, Inc. Scanning fluorescent reader with diffuser system
EP2247710A4 (de) 2008-03-03 2016-04-20 Heatflow Technologies Inc Wärmefluss-polymerase-kettenreaktionssysteme und -verfahren
EP2107125A1 (de) * 2008-03-31 2009-10-07 Eppendorf Array Technologies SA (EAT) Echtzeit-PCR von Targets auf einem Mikroarray
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
EP3150690B1 (de) 2010-02-23 2022-04-06 Luminex Corporation Vorrichtung für die manipulation von kartuschen zur isolierung und amplifizierung von nukleinsäuren
WO2011143791A1 (en) 2010-05-20 2011-11-24 Honeywell International Inc. Microarray reader based on evanescent wave detection
WO2012012779A2 (en) 2010-07-23 2012-01-26 Beckman Coulter Inc. System and method including analytical units
CN106190806B (zh) 2011-04-15 2018-11-06 贝克顿·迪金森公司 扫描实时微流体热循环仪和用于同步的热循环和扫描光学检测的方法
WO2012151473A2 (en) 2011-05-04 2012-11-08 Luminex Corporation Apparatus and methods for integrated sample preparation, reaction and detection
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
KR102121853B1 (ko) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 일체화된 시약 스트립
CN104040238B (zh) 2011-11-04 2017-06-27 汉迪拉布公司 多核苷酸样品制备装置
JP6165755B2 (ja) 2011-11-07 2017-07-19 ベックマン コールター, インコーポレイテッド ロボットアーム
WO2013070744A2 (en) 2011-11-07 2013-05-16 Beckman Coulter, Inc. Specimen container detection
EP3373015A1 (de) 2011-11-07 2018-09-12 Beckman Coulter Inc. Aliquotierungssystem und arbeitsablauf
BR112014011046A2 (pt) 2011-11-07 2017-06-13 Beckman Coulter, Inc. fluxo de trabalho e sistema de centrífuga
JP2014532881A (ja) 2011-11-07 2014-12-08 ベックマン コールター, インコーポレイテッド 標本輸送システムのための磁気制動
BR112014010955A2 (pt) 2011-11-07 2017-06-06 Beckman Coulter Inc sistema e método para processar amostras
US9040000B2 (en) 2012-01-26 2015-05-26 Heatflow Technologies Inc. Sample container with sensor receptacle and methods of use
AU2013214849B2 (en) 2012-02-03 2016-09-01 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
EP2948466A4 (de) * 2013-01-25 2016-10-05 Douglas Scient Llc Isolierung von biologischem silica-haltigem material
CN107683330A (zh) * 2015-05-25 2018-02-09 卡尤迪生物科技(北京)有限公司 用于样品收集的装置和方法
US10427162B2 (en) 2016-12-21 2019-10-01 Quandx Inc. Systems and methods for molecular diagnostics
WO2021213636A1 (de) * 2020-04-21 2021-10-28 Hombrechtikon Systems Engineering Ag Probenbehältnis und verfahren zur analyse einer probe
CN111871378B (zh) * 2020-07-08 2022-11-11 中国药科大学 可变色沸石咪唑酯骨架材料及其制备方法和应用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368047A (en) * 1981-04-27 1983-01-11 University Of Utah Research Foundation Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
DE3277030D1 (en) * 1981-09-18 1987-09-24 Battelle Memorial Institute Method and apparatus for the determination of species in solution with an optical wave-guide
US4582809A (en) * 1982-06-14 1986-04-15 Myron J. Block Apparatus including optical fiber for fluorescence immunoassay
US4447546A (en) * 1982-08-23 1984-05-08 Myron J. Block Fluorescent immunoassay employing optical fiber in capillary tube
US4558014A (en) * 1983-06-13 1985-12-10 Myron J. Block Assay apparatus and methods
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4844869A (en) * 1985-09-09 1989-07-04 Ord, Inc. Immunoassay apparatus
US4716121A (en) * 1985-09-09 1987-12-29 Ord, Inc. Fluorescent assays, including immunoassays, with feature of flowing sample
US4654532A (en) * 1985-09-09 1987-03-31 Ord, Inc. Apparatus for improving the numerical aperture at the input of a fiber optics device
US5242797A (en) * 1986-03-21 1993-09-07 Myron J. Block Nucleic acid assay method
GB2190189B (en) * 1986-03-21 1990-06-13 Block Myron Jacques Assay for polynucleotides
EP0245206A1 (de) * 1986-05-05 1987-11-11 IntraCel Corporation Analytisches Verfahren zum Nachweis und zur Messung einer spezifisch sequentierten Nukleinsäure
US5001051A (en) * 1986-12-12 1991-03-19 Regents Of The University Of California Dose critical in-vivo detection of anti-cancer drug levels in blood
CA1317535C (en) * 1987-06-30 1993-05-11 Nanibhushan Dattagupta Assay of sequences using amplified genes
US4909990A (en) * 1987-09-02 1990-03-20 Myron J. Block Immunoassay apparatus
CA1323293C (en) * 1987-12-11 1993-10-19 Keith C. Backman Assay using template-dependent nucleic acid probe reorganization
US5152962A (en) * 1988-07-22 1992-10-06 Ord Corp. Immunoassay apparatus
CA2021658C (en) * 1989-08-25 2001-10-09 Myron J. Block Multiplex immunoassay system
CA2035010C (en) * 1990-01-26 1996-12-10 Keith C. Backman Method of amplifying target nucleic acids applicable to both polymerase and ligase chain reactions
DE69125441T2 (de) * 1990-09-28 1997-11-06 Toshiba Kawasaki Kk Verfahren zum Gennachweis
GB9119735D0 (en) * 1991-09-16 1991-10-30 Secr Defence Gene probe biosensor method

Also Published As

Publication number Publication date
DE69331067D1 (de) 2001-12-06
EP0717779A1 (de) 1996-06-26
EP1130117A9 (de) 2002-02-27
US5585242A (en) 1996-12-17
EP0717779B1 (de) 2001-10-31
EP1130117A2 (de) 2001-09-05
DE69331067T2 (de) 2002-07-11
JPH07505297A (ja) 1995-06-15
CA2133643A1 (en) 1993-10-14
AU4047893A (en) 1993-11-08
EP0717779A4 (de) 1998-03-11
WO1993020240A1 (en) 1993-10-14
EP1130116A2 (de) 2001-09-05
EP1130116A3 (de) 2004-01-14
ES2168275T3 (es) 2002-06-16
EP1130117A3 (de) 2003-12-03

Similar Documents

Publication Publication Date Title
EP0717779B1 (de) Verfahren und vorrichtung zum nachweis von nukleinsäure oder analysen unter verwendung der internen totalreflexion
US9587276B2 (en) Substrates, systems and methods for analyzing materials
US5814516A (en) Surface enhanced Raman gene probe and methods thereof
US6524829B1 (en) Method for DNA- or RNA-sequencing
EP0660936B1 (de) "up-converting" reporter molekül für biologische und andere testverfahren unter verwendung von laser anregungstecniken
US8158359B2 (en) Methods of amplifying and sequencing nucleic acids
US7575865B2 (en) Methods of amplifying and sequencing nucleic acids
US7476504B2 (en) Use of reversible extension terminator in nucleic acid sequencing
US20030157538A1 (en) Nucleic acid biosensor diagnostics
WO2003029491A1 (en) Enzymatic light amplification
EP1550858A1 (de) Fluoreszenzdetektor zur Untersuchung von Mikroflüssigkeiten
JP2008275640A (ja) 導波管およびアッセイ
US20080032308A1 (en) Isolating, positioning, and sequencing single molecules
JP2010148494A (ja) サンプル中の核酸を検出する方法
KR20120103625A (ko) 단일분자 검출장치
CA2458802A1 (en) Rapid and sensitive detection of molecules
WO2005043109A2 (en) Sers diagnostic platforms, methods and systems including microarrays, biosensors and biochips
CN1391615A (zh) Dna测序方法
JPH08510562A (ja) 核酸増幅生成物のリアルタイム検出装置
US7141370B2 (en) Bioluminescence regenerative cycle (BRC) for nucleic acid quantification
US6255048B1 (en) Highly sensitive fluoroassay
JP2003510600A (ja) 分子認識反応を検出するための方法及び装置
Soini et al. Two-photon fluorescence excitation in detection of biomolecules
US20050221319A1 (en) Use of capturing probes for identifying nucleic acids
Parks et al. Dual detection of Zika virus nucleic acid and protein using a multi-mode interference waveguide platform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 717779

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IT LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PABICH, EDWARD K.

Inventor name: KHALIL, OMAR S.

Inventor name: BOUMA, STANLEY R.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB IT LI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01N 21/77 B

Ipc: 7C 12Q 1/68 A

17P Request for examination filed

Effective date: 20040506

AKX Designation fees paid

Designated state(s): BE CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20050126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051115