EP1118395B1 - Procédé et dispositif de contrôle thermique du profil d'un cylindre dans un laminoir - Google Patents

Procédé et dispositif de contrôle thermique du profil d'un cylindre dans un laminoir Download PDF

Info

Publication number
EP1118395B1
EP1118395B1 EP01400041A EP01400041A EP1118395B1 EP 1118395 B1 EP1118395 B1 EP 1118395B1 EP 01400041 A EP01400041 A EP 01400041A EP 01400041 A EP01400041 A EP 01400041A EP 1118395 B1 EP1118395 B1 EP 1118395B1
Authority
EP
European Patent Office
Prior art keywords
axis
roll
spraying
ramp
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400041A
Other languages
German (de)
English (en)
Other versions
EP1118395A1 (fr
Inventor
André Ravenet
Thierry Malard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
VAI Clecim SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VAI Clecim SA filed Critical VAI Clecim SA
Publication of EP1118395A1 publication Critical patent/EP1118395A1/fr
Application granted granted Critical
Publication of EP1118395B1 publication Critical patent/EP1118395B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the subject of the invention is a method and a device of thermal control of the profile of a cylinder in a rolling mill.
  • a metal strip rolling plant includes, in general, one or more cages of rolling mill each comprising at least two cylinders of work and associated with scroll control means a strip to be rolled between said rolls.
  • each rolling mill cage has two support columns separated and connected by sleepers, between which is mounted a set of cylinders superimposed having parallel axes and placed substantially in the same clamping plane substantially perpendicular to the scroll direction of the product.
  • the rolling product passes between two working cylinders that define the plane of rolling; these cylinders preferably have a diameter relatively small compared to the efforts they are submitted and thus supported respectively on at least two support cylinders between which is applied the effort of rolling.
  • So-called "quarto" rolling mills therefore include four superposed cylinders, respectively two cylinders of associated work, respectively, to two supporting cylinders larger diameter.
  • cylinders intermediaries are interposed between each cylinder of work and the corresponding support cylinder.
  • Cylinders build on each other along substantially parallel, and directed, bearing lines following a generator whose profile, normally rectilinear, depends on the forces applied and the resistance cylinders.
  • the clamping force is applied by screws or jacks interposed between the cage and the ends of the shaft of the upper support cylinder, the lower support cylinder supported by its ends directly on the cage.
  • Such a cylinder comprises a deformable envelope rotative mounting around a fixed shaft on which is applied the tightening force and taking support on this tree via a set of adjustable jacks individually in position and / or pressure by a system of regulation, according to a measure of flatness carried out on the strip, downstream of the rolling mill, the defects of thickness thus determined being compensated by acting on the distribution of the constraints on the width of the band.
  • At least one of the cylinders is associated with a ramp for spraying a coolant comprising a plurality sprinkler bodies spaced apart from each other along a direction parallel to the axis of the cylinder and each provided with a nozzle for spraying a jet of fluid directed on a face of the cylinder turned towards the ramp and whose flow is determined, for each watering organ, by means of a valve controlled individually by an adjustment system.
  • Each spray nozzle is usually equipped a slot for delivering a flat jet centered on a median plane which cuts transversely the axis of the cylinder of to form an elongated impact surface having a low width and extending over part of the height of the cylinder.
  • the cooled zone thus consists of a series of impact surfaces substantially parallel and spaced the each other a distance a little greater than the width of each surface.
  • the median planes of the flat jets in which are placed the major axes of the impact surfaces, are inclined with respect to the axis of the cylinder, so that the impact is distributed, left and right, on both sides the center of the jet, covering a width that overflows slightly above and below the centers of adjacent jets, without interference between surfaces impact.
  • the average flow, per unit of time, of the jet of sprayed fluid on each impact surface can be adjusted individually by the flow control system. It is thus possible to control precisely, by zones Fractional, a variation of the profile, in section cross-section, of the cylinder along the entire length of the zone cooled, so as to modify the distribution of the constraints to correct flatness defects detected downstream.
  • the invention overcomes this drawback by bringing improvements to the systems used so far for the control of rolling mill rolls that allow to obtain a quality of flatness as perfect as possible.
  • the invention uses a system of thermal control of conventional type in which at least one roll of the rolling mill is associated with at least one ramp spraying a fluid to control, by zones fractional, the effect of fluid jets on an area cooled cylinder.
  • the spray boom comprises a central portion with a pitch constant, corresponding to the central zone of the zone cooled, in which each jet of fluid is directed along an injection axis perpendicular to the axis of the cylinder and two side parts with reduced pitch, in which the directions of the axes of the jets are varied relative to the axis of the cylinder, so as to make them converge respectively to two transition zones of both sides of the central zone of the cylinder, the number of jets convergent jets being such that, given their spread on the ramp, each side of the ramp covers a length greater than that of the zone of corresponding transition of the cylinder.
  • the same non-zero angle is inclined by relative to the axis of the cylinder, the median planes of the jets directed on the central area of the cylinder and one increases gradually the angle of inclination of the median planes of jets directed respectively at the two transition zones, as the corresponding impact surface deviates from the central area.
  • the invention therefore applies to a device for thermal control comprising, in known manner, at least one watering boom consisting of a plurality of members spaced coolant supplied with coolant and equipped each of a valve associated with a control system individual flow sprayed by each watering device.
  • the width of the product to be rolled may vary between a minimum width and a width maximum
  • the watering boom includes at least three series of watering organs, respectively, a central series covering a central part of the cooled zone on a length at most equal to the minimum width of the product and in which the watering organs have fixed directions so that the axes of the impact surfaces correspond to a constant step in central part of the cooled zone and two lateral series extending from both sides of the central series to cover, in total, a length at least equal to the width product and in which the watering devices are rotatably mounted on the ramp, each side series being associated with a means for adjusting the orientation of at least one group of pivoting watering organs, so as to reduce the differences between the axes of the impact surfaces in a transition zone at each end of the zone cooled cylinder.
  • each lateral series of watering organs includes, going from the inside to the outside, a first section in which the axes of the jets are orthogonal to the cylinder axis and that covers a first lateral part of the cooled zone of the cylinder on a length such as the total length of the central part of the cooled zone, augmented with said first parts side is less than the width of the strip, and second section in which the axes of the jets are inclined inward in relation to the axis of the cylinder and which covers a second side part of the chilled area on a length such as the total length of said area cooled to at least the width of the strip, every second section of a side series covering, at a end of the cooled zone, a transition zone corresponding to one bank of the strip and in which median axes of the impact surfaces are separated from one distance less than the spacing pitch of said surfaces, respectively in the central part and the first side parts of the
  • the means of adjusting the orientation of the jets include two ways of controlling the pivoting of a group of watering organs, respectively on each side series, each means of command being movable along the ramp and associated with a means of adjusting its position according to the width of the band and a selective engagement means of said means of control with a group of watering organs constituting a second section of each side series to cover a transition zone at each end of the cooled zone.
  • each watering organ comprises a tubular body having an outlet end provided with a jet forming nozzle, and an input end connected to driving via a connecting piece limiting a connecting channel between the inside of the pipe and the inlet end of the tubular body, on which is placed a valve connected individually to the system of setting.
  • each watering organ in each lateral series of the ramp, comprises a tubular body pivotally mounted on the branch piece around at least an axis orthogonal to the axis of the cylinder.
  • each series lateral of watering organs is associated with a means of selective control of the pivoting of a group of organs watering system comprising a slider provided with spread fingers and slidably mounted on a support, along an axis parallel to the supply pipe of the ramp, a control means sliding of the cursor on its support for the setting of the position of the cursor along the ramp and a means of control of the cursor rotation around its axis in two opposite meanings, respectively of commitment and release of the cursor's fingers between the tubular bodies a group of watering organs of the ramp.
  • the fingers of the cursor are spaced a constant distance a little less than the difference between the axes of the tubular bodies of two neighboring watering organs, said fingers of the cursor taking support one after the other on said tubular bodies when sliding the cursor, to determine a progressive variation of the angles of inclination of the jets by relative to the axis of the cylinder.
  • FIGS. 1 and 2 show schematically, respectively in cross-section and in front view, the whole of a quarto-type rolling mill comprising four superimposed rolls, respectively two working rolls 1, 1 'and two support rolls 10, 10 ', the assembly being placed inside a cage 11 carrying means 12 for applying clamping forces on the ends of the shaft of one of the support cylinders 10, another support cylinder 10 'resting on wedges.
  • a product M which passes, in a horizontal plane of movement P 1 , between the two working rolls 1, 1 '.
  • the product M is centered on a vertical plane of symmetry P 2 of the cage.
  • the rolling stock M consists of a metal strip having two banks 13a, 13b separated by a width L which, depending on the type of product to be rolled, can vary between a minimum width L 0 and a maximum width L 1 Generally , the width L of the product is less than the length of the working rolls whose support generatrix 14 is applied to the product only over part of its length. As a result, as indicated above, the rolling force applied by the clamping means 12 between the rolls determines a bending thereof which modifies the distribution of the stresses along the bearing generator. 14, the two banks 13a, 13b of the strip being generally more compressed than the central portion.
  • the mechanical correction devices of flatness in which the distribution of constraints is corrected by cambering the work rolls or in using a deformable envelope support cylinder not allow local adaptation of the cylinder profile to take account of this discontinuity because the deformed cylinder is necessarily progressive.
  • the watering organs have necessarily minimum dimensions that depend on the flow of fluid to pass and congestion mechanical parts and he it is not possible to reduce this clutter below of a certain limit.
  • organs instead of to reduce as much as possible the congestion of watering organs, organs are used, on the contrary, with the necessary dimensions to ensure their reliability and, to improve the accuracy of the control thermal, we simply vary the directions of the jets at both ends of the ramp so as to reduce the distance between the median axes of the impact surfaces on a transition zone of adjustable width, at the level of each side edge of the band.
  • this transition zone can have a 30 to 40 mm wide and the spacing between the axes of the impact surfaces of the jets can be reduced, for example, up to half of the spacing step that corresponds, in the central area, with minimal space requirements watering.
  • two spraying devices 2, 2 'placed respectively on either side of the plane P 1 for moving the band M to be rolled are used. and each comprising at least one ramp 3, 3 'for spraying a coolant on a side face 4 of the corresponding working cylinder 1, 1'.
  • each spray boom 3, 3 ' consists of a plurality of watering devices A arranged side by side, equidistant from one another, on a support block 20 forming a rigid beam carried, to its ends, by the two columns of the cage 11 and which extends parallel to the axis of the working cylinder 1, on the whole length of it.
  • each cooling device 2, 2 ' may also comprise a second ramp 21, 21' fluid spraying. This second ramp is directed towards the upper support cylinder 10, above the band M and in the space between it and the cylinder of lower work 1 ', below the band.
  • the fluid can be distributed by gravity for ensure the lubrication of all the cylinders.
  • Each watering organ A consists of a body tubular 5 fixed by a connecting piece 26 on the block 20, 20 'in which are formed conduits supply, respectively 22 for the spray boom main 3, 3 'and 23 for the secondary ramp 21, 21'.
  • Each connecting piece 26 of a watering member A is placed in communication with the supply line 23 via a connecting channel 24 on which is placed a solenoid valve 25 individually controlled so as to control the feed rate of the water.
  • the tubular body 5 is closed by a nozzle 52 provided with a slot for the formation of a thin flat jet of fluid J, centered on an axis 50 and having a median plane P 3 which transversely crosses the x'x axis of the cylinder.
  • the support blocks 20, 20 'of the two spraying devices 2, 2' are oriented from way that the axes 50 of the fluid jets formed by each ramp 3, 3 'are placed in substantially passing planes by the axes of the corresponding working rolls 1, 1 '.
  • Each jet of fluid J therefore strikes the face 4 of the cylinder facing the next ramp 3 on a surface elongate S having substantially the shape of a rectangle curvilinear with a major axis transverse to the axis x'x and having a small width compared to the distance between the axes of two neighboring jets, so that there is no no interference between the impact surfaces.
  • the effect of cooling can be adjusted locally by zones split.
  • the invention differs from spraying devices usually used by the fact that the spray boom 3 is constituted, as shown diagrammatically on FIG. 3, of three series of watering organs, respectively a central series 31 consisting of organs sprinkler A which are rigidly fixed to the support block 20 and two lateral series, respectively 32a, 32b, consisting of steerable irrigation bodies A 'which are pivoted on the support block 20 and which can be set the orientation to the watered side of the cylinder 1.
  • each organ A, A 'must have sufficient dimensions to ensure reliable operation.
  • the pieces of branching 26 are therefore separated from each other, the along ramp 3, with a constant step (a) which corresponds to the minimum size of the watering devices.
  • the number of stationary sprinklers A constituting the central series 31 of the ramp 3 is determined, as a function of the spacing pitch (a), so as to cover a length of the same order as the minimum width L 0 of the bandaged.
  • the axes 50 of the sprayed jets are perpendicular to the x'x axis of the cylinder 1 so that the impact surfaces of the jets J are spaced apart by the same pitch.
  • each lateral series 32a, 32b are spaced apart by the same step (a) and their number is determined according to the remaining length (L 1 -L 0 ) / 2 of the ramp, so as to cover the maximum width L 1 of the strip.
  • the length of the cooled zone 4 must be limited to the effective part of the cylinder.
  • the solenoid valves 25 associated with each watering member A, A ' are controlled individually by a flow control system that determines, according to the effective width L of the band, the number of sprinklers whose valves are open.
  • the length of the ramp that is to say the distance between the axes of the nozzles respectively placed at both ends thereof, substantially corresponds to the maximum width L 1 of the product.
  • the width L of the product is less than this maximum width, there is therefore, at each end of the ramp 3, a number of watering members corresponding to the part of the cylinder 1 which is not covered by the strip. and whose valves are closed.
  • FIG 2 for example, there is shown schematically a rolling mill having a maximum width L 1 . It can be seen that, if the product has a width L, the valves of the sprinklers are open only on a central part of the ramp covering the same length L of the cylinder as the product and are closed at both ends, over a length ( L 1 -L) / 2.
  • the fluid is distributed regularly on a cooled area of the cylinder of work 1, which extends over a length substantially equal to the distance L between the two edges 13a, 13b of the product, the remaining parts of the cylinder 1 not being cooled.
  • the thermal control of the distribution of the stresses can be carried out in a conventional manner, by sprinkling jets of fluid regularly distributed over a central zone of the corresponding face of the working cylinder 1.
  • the spacing pitch of the impact surfaces of the fluid jets is narrowed by so as to achieve two transition zones corresponding, respectively, to the strip zones 15a, 15b of the strip and in which the thermal control is provided more accurately so as to correct any residual defects.
  • the ramp 3 comprises three sets of watering organs, respectively a central series 31 and two side series 32a, 32b. The whole is represented schematically on the figure 3.
  • each side series 32a, 32b is consisting of steerable irrigation bodies A 'which are pivotally mounted on the support block 20 in a manner that will be described in detail later and whose orientation may to be determined by means of a cursor 6. This one moves along the ramp 3, parallel to the x'x axis of the cylinder and can engage on a number of watering organs 42 of each side series 32.
  • the strip to be rolled has a width L close to the maximum width L 1 of the strip.
  • the two sliders 6a, 6b which will be described in detail later, are therefore placed at the two ends of the ramp 3 so as to converge towards the inside of the strip, that is towards the plane of symmetry P 2 two groups of sprinklers respectively placed at both ends of the ramp 3 and each comprising, for example, six sprinklers.
  • Each side series 32 thus comprises two sections, respectively a first section 33 and a second section 34.
  • the sprinklers A'1 are directed perpendicular to the x'x axis of the cylinder.
  • the second section 34 that extends beyond section 33 up the end of the effective part of the ramp 3 whose valves are open, the watering organs A'2, oriented by the cursor 6, converge towards the inside of the band.
  • Each part of the ramp 3 thus defined determines watering a corresponding part of the watered side 4 of the cylinder which therefore comprises a central part 41 watered by the central series 31 of the ramp 3 and extended, each side, respectively by a first lateral part 43 watered by the first section 33 of the side series 32 and a second side portion 44 sprayed by the second section 34.
  • the impact surfaces of the jets are regularly removed from the step (a) corresponding to the constant spacing of the watering organs.
  • the second side portions 44a, 44b, placed respectively at both ends of the cooled zone 4 constitute transition zones in which the impact surfaces are closer together, allowing for to control, more precisely, the thermal effect of watering to compensate for any residual defects observed downstream on both banks of the strip.
  • the total length of the ramp 3 should be a bit larger than the total length of the cooled zone 4.
  • the flow control system determines the closing of the valves of a number of sprinklers which constitute, at each end of the ramp, a third section of the side series 32a, 32b whose valves are closed.
  • the two sliders 6a, 6b are moved inward so as to engage respectively at each end of the effective part of the ramp 3 whose valves are open, on a group of watering organs whose jets converge on a transition zone 44 of the cooled surface 4 of the cylinder, at each end thereof.
  • this part of the ramp whose valves are open shall cover a length greater than that of the cooled zone 4 of cylinder which is itself, preferably, a little superior to the actual width of the product (L).
  • each zone transition 44a, 44b extends outward beyond the edge 13a, 13b of the band, which makes it possible to better avoid the discontinuity in the distribution of constraints, controlling the profile of the support generator on an area transition completely covering the edge of the band.
  • FIG. 5 shows, in axial section, a watering member A 'of pivoting type comprising, as usually, a tubular body 5 limiting a channel of injection centered on an axis 50 and having an end input 51 connected by a connecting piece 26 to the block of support 20 not shown in Figure 5 and an end of outlet provided with a nozzle 52 having a formation slot a flat stream of fluid.
  • the body tubular 5 is rigidly fixed to the branch member 26.
  • the end 51 of the tubular body 5 consists of a part spherical 51 taken in a housing in two parts constituting the branching member 26, so as to constitute a swivel joint with a simple assembly game.
  • the seal is provided by an annular seal 28 placed between the two parts of the housing 26.
  • the latter is provided with a machining having two plane faces parallel to the x'x axis of the working cylinder and on which are threaded two dishes 53 formed at the base of the tubular body 5.
  • This one can only rotate around a perpendicular axis on both sides 53, so that the axis 50 of the body tubular 5 moves in a plane.
  • the support block 20 is oriented so that this plane passes substantially by the x'x axis of the working cylinder 1.
  • the housing 26 is provided, on the side of the tubular body 5, of an indentation 27 which opens on one side so as to allow orientation, on this side, of the tubular body 5 against the action of a spring loaded pusher 54 which, in the absence external stresses, plate the tubular body 5, in the opposite direction, against the housing 26 in the position represented in FIG. 5 for which the axis 50 of the body tubular is perpendicular to the x'x axis of the cylinder.
  • the nozzle 52 is mounted on a tip 55 which is immobilized in translation relative to the tubular body 5 but can turn around the axis 50 of it.
  • the nozzle 52 is applied and fixed on the nozzle 55 by means of a clamping flange 52 'provided with a nut. It is thus possible to adjust an angle of inclination (k) of the median plane P 3 of the jet relative to the axis x'x of the cylinder 1.
  • the nozzles 52 are adjusted so that the impact surfaces S are parallel.
  • each watering organ orientable A ' is provided with a means of variation of the inclination (k) of the median plane of the jet as a function of the orientation variation (i) of the axis 50 thereof.
  • a means of variation of the inclination (k) of the median plane of the jet as a function of the orientation variation (i) of the axis 50 thereof.
  • FIGS. 10 and 11 there is shown respectively in front view and in top view, the whole of a spray boom with the control system of the orientation of the watering organs.
  • each slider 6 At each end of the ramp is a slider 6 which is slidably mounted, without the possibility of rotation, on a shaft 61, passing below the organs watering A 'of the ramp 3.
  • This slider 6 carries a plurality of regularly spaced apart fingers 62 projecting so as to pass between the tubular bodies 5 of a group of watering organs A'2. So, in the example shown in Figure 10, which corresponds to Figure 3, each slider 6 carries six fingers 62 which each extend to the level of the tubular body 5 of a watering member A'2 so as to take support laterally on it when the cursor 6 slide along the shaft 61.
  • This sliding movement is controlled by a nut 7 engaged on a screw 71 and locked in rotation so to move longitudinally, with the cursor 6 when the screw 71 is driven in one direction or the other, by a hydraulic motor 72.
  • the fingers 62 of the slider 6 are moved one step away constant (a ') which is a little smaller than the step (a) between axes 50 sprinkler organs A.
  • a ' constant
  • the six fingers 62 of the slider come successively bearing on the tubular bodies 5 corresponding six irrigation organs A'2. These begin to rotate one after the other and it results that the angle of inclination (i) of the axis 50 of an organ of irrigation 5 with respect to the axis x'x of the cylinder decreases in going from the inside to the outside, the way represented in FIG.
  • the arrangement is symmetrical with respect to plane P 2 of symmetry of the rolling mill, the device comprising two sliders 6a, 6b whose displacements in opposite directions are controlled by two screws 71a, 71b having inverted and connected threads. by an extension 73.
  • the rotation of the two screws, in one direction or the other, is controlled by a hydraulic motor 72 via a bevel gear.
  • Each cursor 6a, 6b is thus placed at a level group of watering organs A'2 whose jets converge towards a transition zone 44a, 44b, at each end of the cooled zone 4 of the cylinder.
  • Each cursor can move between two positions limits corresponding to both ends of each series 32a, 32b, respectively, an external position represented in solid lines in FIG. 10 and a position internal represented in dotted lines.
  • each slider 6a, 6b is associated with a pneumatic cylinder 63 whose stem carries a rack 64 on which meshes a toothed wheel 65 wedged at the end of the shaft 61 of cursor guidance 6.
  • the cursor 6 is consisting of a tubular sleeve mounted sliding axially along the shaft 61 but wedged in rotation with this one.
  • a rotation of the controlled shaft 61 by the pinion 65 and the rack 64 determines the rotation of the slider 6 with, in one direction, the engagement of the fingers 62 between the tubular bodies 5 of the watering organs corresponding and, in the other direction, their clearance in the position 62 'shown in dashed lines in FIG. this position 62 'the fingers are placed below the level of the watering organs and do not therefore oppose sliding of the slider 6.
  • the nut 7 is provided of a protruding training part 73 which engages in a circular groove 66 of the slider 6 allowing the rotation of it around its axis.
  • the displacement hydraulic motor 72 sliders is equipped with a two-speed control controlled by a pulse generator so as to realize, on the one hand a fast movement of the sliders 6a, 6b for the choice of the group of watering organs to guide and, other a fine adjustment of the cursor position for to determine an optimal reduction of the spacing impact surfaces according to the edge defects to be corrected.
  • FIG. 4 diagrammatically shows the impact surfaces S jets on the cooled side of the working cylinder 1.
  • each watering member 5 is substantially concurrent with the x'x axis of the cylinder 1 and the nozzle 52 forms a flat jet, of small thickness, which is centered on a median plane P 3 transversely intersecting the x'x axis.
  • the nozzles 52 are adjusted so that the median planes P 3 of the impact surfaces S are parallel and inclined at the same angle (k) with respect to the x'x axis of the cylinder.
  • the cooling effect applies not only to the entire width (a) of the zone corresponding to the jet considered, but also to a part of the two adjacent zones, the covering (r) can be, for example, half of the step (a).
  • the opening or closing of each valve 25 is controlled by all or nothing, the cooling effect is distributed over the entire length of the watered side 4 of the cylinder 1.
  • the axes 50 of the sprinklers are spaced apart from each other by the same pitch (a) and the median planes P 3 of the jets are parallel and inclined at the same angle ( k) with respect to the x'x axis of the cylinder 1.
  • the sprinklers are oriented so as to reduce the distance between the axes of the jets to a step that can be, for example, half of the constant pitch (a) in the central portion 41 and the first lateral portion 43.
  • the end piece 55 on which the nozzle 52 is fixed is provided with a pallet 56 on which a torsion spring 57 rests, the opposite end of which is engaged in a hole of the tubular body, at the end of entry of it.
  • the pallet 56 is applied by the spring 57 against a pin 58 fixed on the branch member 26 and the median plane P 3 is then inclined by the angle (k) corresponding to the setting of the nozzle.
  • the variation of the angle of inclination (k) of the median plane P 3 of a jet depends on the length of the corresponding finger 62.
  • the overlap (r 1 ) between two adjacent impact surfaces is reduced in the same way as their spacing (a 1 ) and remains of the order of half of it.
  • the gradual variation of the angle of inclination (k) avoids interference between the impact surfaces S, the side where they converge.
  • Figure 12 shows, in three successive diagrams, the progressive movement of the cursor 6 relative to a starting position, which determines the progressive inclination of the jets and the tightening of the impact surfaces.
  • Figure 12a shows the position of the cursor 6 to from which all the fingers 62 have come into contact with the watering organs forming the steerable section 34 from the ramp.
  • the angle of inclination (i) of the axes 50 of the jets fluid therefore increases gradually since the first nozzle 5a to the last nozzle 5b of section 34, which in this cursor position, is still directed perpendicular to the axis of the cylinder.
  • the center of the jet of the first nozzle 5a of the series is then at a distance (c 1 ) from the starting position of the cursor 6, for which the same jet was perpendicular to the axis of the cylinder and the transition zone 44a extends over a width (d 1 ) to the axis of the first nozzle 5c of section 33.
  • the last nozzle 5b of section 34 has not yet begun to pivot and its axis is therefore found at the distance (a) from the axis of the nozzle 5c, for example 50 mm.
  • Figure 12b shows an intermediate position and the Figure 12c shows the final position for which the axes jets are regularly removed from the half-step (a / 2), by example 25 mm.
  • transition zone has shifted slightly inwards the distance (c 2 ) having increased and that, at the same time, its width (d 2 ) has slightly decreased with respect to the initial width (d 1 ).
  • the progressive tightening of the axes of the jets is accompanied by a gradual recovery of their median planes which allows to ensure a regular distribution of fluid throughout the height of cooled face 4.
  • the nozzles currently used normally correspond to a spacing pitch of 50 mm about, it is quite certain that this spacing is function available equipment and characteristics of the rolling mill on which the device is installed.
  • each nozzle is usually equipped with a slot for the formation of a flat section jet substantially rectangular but we can also use several orifices distributed in a fan and whose jets are confuse to form, on the cylinder, an impact surface elongated, narrow width.
  • each additional sprinkler 8 placed on one side of the band is mounted on a slider 80 which is shaped so as to let the passage of the first screw 71.
  • Each nozzle 8 is fed by a channel formed inside the slider 80 and on which is connected, via a swivel joint, a supply line 83, as shown in FIG. conduit 83 is slidably mounted in a sealed manner in a fixed tube 84 which extends on either side of the plane of symmetry P 2 and is connected to a central supply 85.
  • Each additional nozzle 8 forms a flat jet J 'of preferably oriented vertically and that can move under the action of the screw 81, so as to be positioned with accuracy according to the fault to be corrected.
  • the support 81 is consists of two screws with reverse pitch connected by an extension and engaging respectively in threaded bores arranged on each slider 80a, 80b.
  • a hydraulic motor 82 controlling the rotation of the screw 81 determines equal displacements, in opposite directions of the sliders 80a, 80b and thus makes it possible to adjust the positions of jets J 'of the two nozzles 8a, 8b with respect to the two edges of the strip, the corresponding conduits 83a, 83b sliding in both ends of the central tube 84.
  • a pulse generator makes it possible to control these displacements, in the opposite direction, of the two sliders 80a, 80b of to precisely adjust the position of the two nozzles 8a, 8b with respect to the two edges of the strip.
  • both nozzles 8 can be fed at a different temperature than the nozzles A of the ramp 3, the coolant being able to besides, to be of another nature.
  • the invention provides several means of thermal control whose effects can be combined so as to obtain a similar flatness quality perfect as possible.
  • irrigation ramps and mechanisms associates constitute compact sets that can be easily installed, even in a rolling mill cage existing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Nozzles (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Secondary Cells (AREA)

Description

L'invention a pour objet un procédé et un dispositif de contrôle thermique du profil d'un cylindre dans un laminoir.
Un installation de laminage de bande métallique comprend, d'une façon générale, une ou plusieurs cages de laminoir comportant chacune au moins deux cylindres de travail et associées à des moyens de commande du défilement d'une bande à laminer entre lesdits cylindres.
Habituellement, chaque cage de laminoir comporte deux colonnes de support écartées et reliées par des traverses, entre lesquelles est monté un ensemble de cylindres superposés ayant des axes parallèles et placés sensiblement dans un même plan de serrage sensiblement perpendiculaire à la direction de défilement du produit.
On peut réaliser des laminoirs de différents types. En général, dans un laminoir, le produit à laminer passe entre deux cylindres de travail qui définissent le plan de laminage ; ces cylindres ont, de préférence, un diamètre relativement réduit au regard des efforts auxquels ils sont soumis et donc appuyés respectivement sur au moins deux cylindres de soutien entre lesquels est appliqué l'effort de laminage.
Les laminoirs dits de type "quarto", comportent donc quatre cylindres superposés, respectivement deux cylindres de travail associés, respectivement, à deux cylindres de soutien de plus grand diamètre.
Dans les laminoirs "sexto", des cylindres intermédiaires sont interposés entre chaque cylindre de travail et le cylindre de soutien correspondant.
D'autres types de laminoir, comprenant un plus ou moins grand nombre de cylindre sont connus et utilisés dans l'industrie.
Les cylindres prennent appui les uns sur les autres le long de lignes d'appui sensiblement parallèles, et dirigés suivant une génératrice dont le profil, normalement rectiligne, dépend des efforts appliqués et de la résistance des cylindres. Généralement l'effort de serrage est appliqué par des vis ou des vérins interposés entre la cage et les extrémités de l'arbre du cylindre de soutien supérieur, le cylindre de soutien inférieur prenant appui par ses extrémités directement sur la cage.
Les efforts de serrage sont appliqués entre les deux extrémités des deux cylindres de soutien. Etant donné, que le produit laminé, de largeur variable ne couvre pas en totalité la longueur des cylindres de travail, chaque cylindre peut fléchir sous l'action des efforts appliqués et il en résulte une variation d'épaisseur de l'espace de passage de la bande entre les cylindres de travail, les bords de la bande pouvant être ainsi plus minces que la partie centrale. Ces défauts d'épaisseur se traduisent aussi par des défauts de planéité de la bande laminée, particulièrement en laminage à froid et dans les épaisseurs minces.
Depuis longtemps, on a essayé de corriger ces défauts d'épaisseur sur le profil en travers du produit laminé et l'on a utilisé à cet effet différents moyens. Par exemple, on a proposé de compenser la déformation des cylindres due à l'effort de laminage par un bombement de leur surface obtenu par usinage selon un profil particulier. On aussi proposé de réaliser une correction réglable de manière continue, par des effets de cambrage des cylindres de travail, qui sont généralement de petits diamètres, en appliquant des efforts contrôlés de flexion sur les deux extrémités de leur arbre.
Plus récemment, on a proposé de modifier la répartition des contraintes sur la largeur des cylindres en donnant à au moins l'un des cylindres de soutien un profil réglable. Un tel cylindre comprend une enveloppe déformable montée rotative autour d'un arbre fixe sur lequel est appliqué l'effort de serrage et prenant appui sur cet arbre par l'intermédiaire d'un ensemble de vérins réglables individuellement en position et/ou en pression par un système de régulation, en fonction d'une mesure d'une planéité effectuée sur la bande, en aval du laminoir, les défauts d'épaisseur ainsi déterminés étant compensés en agissant sur la répartition des contraintes sur la largeur de la bande.
Ces défauts d'épaisseur sont dus, essentiellement, à l'aplatissement des cylindres sous la charge et les actionneurs proposés agissent sur le profil de la génératrice d'appui pour modifier l'allure générale de la déformation mais ne permettent pas de corriger localement le profil du cylindre en section transversale, à un endroit considéré.
On a aussi proposé de compenser l'aplatissement des cylindres, ou du moins l'inégalité de l'aplatissement selon la largeur, par une variation de diamètre obtenue localement par dilatation thermique.
En effet le laminage dégage généralement beaucoup de chaleur par frottement de la bande laminée entre les cylindres de travail et il est donc nécessaire de les refroidir. A cet effet, au moins l'un des cylindres, normalement un cylindre de travail, est associé à une rampe d'aspersion d'un fluide caloporteur comprenant une pluralité d'organes d'arrosage écartés les uns des autres le long d'une direction parallèle à l'axe du cylindre et munis chacun d'une buse d'aspersion d'un jet de fluide dirigé sur une face du cylindre tournée vers la rampe et dont le débit est déterminé, pour chaque organe d'arrosage, au moyen d'une vanne commandée individuellement par un système de réglage.
Cet effet thermique doit être limité à la partie du cylindre recouvrant la bande en cours de défilement et c'est pourquoi le système de réglage des débits détermine l'ouverture des vannes des organes d'arrosage sur une partie limitée de la rampe déterminant l'aspersion du fluide sur une zone refroidie du cylindre correspondant à la largeur de la bande laminée et la fermeture des vannes sur les parties restantes de la rampe.
Chaque buse d'aspersion est habituellement munie d'une fente permettant de délivrer un jet plat centré sur un plan médian qui coupe transversalement l'axe du cylindre de façon à former une surface d'impact allongée ayant une faible largeur et s'étendant sur une partie de la hauteur du cylindre.
La zone refroidie est donc constituée d'une série de surfaces d'impact sensiblement parallèles et écartées les unes des autres d'une distance un peu supérieure à la largeur de chaque surface.
De préférence, les plans médians des jets plats, dans lesquels sont placés les grands axes des surfaces d'impact, sont inclinés par rapport à l'axe du cylindre, de façon que l'impact se répartisse, à gauche et à droite, de part et d'autre du centre du jet, en recouvrant une largeur qui déborde légèrement au dessus et en dessous des centres des jets adjacents, sans interférence entre les surfaces d'impact.
En outre, le débit moyen, par unité de temps, du jet de fluide aspergé sur chaque surface d'impact peut être réglé individuellement par le système de réglage des débits. Il est ainsi possible de contrôler avec précision, par zones fractionnées, une variation du profil, en section transversale, du cylindre sur toute la longueur de la zone refroidie, de façon à modifier la répartition des contraintes pour corriger des défauts de planéité détectés en aval.
De tels systèmes ont démontré leur efficacité, particulièrement pour le laminage de bandes minces et très minces. Ils ont été utilisés, initialement, pour le laminage de métaux non ferreux, en particulier, d'aluminium, en raison de la faible inertie thermique due à la faible épaisseur et la malléabilité du métal. Cependant, plus récemment, on a cherché à appliquer également ce procédé de contrôle thermique au laminage des métaux ferreux.
Grâce à tous ces moyens nouveaux, on a pu améliorer considérablement la qualité de planéité des tôles laminées. Cependant, en raison même de cette amélioration, des défauts résiduels, auxquels on n'avait pas prêté attention auparavant, ont été mis en évidence sur les bords des bandes laminés, particulièrement les plus minces.
L'invention remédie à cet inconvénient en apportant des perfectionnements aux systèmes utilisés jusqu'à présent pour le contrôle des cylindres de laminoir qui permettent d'obtenir une qualité de planéité aussi parfaite que possible.
A cet effet, l'invention utilise un système de contrôle thermique de type classique dans lequel au moins un cylindre du laminoir est associé à au moins une rampe d'aspersion d'un fluide permettant de contrôler, par zones fractionnées, l'effet des jets de fluide sur une zone refroidie du cylindre.
Conformément à l'invention, on fait varier l'écartement entre les axes médians des surfaces d'impact en fonction de la position desdites surfaces d'impact des jets de fluide sur la longueur de la zone refroidie de façon que celle-ci comprenne une zone centrale dans laquelle les axes médians des surfaces d'impact sont écartés d'un pas sensiblement constant et deux zones de transition s'étendant de part et d'autre de la zone centrale au moins jusqu'aux deux rives de la bande et dans lesquelles l'écartement entre les axes médians des surfaces d'impact est réduit par rapport au pas de la zone centrale.
De façon particulièrement avantageuse de l'invention, la rampe d'aspersion comprend une partie centrale à pas constant, correspondant à la zone centrale de la zone refroidie, dans laquelle chaque jet de fluide est dirigé suivant un axe d'injection perpendiculaire à l'axe du cylindre et deux parties latérales à pas réduit, dans lesquelles on fait varier les orientations des axes des jets par rapport à l'axe du cylindre, de façon à les faire converger respectivement vers deux zones de transition de part et d'autre de la zone centrale du cylindre, le nombre de buses à jets convergents étant tel que, compte tenu de leur écartement sur la rampe, chaque partie latérale de la rampe couvre une longueur supérieure à celle de la zone de transition correspondante du cylindre.
De préférence, on incline d'un même angle non nul par rapport à l'axe du cylindre, les plans médians des jets dirigés sur la zone centrale du cylindre et l'on augmente progressivement l'angle d'inclinaison des plans médians des jets dirigés respectivement sur les deux zones de transition, à mesure que la surface d'impact correspondante s'écarte de la zone centrale.
L'invention s'applique donc à un dispositif de contrôle thermique comportant, de façon connue, au moins une rampe d'arrosage constituée d'une pluralité d'organes d'arrosage espacés alimentés en fluide caloporteur et munis chacun d'une vanne associée à un système de réglage individuel du débit aspergé par chaque organe d'arrosage.
Selon l'invention, la largeur du produit à laminer pouvant varier entre une largeur minimale et une largeur maximale, la rampe d'arrosage comprend au moins trois séries d'organes d'arrosage, respectivement, une série centrale couvrant une partie centrale de la zone refroidie sur une longueur au plus égale à la largeur minimale du produit et dans laquelle les organes d'arrosage ont des directions fixes de telle sorte que les axes des surfaces d'impact correspondantes soient écartés d'un pas constant dans ladite partie centrale de la zone refroidie et deux séries latérales s'étendant de part et d'autre de la série centrale pour couvrir, au total, une longueur au moins égale à la largeur maximale du produit et dans lesquelles les organes d'arrosage sont montés pivotants sur la rampe, chaque série latérale étant associée à un moyen de réglage de l'orientation d'au moins un groupe d'organes d'arrosage pivotants, de façon à réduire les écarts entre les axes des surfaces d'impact dans une zone de transition à chaque extrémité de la zone refroidie du cylindre.
Dans un mode de réalisation préférentiel, la bande à laminer étant centrée sur un plan longitudinal de symétrie du laminoir, chaque série latérale d'organes d'arrosage comprend, en allant de l'intérieur vers l'extérieur, une première section dans laquelle les axes des jets sont orthogonaux à l'axe du cylindre et qui couvre une première partie latérale de la zone refroidie du cylindre sur une longueur telle que la longueur totale de la partie centrale de la zone refroidie, augmentée desdites premières parties latérales soit inférieure à la largeur de la bande, et une seconde section dans laquelle les axes des jets sont inclinés vers l'intérieur par rapport à l'axe du cylindre et qui couvre une seconde partie latérale de la zone refroidie sur une longueur telle que la longueur totale de ladite zone refroidie soit au moins égale à la largeur de la bande, chaque seconde section d'une série latérale couvrant, à une extrémité de la zone refroidie, une zone de transition correspondant à une rive de la bande et dans laquelle les axes médians des surfaces d'impact sont écartés d'une distance inférieure au pas d'écartement desdites surfaces, respectivement dans la partie centrale et les premières parties latérales de la zone refroidie.
De façon particulièrement avantageuse, les moyens de réglage de l'orientation des jets comprennent deux moyens de commande du pivotement d'un groupe d'organes d'arrosage, respectivement sur chaque série latérale, chaque moyen de commande étant déplaçable le long de la rampe et associé à un moyen de réglage de sa position en fonction de la largeur de la bande et à un moyen d'engagement sélectif dudit moyen de commande avec un groupe d'organes d'arrosage constituant une seconde section de chaque série latérale pour couvrir une zone de transition, à chaque extrémité de la zone refroidie.
Habituellement, chaque organe d'arrosage comprend un corps tubulaire ayant une extrémité de sortie munie d'une buse de formation du jet, et une extrémité d'entrée reliée à la conduite par l'intermédiaire d'une pièce de branchement limitant un canal de liaison entre l'intérieur de la conduite et l'extrémité d'entrée du corps tubulaire, sur lequel est placée une vanne reliée individuellement au système de réglage.
Selon l'invention, dans chaque série latérale de la rampe, chaque organe d'arrosage comprend un corps tubulaire monté pivotant sur la pièce de branchement autour d'au moins un axe orthogonal à l'axe du cylindre.
Pour régler les orientations des jets, chaque série latérale d'organes d'arrosage est associée à un moyen de commande sélective du pivotement d'un groupe d'organes d'arrosage comprenant un curseur muni de doigts écartés et monté coulissant sur un support, le long d'un axe parallèle à la conduite d'alimentation de la rampe, un moyen de commande du coulissement du curseur sur son support pour le réglage de la position du curseur le long de la rampe et un moyen de commande de la rotation du curseur autour de son axe dans deux sens opposés, respectivement d'engagement et de dégagement des doigts du curseur entre les corps tubulaires d'un groupe d'organes d'arrosage de la rampe.
Dans un mode de réalisation préférentiel, les doigts du curseur sont écartés d'une distance constante un peu inférieure à l'écart entre les axes des corps tubulaires de deux organes d'arrosage voisins, lesdits doigts du curseur prenant appui l'un après l'autre sur lesdits corps tubulaires lors du coulissement du curseur, pour déterminer une variation progressive des angles d'inclinaison des jets par rapport à l'axe du cylindre.
Mais l'invention couvre également d'autres caractéristiques avantageuses qui font l'objet des sous revendications et apparaítront dans la description qui va suivre d'un mode de réalisation particulier, donné à titre d'exemple et représenté sur les dessins annexés.
  • La figure 1 représente schématiquement, en élévation, l'ensemble des cylindres d'un laminoir de type quarto équipé de deux systèmes d'arrosage, respectivement, des deux cylindres de travail.
  • La figure 2 est une vue de face schématique de l'ensemble des cylindres
  • La figure 3 est une vue en plan schématique de l'ensemble d'une rampe d'arrosage.
  • La figure 4 montre schématiquement la répartition des surfaces d'impact des jets à l'extrémité de la zone refroidie d'un cylindre.
  • La figure 5 est une vue, en coupe axiale, d'un organe d'arrosage.
  • La figure 6 est une vue schématique, en coupe longitudinale, de l'extrémité d'une rampe d'aspersion.
  • Les figures 7, 8 et 9 sont des vues en coupe transversale, respectivement suivant les lignes AA, BB, CC de la figure 6.
  • La figure 10 montre l'ensemble de la rampe d'aspersion, en coupe longitudinale suivant la ligne DD de la figure 7.
  • La figure 11 est une vue en coupe longitudinale suivant la ligne EE de la figure 8.
  • La figure 12 illustre schématiquement les différentes possibilités de réglage.
  • Sur les figures 1 et 2 on a représenté schématiquement, respectivement en coupe transversale et en vue de face, l'ensemble d'un laminoir de type quarto comportant quatre cylindres superposés, respectivement deux cylindres de travail 1, 1' et deux cylindres de soutien 10, 10', l'ensemble étant placé à l'intérieur d'une cage 11 portant des moyens 12 d'application d'efforts de serrage sur les extrémités de l'arbre de l'un des cylindres de soutien 10, l'autre cylindre de soutien 10' reposant sur des cales. On réalise ainsi le laminage d'un produit M qui passe, suivant un plan horizontal de défilement P1, entre les deux cylindres de travail 1, 1'. Normalement, le produit M est centré sur un plan vertical de symétrie P2 de la cage.
    Le produit à laminer M est constitué d'une bande métallique ayant deux rives 13a, 13b écartées d'une largeur L qui, en fonction du type de produit à laminer, peut varier entre une largeur minimale L0 et une largeur maximale L1 Généralement, la largeur L du produit est inférieure à la longueur des cylindres de travail dont la génératrice d'appui 14 est appliquée sur le produit seulement sur une partie de sa longueur. Il en résulte, comme on l'a indiqué plus haut, que l'effort de laminage appliqué par les moyens de serrage 12 entre les cylindres détermine une flexion de ceux-ci qui modifie la répartition des contraintes le long de la génératrice d'appui 14, les deux rives 13a, 13b de la bande étant, généralement, plus comprimées que la partie centrale.
    Il en résulte des défauts de planéité qui peuvent être compensés en agissant sur le profil des cylindres.
    Comme on l'a indiqué plus haut, on connaít, en particulier, des dispositifs mécanique de correction des défauts de planéité qui exercent des efforts de flexion, dans un sens ou dans l'autre, sur les extrémités des cylindres de travail ou bien agissent sur le profil d'un cylindre de soutien constitué d'une enveloppe déformable tournant autour d'un arbre fixe.
    Ces dispositifs permettent d'améliorer considérablement la qualité de planéité des bandes laminées. Cependant, il existe encore des défauts résiduels sur les deux rives de la bande et l'on s'est avisé que, même pour des bandes de très faible épaisseur, ces défauts résiduels pouvaient être dûs à la discontinuité brutale de la répartition des contraintes qui se produit au niveau de chaque bord, du fait que, à partir de celui-ci, le cylindre de travail n'est plus appliqué sur le produit.
    Or, les dispositifs mécaniques de correction de planéité dans lesquels la répartition des contraintes est corrigée par cambrage des cylindres de travail ou en utilisant un cylindre de soutien à enveloppe déformable ne permettent pas d'adapter localement le profil des cylindres de travail pour tenir compte de cette discontinuité car la déformée du cylindre est nécessairement progressive.
    De plus, dans le cas de bandes très minces, les cylindres de travail viennent en contact entre eux à l'extérieur de la bande, ce qui limite les possibilités de correction.
    Comme on l'a vu, il est possible, également, de contrôler thermiquement le profil des cylindres par aspersion de fluide en zones fractionnées. Toutefois, les dispositifs utilisés, jusqu'à présent, à cet effet, ne permettaient pas de régler avec suffisamment de précision le profil du cylindre au niveau de chaque bord.
    En effet, les organes d'arrosage ont nécessairement des dimensions minimales qui dépendent du débit de fluide à faire passer et de l'encombrement des pièces mécaniques et il n'est pas possible de réduire cet encombrement en dessous d'une certaine limite.
    De plus, la miniaturisation des composants utilisés n'est pas compatible avec leur fiabilité. Or, comme il faut corriger les défauts de planéité apparaissant sur une bande défilant à très grande vitesse, les vannes associées aux organes de réglage et permettant de régler le débit moyen aspergé sont sollicitées alternativement, à l'ouverture et à la fermeture, avec une période de quelques secondes seulement. En outre, il est habituel, maintenant, de faire fonctionner une installation de façon continue pendant de très longues périodes, éventuellement de plusieurs mois et les arrêts, en fonctionnement normal, sont trop courts pour permettre des réglages ou le remplacement de pièces défectueuses.
    C'est pourquoi, conformément à l'invention, au lieu de chercher à réduire autant que possible l'encombrement des organes d'arrosage, on utilise, au contraire, des organes d'arrosage ayant les dimensions nécessaires pour assurer leur fiabilité et, pour améliorer la précision du contrôle thermique, on fait simplement varier les orientations des jets aux deux extrémités de la rampe de façon à réduire l'écartement entre les axes médians des surfaces d'impact sur une zone de transition de largeur réglable, au niveau de chaque bord latéral de la bande.
    En pratique, cette zone de transition peut avoir une largeur de 30 à 40 mm et l'écartement entre les axes des surfaces d'impact des jets peut être réduit, par exemple, jusqu'à la moitié du pas d'écartement qui correspond, dans la zone centrale, à l'encombrement minimal des organes d'arrosage.
    Dans le cas représenté sur la figure 1, d'un laminoir de type quarto, on utilise deux dispositifs d'aspersion 2, 2' placés, respectivement, de part et d'autre du plan P1 de défilement de la bande M à laminer et comportant chacun au moins une rampe 3, 3' d'aspersion d'un fluide caloporteur sur une face latérale 4 du cylindre de travail correspondant 1, 1'.
    D'une façon générale, chaque rampe d'aspersion 3, 3' est constituée d'une pluralité d'organes d'arrosage A disposés côte à côte, à égale distance les uns des autres, sur un bloc de support 20 formant une poutre rigide portée, à ses extrémités, par les deux colonnes de la cage 11 et qui s'étend parallèlement à l'axe du cylindre de travail 1, sur toute la longueur de celui-ci.
    De façon connue, chaque dispositif de refroidissement 2, 2' peut aussi comprendre une seconde rampe 21, 21' d'aspersion de fluide. Cette seconde rampe est dirigée vers le cylindre de soutien supérieur 10, au dessus de la bande M et dans l'espace compris entre celle-ci et le cylindre de travail inférieur 1', au dessous de la bande.
    Une telle disposition n'est pas nécessairement symétrique, le fluide pouvant se répartir par gravité pour assurer la lubrification de l'ensemble des cylindres.
    Chaque organe d'arrosage A est constitué d'un corps tubulaire 5 fixé par une pièce de branchement 26 sur le bloc de support 20, 20' dans lequel sont ménagées des conduites d'alimentation, respectivement 22 pour la rampe d'aspersion principale 3, 3' et 23 pour la rampe secondaire 21, 21'.
    Chaque pièce de branchement 26 d'un organe d'arrosage A est mise en communication avec la conduite d'alimentation 23 par un canal de liaison 24 sur lequel est placée une électrovanne 25 commandée individuellement de façon à contrôler le débit d'alimentation de l'organe d'arrosage A. A son extrémité opposée, le corps tubulaire 5 est fermé par une buse 52 munie d'une fente pour la formation d'un jet plat de fluide J de faible épaisseur, centré sur un axe 50 et ayant un plan médian P3 qui coupe transversalement l'axe x'x du cylindre.
    Comme le montre la figure 1, les blocs de support 20, 20' des deux dispositifs d'aspersion 2, 2' sont orientés de façon que les axes 50 des jets de fluide formés par chaque rampe 3, 3' soient placés dans des plans passant sensiblement par les axes des cylindres de travail correspondants 1, 1'.
    Chaque jet de fluide J frappe donc la face 4 du cylindre tournée vers la rampe 3 suivant sur une surface allongée S ayant sensiblement la forme d'un rectangle curviligne avec un grand axe transversal à l'axe x'x et présentant une largeur faible par rapport à la distance entre les axes de deux jets voisins, de telle sorte qu'il n'y ait pas d'interférences entre les surfaces d'impact. L'effet de refroidissement peut ainsi être réglé localement par zones fractionnées.
    Toutes ces dispositions sont classiques et ne nécessitent pas une description plus détaillée.
    L'invention diffère des dispositifs d'aspersion utilisés habituellement par le fait que la rampe d'aspersion 3 est constituée, de la façon représentée schématiquement sur la figure 3, de trois séries d'organes d'arrosage, respectivement une série centrale 31 constituée d'organes d'arrosage A qui sont fixés rigidement sur le bloc de support 20 et deux séries latérales, respectivement 32a, 32b, constituées d'organes d'arrosage orientables A' qui sont montés pivotants sur le bloc de support 20 et dont on peut régler l'orientation par rapport à la face arrosée du cylindre 1.
    Comme on l'a indiqué plus haut, chaque organe d'arrosage A, A' doit présenter des dimensions suffisantes pour assurer un fonctionnement fiable. Les pièces de branchement 26 sont donc écartées les unes des autres, le long de la rampe 3, d'un pas constant (a) qui correspond à l'encombrement minimal des organes d'arrosage.
    Le nombre d'organes d'arrosage fixes A constituant la série centrale 31 de la rampe 3 est déterminé, en fonction du pas d'écartement (a), de façon à couvrir une longueur du même ordre que la largeur minimale L0 de la bande. Les axes 50 des jets aspergés sont perpendiculaire à l'axe x'x du cylindre 1 de telle sorte que les surfaces d'impact des jets J sont écartées du même pas.
    Les organes d'arrosage orientables A' de chaque série latérale 32a, 32b sont écartés du même pas (a) et leur nombre est déterminé en fonction de la longueur restante (L1-L0)/2 de la rampe, de façon à couvrir la largeur maximale L1 de la bande.
    Cependant, comme on l'a déjà indiqué, la longueur de la zone refroidie 4 doit être limitée à la partie efficace du cylindre. A cet effet, les électrovannes 25 associées à chaque organe d'arrosage A, A' sont commandées individuellement par un système de réglage des débits qui détermine, en fonction de la largeur effective L de la bande, le nombre d'organes d'arrosage dont les vannes sont ouvertes.
    Comme habituellement, la longueur de la rampe, c'est à dire la distance entre les axes des buses placées respectivement aux deux extrémités de celle-ci, correspond sensiblement à la largeur maximale L1 du produit. Lorsque la largeur L du produit est inférieure à cette largeur maximale, il existe donc, à chaque extrémité de la rampe 3, un certain nombre d'organes d'arrosage correspondant à la partie du cylindre 1 qui n'est pas couverte par la bande et dont les vannes sont donc fermées.
    Sur la figure 2, par exemple, on a représenté schématiquement un laminoir ayant une largeur maximale L1. On voit que, si le produit présente une largeur L, les vannes des organes d'arrosage sont ouvertes seulement sur une partie centrale de la rampe couvrant la même longueur L du cylindre que le produit et sont fermées aux deux extrémités, sur une longueur (L1-L)/2.
    Dans la disposition habituelle, le fluide est réparti de façon régulière sur une zone refroidie du cylindre de travail 1, qui s'étend sur une longueur sensiblement égale à la distance L entre les deux bords 13a, 13b du produit, les parties restantes du cylindre 1 n'étant pas refroidies.
    Dans l'invention, au contraire, la zone refroidie 4, qui est représentée hachurée sur la figure 2, est divisée en plusieurs parties.
    Dans la partie centrale 16 de la bande, qui s'étend sur une largeur L' de part et d'autre du plan de symétrie P2, le contrôle thermique de la répartition des contraintes peut être effectué de façon classique, par aspersion de jets de fluide régulièrement répartis sur une zone centrale de la face correspondante du cylindre de travail 1. En revanche, de part et d'autre de cette zone centrale, le pas d'écartement des surfaces d'impact des jets de fluide est plus resserré de façon à réaliser deux zones de transition correspondant, respectivement, aux zones de rive 15a, 15b de la bande et dans lesquelles le contrôle thermique est assuré avec plus de précision de façon à corriger des défauts résiduels éventuels.
    A cet effet, comme on l'a indiqué plus haut, la rampe d'aspersion 3 comprend trois séries d'organes d'arrosage, respectivement une série centrale 31 et deux séries latérales 32a, 32b. L'ensemble est représenté schématiquement sur la figure 3.
    La série centrale 31, qui est centrée sur le plan de symétrie P2 du laminoir, est constituée d'organes d'arrosage fixes A, dont les axes 50 sont parallèles entre eux et perpendiculaires à l'axe x'x du cylindre.
    En revanche, chaque série latérale 32a, 32b est constituée d'organes d'arrosage orientables A' qui sont montés pivotants sur le bloc de support 20 d'une façon qui sera décrite en détail plus loin et dont l'orientation peut être déterminée au moyen d'un curseur 6. Celui-ci se déplace le long de la rampe 3, parallèlement à l'axe x'x du cylindre et peut s'engager sur un certain nombre d'organes d'arrosage 42 de chaque série latérale 32.
    Dans l'exemple représenté sur la figure 3, la bande à laminer présente une largeur L voisine de la largeur maximale L1 de la bande. Les deux curseurs 6a, 6b, qui seront décrits en détail plus loin, sont donc placés aux deux extrémités de la rampe 3 de façon à faire converger vers l'intérieur de la bande, c'est à dire vers le plan de symétrie P2, deux groupes d'organes d'arrosage placés respectivement aux deux extrémités de la rampe 3 et comprenant chacun, par exemple, six organes d'arrosage.
    Chaque série latérale 32 comprend donc deux sections, respectivement une première section 33 et une seconde section 34.
    Dans la première section 33 qui s'étend dans le prolongement de la série centrale 31 à chaque extrémité de celle-ci, les organes d'arrosage A'1 sont dirigés perpendiculairement à l'axe x'x du cylindre. Dans la seconde section 34 qui s'étend au delà de la section 33 jusqu'à l'extrémité de la partie effective de la rampe 3 dont les vannes sont ouvertes, les organes d'arrosage A'2, orientés par le curseur 6, convergent vers l'intérieur de la bande.
    Chaque partie de la rampe 3 ainsi définie détermine l'arrosage d'une partie correspondante de la face arrosée 4 du cylindre qui comprend donc une partie centrale 41 arrosée par la série centrale 31 de la rampe 3 et prolongée, de chaque côté, respectivement par une première partie latérale 43 arrosée par la première section 33 de la série latérale 32 et une seconde partie latérale 44 arrosée par la seconde section 34.
    Dans la partie centrale 41 et les premières parties latérales 43a, 43b, les surfaces d'impact des jets sont régulièrement écartées du pas (a) correspondant à l'espacement constant des organes d'arrosage. En revanche, les secondes parties latérales 44a, 44b, placées respectivement aux deux extrémités de la zone refroidie 4 constituent des zones de transition dans lesquelles les surfaces d'impact sont plus rapprochées, ce qui permet de contrôler, avec plus de précision, l'effet thermique de l'arrosage pour compenser d'éventuels défauts résiduels observés en aval sur les deux rives de la bande.
    Etant donné que, aux deux extrémités, les jets de fluide convergent vers l'intérieur, la longueur totale de la rampe 3 doit être un peu supérieure à la longueur totale de la zone refroidie 4.
    Si la bande à laminer présente une largeur nettement inférieure à la largeur maximale L1, le système de réglage des débits détermine la fermeture des vannes d'un certain nombre d'organes d'arrosage qui constituent, à chaque extrémité de la rampe, une troisième section de la série latérale 32a, 32b dont les vannes sont fermées. Dans ce cas, les deux curseurs 6a, 6b sont déplacés vers l'intérieur de façon à s'engager respectivement, à chaque extrémité de la partie effective de la rampe 3 dont les vannes sont ouvertes, sur un groupe d'organes d'arrosage dont les jets convergent sur une zone de transition 44 de la surface refroidie 4 du cylindre, à chaque extrémité de celle-ci.
    Pour tenir compte de la convergence des jets, cette partie de la rampe dont les vannes sont ouvertes doit couvrir une longueur supérieure à celle de la zone refroidie 4 du cylindre qui est elle-même, de préférence, un peu supérieure à la largeur réelle du produit (L). De la sorte, chaque zone de transition 44a, 44b s'étend vers l'extérieur, au delà du bord 13a, 13b de la bande, ce qui permet de mieux éviter la discontinuité dans la répartition des contraintes, en contrôlant le profil de la génératrice d'appui sur une zone de transition recouvrant complètement le bord de la bande.
    Sur la figure 5, on a représenté, en coupe axiale, un organe d'arrosage A' de type pivotant comprenant, comme habituellement, un corps tubulaire 5 limitant un canal d'injection centré sur un axe 50 et ayant une extrémité d'entrée 51 reliée par une pièce de branchement 26 au bloc de support 20 non représenté sur la figure 5 et une extrémité de sortie munie d'une buse 52 comportant une fente de formation d'un jet plat de fluide.
    Dans la série centrale 31 de la rampe, le corps tubulaire 5 est fixé rigidement sur l'organe de branchement 26. En revanche, dans une série latérale 32, l'extrémité d'entrée 51 du corps tubulaire 5 est constituée d'une partie sphérique 51 prise dans un boítier en deux parties constituant l'organe de branchement 26, de façon à constituer une articulation rotulante avec un simple jeu de montage. L'étanchéité est assurée par un joint annulaire 28 placé entre les deux parties du boítier 26. Celui-ci est muni d'un usinage comportant deux faces planes parallèles à l'axe x'x du cylindre de travail et sur lesquelles sont enfilés deux plats 53 ménagés à la base du corps tubulaire 5. Celui-ci peut ainsi pivoter uniquement autour d'un axe perpendiculaire aux deux faces 53, de telle sorte que l'axe 50 du corps tubulaire 5 se déplace dans un plan. Comme on l'a indiqué, le bloc de support 20 est orienté de façon que ce plan passe sensiblement par l'axe x'x du cylindre de travail 1.
    Le boítier 26 est muni, du côté du corps tubulaire 5, d'une échancrure 27 qui s'ouvre sur un seul côté de façon à permettre l'orientation, de ce côté, du corps tubulaire 5 contre l'action d'un poussoir à ressort 54 qui, en l'absence de sollicitations extérieures, plaque le corps tubulaire 5, dans le sens opposé, contre le boítier 26 dans la position représentée sur la figure 5 pour laquelle l'axe 50 du corps tubulaire est perpendiculaire à l'axe x'x du cylindre.
    La buse 52 est montée sur un embout 55 qui est immobilisé en translation par rapport au corps tubulaire 5 mais peut tourner autour de l'axe 50 de celui-ci.
    De préférence, la buse 52 est appliquée et fixée sur l'embout 55 au moyen d'une bride de serrage 52' munie d'un écrou. Il est ainsi possible de régler un angle d'inclinaison (k) du plan médian P3 du jet par rapport à l'axe x'x du cylindre 1.
    Dans la section centrale 31 de la rampe 3, les buses 52 sont réglées de façon que les surfaces d'impact S soient parallèles.
    Il en est de même dans les sections latérales 32, lorsque l'axe 50 du jet est perpendiculaire à l'axe x'x du cylindre.
    Cependant, selon une autre caractéristique avantageuse de l'invention, chaque organe d'arrosage orientable A' est muni d'un moyen de variation de l'inclinaison (k) du plan médian du jet en fonction de la variation d'orientation (i) de l'axe 50 de celui-ci. Un tel dispositif sera décrit en détail plus loin.
    Sur les figures 10 et 11, on a représenté, respectivement en vue de face et en vue de dessus, l'ensemble d'une rampe d'aspersion avec le système de commande de l'orientation des organes d'arrosage.
    A chaque extrémité de la rampe, est disposé un curseur 6 qui est monté coulissant, sans possibilité de rotation, sur un arbre 61, en passant au-dessous des organes d'arrosage A' de la rampe 3. Ce curseur 6 porte une pluralité de doigts 62 régulièrement écartés qui s'étendent en saillie de façon à passer entre les corps tubulaires 5 d'un groupe d'organes d'arrosage A'2. Ainsi, dans l'exemple représenté sur la figure 10, qui correspond à la figure 3, chaque curseur 6 porte six doigts 62 qui s'étendent chacun au niveau du corps tubulaire 5 d'un organe d'arrosage A'2 de façon à prendre appui latéralement sur celui-ci lorsque le curseur 6 coulisse le long de l'arbre 61.
    Ce mouvement de coulissement est commandé par un écrou 7 engagé sur une vis 71 et bloqué en rotation de façon à se déplacer longitudinalement, avec le curseur 6 lorsque la vis 71 est entraínée dans un sens ou dans l'autre, par un moteur hydraulique 72.
    Les doigts 62 du curseur 6 sont écartés d'un pas constant (a') qui est un peu inférieur au pas (a) entre les axes 50 des organes d'arrosage A. De la sorte, comme on le voit sur la figure 10, lors du coulissement du curseur 6 le long de l'arbre 61, les six doigts 62 du curseur viennent successivement en appui sur les corps tubulaires 5 correspondants de six organes d'arrosage A'2. Ceux-ci commencent donc à pivoter l'un après l'autre et il en résulte que l'angle d'inclinaison (i) de l'axe 50 d'un organe d'arrosage 5 par rapport à l'axe x'x du cylindre diminue en allant de l'intérieur vers l'extérieur, de la façon représentée sur la figure 3.
    Comme le montre la figure 10, la disposition est symétrique par rapport au plan P2 de symétrie du laminoir, le dispositif comprenant deux curseurs 6a, 6b dont les déplacements en sens inverse sont commandés par deux vis 71a, 71b ayant des filetages inversés et reliées par une allonge 73. La rotation des deux vis, dans un sens ou dans l'autre, est commandée par un moteur hydraulique 72 par l'intermédiaire d'un renvoi d'angle.
    Il est ainsi possible, en déplaçant les deux curseurs 6a, 6b en sens inverse, de les placer, respectivement, au niveau de deux groupes d'organes d'arrosage A'2 symétriques par rapport au plan P2 et constituant, respectivement, les secondes sections 34a, 34b des deux séries latérales 32a, 32b de la rampe 3.
    Chaque curseur 6a, 6b est ainsi placé au niveau d'un groupe d'organes d'arrosage A'2 dont les jets convergent vers une zone de transition 44a, 44b, à chaque extrémité de la zone refroidie 4 du cylindre.
    Au moyen du moteur hydraulique 72, on va donc commander la rotation des vis 71a, 71b dans un sens ou dans l'autre pour placer les deux curseurs 6a, 6b au niveau voulu. Chaque curseur peut ainsi se déplacer entre deux positions limites correspondant aux deux extrémités de chaque série latérale 32a, 32b, respectivement, une position externe représentée en traits pleins sur la figure 10 et une position interne représentée en pointillés.
    Pour cela, il faut que les doigts 62 de chaque curseur 6 s'engagent de façon amovible entre les corps tubulaires 5 des organes d'arrosage.
    A cet effet, comme le montrent les figures 6 et 9, chaque curseur 6a, 6b, est associé à un vérin pneumatique 63 dont la tige porte une crémaillère 64 sur laquelle engrène une roue dentée 65 calée à l'extrémité de l'arbre 61 de guidage du curseur 6.
    Comme le montre la figure 7, le curseur 6 est constitué d'une douille tubulaire montée coulissante axialement le long de l'arbre 61 mais calée en rotation avec celui-ci. De la sorte, une rotation de l'arbre 61 commandée par le pignon 65 et la crémaillère 64 détermine la rotation du curseur 6 avec, dans un sens, l'engagement des doigts 62 entre les corps tubulaires 5 des organes d'arrosage correspondant et, dans l'autre sens, leur dégagement dans la position 62' représentée en tirets sur la figure 7. Dans cette position 62' les doigts sont placés au dessous du niveau des organes d'arrosage et ne s'opposent donc pas au coulissement du curseur 6. Par ailleurs, l'écrou 7 est muni d'une partie d'entraínement en saillie 73 qui s'engage dans une rainure circulaire 66 du curseur 6 permettant la rotation de celui-ci autour de son axe.
    Il est donc possible, selon la largeur de la bande, de régler la position du curseur d'abord en position dégagée des doigts, pour choisir le groupe d'organes d'arrosage constituant la seconde section latérale de la rampe et ensuite, en position engagée, pour faire varier l'orientation des buses.
    A cet effet, le moteur hydraulique 72 de déplacement des curseurs est muni d'une commande à deux vitesses contrôlée par un générateur d'impulsions de façon à réaliser, d'une part un déplacement rapide des curseurs 6a, 6b pour le choix du groupe d'organes d'arrosage à orienter et, d'autre part, un réglage fin de la position du curseur pour déterminer une réduction optimale du pas d'écartement des surfaces d'impact en fonction des défauts de rive à corriger.
    Sur la figure 4, on a représenté schématiquement les surfaces d'impact S des jets sur la face refroidie du cylindre de travail 1.
    Comme on l'a déjà indiqué, l'axe 50 de chaque organe d'arrosage 5 est sensiblement concourant avec l'axe x'x du cylindre 1 et la buse 52 forme un jet plat, de faible épaisseur, qui est centré sur un plan médian P3 coupant transversalement l'axe x'x. Les buses 52 sont réglées de façon que les plans médians P3 des surfaces d'impact S soient parallèles et inclinés d'un même angle (k) par rapport à l'axe x'x du cylindre. De la sorte, malgré la faible largeur de la surface d'impact, l'effet de refroidissement s'applique non seulement sur toute la largeur (a) de la zone correspondant au jet considéré, mais aussi sur une partie des deux zones adjacentes, le recouvrement (r) pouvant être, par exemple, de la moitié du pas (a). Ainsi, bien que l'ouverture ou la fermeture de chaque vanne 25 soit commandée par tout ou rien, l'effet de refroidissement est réparti sur toute la longueur de la face arrosée 4 du cylindre 1.
    Dans la première partie latérale 43a de la zone refroidie, les axes 50 des organes d'arrosage sont écartés l'un de l'autre du même pas (a) et les plans médians P3 des jets sont parallèles et inclinés du même angle (k) par rapport à l'axe x'x du cylindre 1. En revanche, dans la zone de transition 44, les organes d'arrosage sont orientés de façon à réduire la distance entre les axes des jets jusqu'à un pas qui peut être, par exemple, la moitié du pas constant (a) dans la partie centrale 41 et la première partie latérale 43.
    Comme on l'a indiqué, il est avantageux de faire varier l'angle d'inclinaison (k) du plan médian d'un jet en fonction de la variation d'orientation de son axe 50 par rapport à l'axe x'x du cylindre.
    A cet effet, l'embout 55 sur lequel est fixée la buse 52 est muni d'une palette 56 sur laquelle prend appui un ressort de torsion 57 dont l'extrémité opposée est engagée dans un trou du corps tubulaire, à l'extrémité d'entrée de celui-ci. En l'absence de sollicitations extérieures, la palette 56 est appliquée par le ressort 57 contre un pion 58 fixé sur l'organe de branchement 26 et le plan médian P3 est alors incliné de l'angle (k) correspondant au réglage de la buse.
    De la sorte, lorsque l'on fait tourner le curseur 6 pour engager les doigts 62 entre les corps tubulaires 5, chacun d'eux vient prendre appui sur la palette 56 et soulève celle-ci, contre l'action du ressort 57, en faisant tourner l'embout 55 portant la buse 52. Il en résulte une rotation du plan médian P3 du jet de fluide J autour de l'axe 50 de la buse.
    Il est ainsi possible, dans les deux zones de transition où le pas d'écartement est resserré, d'augmenter l'angle d'inclinaison des jets par rapport à l'axe du cylindre, de façon à éviter des interférences entre les surfaces d'impact adjacentes qui sont plus resserrées que dans la zone centrale.
    En outre, il est particulièrement avantageux de faire varier la longueur des doigts 62 en fonction de leur position sur le curseur.
    En effet, la variation de l'angle d'inclinaison (k) du plan médian P3 d'un jet dépend de la longueur du doigt 62 correspondant. En augmentant progressivement la longueur des doigts, de l'intérieur vers l'extérieur, il est donc possible de déterminer un redressement progressif du jet, en partant de la section 43 jusqu'à l'extrémité de la zone 44. De la sorte, comme le montre la figure 4, le recouvrement (r1) entre deux surfaces d'impact voisines est réduit de la même façon que leur écartement (a1) et reste de l'ordre de la moitié de celui-ci. De plus, la variation progressive de l'angle d'inclinaison (k) permet d'éviter des interférences entre les surfaces d'impact S, du côté où celles-ci convergent.
    A titre d'exemple, la figure 12 montre, en trois schémas successifs, le déplacement progressif du curseur 6 par rapport à une position de départ, qui détermine l'inclinaison progressive des jets et le resserrement des surfaces d'impact.
    La figure 12a montre la position du curseur 6 à partir de laquelle tous les doigts 62 sont entrés en contact avec les organes d'arrosage formant la section orientable 34 de la rampe. L'angle d'inclinaison (i) des axes 50 des jets de fluide augmente donc progressivement depuis la première buse 5a jusqu'à la dernière buse 5b de la section 34, qui, dans cette position du curseur, est encore dirigée perpendiculairement à l'axe du cylindre.
    Le centre du jet de la première buse 5a de la série se trouve alors à une distance (c1) de la position de départ du curseur 6, pour laquelle le même jet était perpendiculaire à l'axe du cylindre et la zone de transition 44a s'étend sur une largeur (d1) jusqu'à l'axe de la première buse 5c de la section 33. Dans cette position, la dernière buse 5b de la section 34 n'a pas encore commencé à pivoter et son axe se trouve donc à la distance (a) de l'axe de la buse 5c, par exemple 50 mm.
    La figure 12b montre une position intermédiaire et la figure 12c montre la position finale pour laquelle les axes des jets sont régulièrement écartés du demi-pas (a/2), par exemple 25 mm.
    On voit que la zone de transition s'est légèrement déplacée vers l'intérieur la distance (c2) ayant augmenté et que, en même temps, sa largeur (d2) a un peu diminué par rapport à la largeur initiale (d1).
    Le réglage de la position du curseur, permet donc, d'une part, de faire varier l'espacement et l'inclinaison des jets et d'autre part, de modifier légèrement la largeur de la zone de transition et les positions relatives des jets par rapport au bord de la bande.
    Ainsi, en plus du réglage du débit moyen des jets, on dispose d'un moyen supplémentaire de refroidissement contrôlé, par tranches, de la partie du cylindre correspondant à une rive de la bande.
    En outre, comme on l'a indiqué plus haut, le resserrement progressif des axes des jets s'accompagne d'un redressement progressif de leurs plans médians qui permet d'assurer une répartition régulière du fluide sur toute la hauteur de la face refroidie 4.
    On peut ainsi régler très finement l'effet thermique des jets de façon à faire disparaítre les défauts résiduels observés sur les deux rives de la bande.
    Bien entendu, l'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits et qui pourraient faire l'objet de variantes sans s'écarter du cadre de protection défini par les revendications.
    En particulier, c'est seulement à titre d'exemple que l'on a décrit les moyens de commande de l'orientation des buses, d'autres moyens pouvant évidemment être utilisés pour obtenir les mêmes résultats.
    De plus, si les buses utilisées actuellement correspondent, normalement, à un pas d'espacement de 50 mm environ, il est bien certain que cet espacement est fonction du matériel dont on dispose et des caractéristiques du laminoir sur lequel on installe le dispositif.
    Comme on l'a indiqué, chaque buse est habituellement munie d'une fente pour la formation d'un jet plat à section sensiblement rectangulaire mais on peut aussi utiliser plusieurs orifices répartis en éventail et dont les jets se confondent pour former, sur le cylindre, une surface d'impact allongée, de faible largeur.
    Par ailleurs, pour améliorer encore l'efficacité du contrôle de l'arrosage sur les rives de la bande laminée, il est avantageux d'ajouter, sur chaque rive, un organe d'aspersion supplémentaire 8 qui peut se déplacer le long d'un support 81 parallèle à la vis 71 de commande des déplacements du curseur 6.
    A cet effet, comme le montre la figure 8, chaque organe d'aspersion supplémentaire 8 placé sur un côté de la bande est monté sur un curseur 80 qui est conformé de façon à laisser le passage de la première vis 71.
    Chaque buse 8 est alimentée par un canal ménagé à l'intérieur du curseur 80 et sur lequel vient se brancher, par l'intermédiaire d'un joint rotulant, une conduite d'alimentation 83, de la façon représentée sur la figure 11. Cette conduite 83 est montée coulissante, de façon étanche, dans un tube fixe 84 qui s'étend de part et d'autre du plan de symétrie P2 et est branché sur une alimentation centrale 85.
    Chaque buse supplémentaire 8 forme un jet plat J', de préférence orienté verticalement et qui peut se déplacer sous l'action de la vis 81, de façon à être positionné avec précision en fonction du défaut à corriger.
    Comme le montre la figure 11, le support 81 est constitué de deux vis à pas inversés reliées par une allonge et s'engageant respectivement dans des alésages filetés ménagés sur chaque curseur 80a, 80b. Un moteur hydraulique 82 de commande la rotation de la vis 81 détermine des déplacements égaux, en sens contraires des curseurs 80a, 80b et permet donc de régler les positions des jets J' des deux buses 8a, 8b par rapport aux deux bords de la bande, les conduites correspondantes 83a, 83b coulissant dans les deux extrémités du tube central 84.
    Un générateur d'impulsion permet de contrôler ces déplacements, en sens opposé, des deux curseurs 80a, 80b de façon à régler avec précision la position des deux buses 8a, 8b par rapport aux deux bords de la bande.
    Au moyen de l'alimentation centrale 85, les deux buses 8 peuvent être alimentées à une autre température que les buses A de la rampe 3, le fluide caloporteur pouvant, d'ailleurs, être d'une autre nature.
    Il apparait donc que l'invention procure plusieurs moyens de contrôle thermique dont les effets peuvent être combinés de façon à obtenir une qualité de planéité aussi parfaite que possible.
    Il est à noter que l'invention ne s'applique pas seulement à de nouvelles installations, mais permet aussi d'améliorer les performances des installations plus anciennes. En effet, les rampes d'arrosage et les mécanismes associés constituent des ensembles compacts qui peuvent être installés facilement, même dans une cage de laminoir existante.
    Les signes de référence insérés après les caractéristiques techniques mentionnées dans les revendications, ont pour seul but de faciliter la compréhension de ces dernières et n'en limitent aucunement la portée.

    Claims (25)

    1. Procédé de contrôle thermique du profil d'un cylindre dans un laminoir comprenant des moyens de commande du défilement, entre au moins deux cylindres (1, 1') à axes parallèles, d'un produit à laminer (M) constitué d'une bande ayant deux rives (13) écartées d'une certaine largeur (L) et dans lequel au moins un cylindre (1) est associé au moins une rampe (3) d'aspersion d'un fluide caloporteur comprenant une pluralité d'organes d'arrosage (A) écartés les uns des autres le long d'une direction parallèle à l'axe (x'x) du cylindre (1) et munis chacun d'une buse (52) d'aspersion, d'un jet de fluide (J) centré sur un axe d'injection (50) passant sensiblement par l'axe (x'x) du cylindre (1) et formant, sur une face (4) du cylindre (1) tournée vers la rampe, une surface d'impact (S) de forme allongée ayant un grand axe placé dans un plan médian (P3) coupant transversalement ledit axe (x'x) du cylindre (1), chaque organe d'arrosage (A) étant muni d'une vanne (25) commandée par un système de réglage des débits pour l'arrosage du cylindre (1) par ouverture des vannes (25) sur une partie de la rampe (3) déterminant l'aspersion du fluide sur une zone refroidie (4) du cylindre (1) et la fermeture des vannes (25) sur les parties restantes de la rampe (3), ladite zone refroidie (4) étant recouverte d'une série de surfaces d'impact (S) dont les axes médians sont écartés d'une certaine distance (a), et le système de réglage déterminant individuellement le débit moyen, par unité de temps, du jet de fluide aspergé sur chaque surface d'impact (S),
         caractérisé par le fait que l'on fait varier l'écartement (a) entre les axes médians des surfaces d'impact (S) en fonction de la position desdites surfaces d'impact sur la longueur de la zone refroidie (4) de façon que celle-ci comprenne une zone centrale (41, 43) dans laquelle les surfaces d'impact sont écartés d'un pas (a) sensiblement constant et deux zones de transition (44) s'étendant de part et d'autre de la zone centrale au moins jusqu'au niveau des deux rives (13) de la bande (M) et dans lesquelles l'écartement entre les axes médians des surfaces d'impact (S) est réduit par rapport au pas constant (a) de la zone centrale (41, 43).
    2. Procédé de contrôle selon la revendication 1, caractérisé par le fait que, chaque jet plat (J) est centré sur un plan médian (P3) incliné d'un angle (k) non droit par rapport à l'axe (x'x) du cylindre (1) de façon que la surface d'impact (S) correspondante, s'étende transversalement sur le cylindre en s'écartant symétriquement par rapport à l'axe d'injection (50), de part et d'autre d'un plan transversal (P4) passant par l'axe d'injection (50) et perpendiculaire à l'axe (x'x) du cylindre.
    3. Procédé de contrôle selon l'une des revendications 1 et 2, caractérisé par le fait que, dans une partie centrale (31, 33) de la rampe d'aspersion (3) correspondant à la zone centrale (41, 43) de la zone refroidie (4), chaque jet de fluide (5) est dirigé suivant un axe d'injection (50) perpendiculaire à l'axe (x'x) du cylindre et que, dans deux parties latérales (34) de la rampe (3), de part et d'autre de la partie centrale, on fait varier l'orientation de l'axe (50) de chaque jet par rapport à l'axe (x'x) du cylindre, en faisant converger les jets d'un certain nombre de buses (A'2) des deux parties latérales (34) de la rampe (3), respectivement vers les deux zones de transition (44) du cylindre (1), le nombre de buses (A'2) à jets convergents étant tel que, compte tenu de leur écartement sur la rampe (3), chaque partie latérale (34) de la rampe (3) couvre une longueur supérieure à celle de la zone de transition (44) correspondante du cylindre (1).
    4. Procédé de contrôle selon la revendication 3, caractérisé par le fait que l'on incline d'un même angle (k) non nul par rapport à l'axe (x'x) du cylindre, les plans médians des jets dirigés sur la zone centrale (41, 43) du cylindre (1) et que l'on augmente l'angle d'inclinaison des plans médians des jets dirigés respectivement sur les deux zones de transition (44).
    5. Procédé selon la revendication 4, caractérisé par le fait que, dans chaque zone de transition (44), on détermine en même temps, à partir de la zone centrale (41, 43) et en s'écartant vers l'extérieur, une diminution progressive de l'inclinaison (i) de l'axe (50) des jets de fluide (J), et une augmentation progressive de l'inclinaison (k) de leur plan médian (P3) par rapport à l'axe (x'x) du cylindre (1).
    6. Dispositif de contrôle thermique du profil d'un cylindre dans un laminoir comprenant au moins deux cylindres (1, 1') à axes parallèles et des moyens de commande du déplacement, entre lesdits cylindres, d'un produit à laminer constitué d'une bande (M) ayant deux rives (13) écartées d'une certaine largeur (L) et dans lequel (1) au moins l'un des cylindres du laminoir est associé à un dispositif (2) de contrôle thermique comprenant au moins une rampe d'arrosage (3) constituée d'une pluralité d'organes d'arrosage espacés (A), répartis sur toute la longueur du cylindre (1), parallèlement à son axe (x'x) et reliés à un circuit (22) d'alimentation en fluide caloporteur, chaque organe d'arrosage (A) étant muni d'une vanne (25) et comprenant une buse (52) de formation d'un jet de fluide (J) centré sur un axe d'injection (50) sensiblement concourant avec l'axe (x'x) du cylindre (1) et formant, sur une face (4) du cylindre tournée vers la rampe, une surface d'impact (S) de forme allongée ayant un grand axe placé dans un plan médian (P3) du jet coupant transversalement l'axe (x'x) du cylindre, ladite rampe (3) étant associée à un système de réglage des débits aspergés par commande individuelle des vannes (25) de chacun des organes d'arrosage (A) déterminant, d'une part l'ouverture des vannes (25) sur une partie de la rampe (3) pour l'aspersion de fluide sur une zone refroidie (5) du cylindre avec fermeture des vannes (25) sur les parties restantes de la rampe (3) et, d'autre part, le réglage individuel du débit moyen, par unité de temps, du jet de liquide (5) aspergé sur chaque surface d'impact (S),
         caractérisé par le fait que, la largeur (L) du produit à laminer pouvant varier entre une largeur minimale (L0), et une largeur maximale (L1), la rampe d'arrosage (3) comprend au moins trois séries d'organes d'arrosage, respectivement, une série centrale (31) couvrant une partie centrale (41) de la zone refroidie (4) sur une longueur au plus égale à la largeur minimale (L0) du produit (M) et dans laquelle les organes d'arrosage (A) ont des directions fixes de telle sorte que les axes (50) des surfaces d'impact (S) correspondantes soient écartés d'un pas constant (a) dans ladite partie centrale (41) de la zone refroidie (4) et deux séries latérales (32a, 32b) s'étendant de part et d'autre de la série centrale (31) pour couvrir, au total, une longueur au moins égale à la largeur maximale (L1) du produit et dans lesquelles les organes d'arrosage (A') sont montés pivotants sur la rampe (3), chaque série latérale (32) étant associée à un moyen (6, 7) de réglage de l'orientation d'au moins un groupe d'organes d'arrosage pivotants, de façon à réduire les écarts entre les axes des surfaces d'impact à chaque extrémité de la zone refroidie du cylindre.
    7. Dispositif de contrôle thermique selon la revendication 6, caractérisé par le fait que, le laminoir et la bande à laminer étant symétriques par rapport à un plan longitudinal (P2), chaque série latérale (32a, 32b) d'organes d'arrosage (A') comprend, en allant de l'intérieur vers l'extérieur, une première section (33a, 33b) dans laquelle les axes des jets sont orthogonaux à l'axe (x'x) du cylindre (1) et qui couvre une première partie latérale (43a, 43b) de la zone refroidie (4) du cylindre sur une longueur telle que la longueur totale (L') de la partie centrale (41) de la zone refroidie (4), augmentée desdites premières parties latérales (43a, 43b) soit inférieure à la largeur (L) de la bande, et une seconde section (34a, 34b) dans laquelle les axes (50) des jets sont inclinés vers l'intérieur par rapport à l'axe (x'x) du cylindre et qui couvre une seconde partie latérale (44a, 44b) de la zone refroidie (4) sur une longueur telle que la longueur totale de ladite zone refroidie (4) soit au moins égale à la largeur (L) de la bande, chaque seconde section (34) d'une série latérale (32) couvrant, à une extrémité de la zone refroidie (4), une zone de transition (44) correspondant à une rive (13) de la bande (M) et dans laquelle les axes médians des surfaces d'impact (S) sont écartés d'une distance inférieure au pas (a) d'écartement desdites surfaces (S), respectivement dans la partie centrale (41) et les premières parties latérales (43a, 43b) de la zone refroidie (4).
    8. Dispositif selon la revendication 7, caractérisé par le fait que les moyens de réglage de l'orientation des jets comprennent deux moyens (6a, 6b) de commande du pivotement d'un groupe (34a, 34b) d'organes d'arrosage, respectivement sur chaque série latérale (32a, 32b) de la rampe (3), chaque moyen de commande (6) étant déplaçable le long de celle-ci, et associé à un moyen (7) de réglage de sa position en fonction de la largeur (L) de la bande (M), et à un moyen (64, 65) d'engagement sélectif dudit moyen de commande (6) avec un groupe d'organes d'arrosage constituant une seconde section (34) de chaque série latérale (32) pour couvrir une zone de transition (44), à chaque extrémité de la zone refroidie (4).
    9. Dispositif selon l'une des revendications 6 à 8, dans lequel la rampe d'arrosage (3) comprend une conduite (22) reliée à un circuit d'alimentation en fluide et sur laquelle sont branchés une pluralité d'organes d'arrosage espacés (A), caractérisé par le fait que les organes d'arrosage (A) sont écartés l'un de l'autre d'une distance minimale qui dépend de l'encombrement en largeur de chaque organe d'arrosage et détermine le pas constant (a) entre les axes médians (50) des surfaces d'impact (S) dans la partie centrale (41) et les premières parties latérales (43) de la zone refroidie (4).
    10. Dispositif selon la revendication 9, dans lequel chaque organe d'arrosage (A) comprend un corps tubulaire (5) ayant une extrémité de sortie munie d'une buse (52) de formation du jet (J) et une extrémité d'entrée reliée à la conduite d'alimentation (22) par l'intermédiaire d'une pièce de branchement (26) limitant un canal de liaison (24) entre la conduite (22) et l'extrémité d'entrée du corps tubulaire (5), sur lequel est placée une vanne (25) reliée individuellement au système de réglage, caractérisé par le fait que chaque organe d'arrosage (A) d'une série latérale (32) de la rampe comprend un corps tubulaire (5) monté pivotant sur la pièce de branchement (26) autour d'au moins un axe (y'y) orthogonal à l'axe (x'x) du cylindre (1) et est associé à un système de commande (6, 7) de la rotation du corps tubulaire (5) autour dudit axe de pivotement.
    11. Dispositif selon la revendication 10, caractérisé par le fait que la pièce de branchement (26) de chaque organe d'arrosage (A) comprend un boítier (26) limitant une cavité ayant une face interne circulaire centrée sur un axe (y'y) orthogonal à l'axe du cylindre (x'x) et que le corps tubulaire (5) de l'organe d'arrosage (A) est muni d'une portée circulaire (51) ayant un profil conjugué à celui de la cavité et logée dans celle-ci avec un simple jeu de montage.
    12. Dispositif selon la revendication 11, caractérisé par le fait que le corps tubulaire (5) est monté rotulant à l'intérieur de la cavité du boítier (26) et comprend au moins une face plane de guidage (53) parallèle à l'axe (x'x) du cylindre (1) et prenant appui sur une face plane correspondante du boítier (26) de façon à permettre un pivotement du corps tubulaire (5) autour d'un axe (y'y) perpendiculaire auxdites faces planes (53).
    13. Dispositif selon l'une des revendications 9 à 12, caractérisé par le fait que chaque organe d'arrosage comprend un moyen (56) de réglage d'un angle d'inclinaison (k) du plan médian (P3) du jet plat (J) par rapport à l'axe (x'x) du cylindre (1).
    14. Dispositif selon la revendication 13, caractérisé par le fait que la buse (52) de chaque organe d'arrosage est montée rotative sur le corps tubulaire (5) autour de l'axe (50) du jet (J) et que l'organe d'arrosage est associé à des moyens (56) de commande d'une rotation de la buse (52) autour de l'axe (50) du jet pour le réglage d'une variation de l'inclinaison (k) de son plan médian (P3) par rapport à l'axe (x'x) du cylindre.
    15. Dispositif selon l'une des revendications 9 à 14, caractérisé par le fait que chaque série latérale (32) d'organes d'arrosage (A') est associée à un moyen (6, 7) de commande sélective du pivotement d'un groupe (34) d'organes d'arrosage.
    16. Dispositif selon la revendication 15, caractérisé par le fait que le moyen de commande sélective de l'orientation comprend un curseur (6) muni de doigts écartés (62) et monté coulissant sur un support (61), s'étendant le long de la rampe (3), un moyen (7) de commande du coulissement du curseur (6) sur son support (61) pour le réglage de la position du curseur (6) le long de la rampe (7) et un moyen (64, 65) de commande de la rotation du curseur (6) autour de son axe dans deux sens opposés, respectivement d'engagement et de dégagement des doigts (62) du curseur (6) entre les corps tubulaires (5) d'un groupe (34) d'organes d'arrosage (A') de la rampe (3).
    17. Dispositif selon la revendication 16, caractérisé par le fait qu'il comprend un moyen de commande rapide du coulissement du curseur (6) le long de son support (61), pour le choix du groupe (34) d'organes d'arrosage (A') à faire pivoter, en fonction de la largeur (L) de la bande (M), et un moyen de commande lente du coulissement du curseur (6) pour le réglage fin des orientations des jets aspergés par ledit groupe (34) d'organes d'arrosage.
    18. Dispositif selon l'une des revendications 16 et 17, caractérisé par le fait que les doigts (62) du curseur sont écartés d'une distance constante (a') un peu inférieure à l'écart (a) entre les axes des corps tubulaires (5) de deux organes d'arrosage voisins, lesdits doigts (62) du curseur prenant appui l'un après l'autre sur lesdits corps tubulaires (5) lors du coulissement du curseur (6), pour déterminer une variation progressive des angles d'inclinaison (i) des axes des jets par rapport à l'axe (x'x) du cylindre (1).
    19. Dispositif selon l'une des revendications 16 à, 18, caractérisé par le fait que chaque organe d'arrosage orientable (A') comprend une buse (52) montée rotative sur le corps tubulaire (5) autour de l'axe (50) du jet (J) et un moyen (56) de rotation de la buse (52) actionné par le curseur (6) de commande de l'orientation de l'organe d'arrosage (A').
    20. Dispositif selon la revendication 19, caractérisé par le fait que le curseur (6) est muni de doigts (62) susceptibles de s'engager entre les corps tubulaires (5) d'un groupe d'organes d'arrosage par rotation du curseur (6) autour d'un axe et que le moyen de rotation de la buse (52) de chaque organe d'arrosage est constitué d'une palette (56) solidaire en rotation de la buse (52) et sur laquelle vient prendre appui le doigt correspondant (62) du curseur (6) lors de la rotation de celui-ci pour l'engagement des doigts, ledit engagement déterminant ainsi une rotation de la buse (52 autour de l'axe (50) du jet.
    21. Dispositif selon la revendication 20, caractérisé par le fait que la longueur des doigts (62) ménagés sur le curseur (6) augmente en allant de l'intérieur vers l'extérieur de façon à déterminer une augmentation progressive de l'angle d'inclinaison (k) du jet (J) en allant vers les extrémités de la zone refroidie (4) du cylindre.
    22. Dispositif de contrôle thermique selon l'une des revendications 6 à 21, caractérisé par le fait qu'il comprend des moyens supplémentaires (8) d'aspersion d'un jet de fluide, respectivement sur chaque rive (13a, 13b) de la bande (M), constitués chacun d'un organe d'aspersion (8) monté coulissant sur un support, parallèlement à l'axe (x,x) du cylindre (1) et associé à un moyen (80) de commande de déplacements de l'organe d'aspersion (8) en fonction de la largeur effective (L) de la bande (M) pour le réglage de la position de la surface d'impact correspondante par rapport à la rive (13) de la bande.
    23. Dispositif selon la revendication 22, caractérisé par le fait qu'il comprend des moyens séparés (84, 85) d'alimentation en fluide des organes supplémentaires d'aspersion (8).
    24. Dispositif selon la revendication 22, caractérisé par le fait qu'il comprend deux organes supplémentaires d'aspersion (8a, 8b) montés coulissants sur un même support (81) et des moyens (82) de commande de déplacements égaux, en sens contraires, des deux organes (8a, 8b) sur ledit support (81).
    25. Dispositif selon la revendication 22, caractérisé par le fait que chaque organe supplémentaire d'aspersion (8a, 8b) est porté par un curseur (80a, 80b) muni d'un alésage fileté dans lequel engrène une vis (81) entraínée en rotation par un moteur (82) et comprenant deux parties munies de filetages inversés déterminant des déplacements égaux et en sens contraires des deux curseurs (80a, 80b).
    EP01400041A 2000-01-10 2001-01-09 Procédé et dispositif de contrôle thermique du profil d'un cylindre dans un laminoir Expired - Lifetime EP1118395B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0000243A FR2803548B1 (fr) 2000-01-10 2000-01-10 Procede et dispositif de controle thermique du profil d'un cylindre dans un laminoir
    FR0000243 2000-01-10

    Publications (2)

    Publication Number Publication Date
    EP1118395A1 EP1118395A1 (fr) 2001-07-25
    EP1118395B1 true EP1118395B1 (fr) 2005-07-13

    Family

    ID=8845748

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01400041A Expired - Lifetime EP1118395B1 (fr) 2000-01-10 2001-01-09 Procédé et dispositif de contrôle thermique du profil d'un cylindre dans un laminoir

    Country Status (7)

    Country Link
    US (1) US6490903B2 (fr)
    EP (1) EP1118395B1 (fr)
    CN (1) CN1247334C (fr)
    AT (1) ATE299404T1 (fr)
    DE (1) DE60111875T2 (fr)
    ES (1) ES2241756T3 (fr)
    FR (1) FR2803548B1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8966951B2 (en) 2009-02-02 2015-03-03 Siemens Vai Metals Technologies Sas Spraying method and device for a rolling plant

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6857283B2 (en) * 2002-09-13 2005-02-22 Isothermal Systems Research, Inc. Semiconductor burn-in thermal management system
    DE10352546A1 (de) * 2003-09-04 2005-03-31 Sms Demag Ag Verfahren und Vorrichtung zum Aufbringen einer regelbaren Zugspannungsverteilung, insbesondere in den Kantenbereichen kaltgewalzter Metallbänder
    US20080243344A1 (en) * 2004-12-20 2008-10-02 Caterpillar Inc. Vibration management system
    US7181822B2 (en) * 2005-01-20 2007-02-27 Nucor Corporation Method and apparatus for controlling strip shape in hot rolling mills
    JP2006289420A (ja) * 2005-04-11 2006-10-26 Hitachi Ltd 圧延形状制御方法および圧延形状制御装置
    KR100668698B1 (ko) * 2005-11-08 2007-01-16 주식회사 포스코 연연속 열간 압연 설비의 압연유 공급 장치 및 그 방법
    JP4556856B2 (ja) * 2005-12-02 2010-10-06 株式会社Ihi 圧延装置
    US8166785B2 (en) * 2006-11-27 2012-05-01 Ihi Corporation Rolling mill apparatus and method of shape control of rolled strip and plate
    CN102671960B (zh) * 2011-03-09 2014-04-30 宝山钢铁股份有限公司 热连轧机轧辊在机辊型控制方法
    JP5433794B2 (ja) * 2011-05-16 2014-03-05 新日鉄住金エンジニアリング株式会社 圧延ロールの洗浄装置および洗浄方法
    CN102632086B (zh) * 2012-02-28 2014-04-30 宝山钢铁股份有限公司 一种热轧带钢侧边浪控制方法
    EP2676744A1 (fr) * 2012-06-22 2013-12-25 Siemens VAI Metals Technologies GmbH Dispositif d'arrosage d'une installation de laminage et méthode d'extraction/introduction dudit système hors/dans ladite cage de laminage
    DE102013009695A1 (de) * 2013-06-03 2014-12-04 Sms Siemag Ag Spritzbalkenverstellung für ein Mehr-Rollenwalzwerk
    EP3006125A1 (fr) * 2014-10-09 2016-04-13 Josef Fröhling GmbH & Co. KG Laminoir et procede de laminage
    JP6362751B1 (ja) * 2017-09-15 2018-07-25 株式会社松浦機械製作所 切削油の供給方法
    EP3670011B1 (fr) 2018-12-21 2022-09-28 Primetals Technologies Austria GmbH Refroidissement de la bande métallique dans une cage de laminoir
    DE102019217569A1 (de) * 2019-06-25 2020-12-31 Sms Group Gmbh Planheitsmessvorrichtung zur Messung der Planheit eines metallischen Bandes
    EP3854494B1 (fr) * 2020-01-24 2022-09-28 Primetals Technologies Germany GmbH Répartition dépendante de la fréquence des grandeurs de réglage permettant de changer la section transversale de produit laminé dans un laminoir
    CN113909316B (zh) * 2021-11-19 2024-08-27 中国重型机械研究院股份公司 一种贝状冷却液喷射系统
    CN113909315A (zh) * 2021-11-19 2022-01-11 中国重型机械研究院股份公司 一种轧机冷却液喷射方法

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SU900894A1 (ru) * 1980-06-06 1982-01-30 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов, Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Способ охлаждени прокатных валков листовых станов
    US4444495A (en) * 1981-04-28 1984-04-24 Bethlehem Steel Corp. Method and apparatus for alignment of spray nozzles in continuous casting machines
    NL8403821A (nl) * 1984-12-17 1986-07-16 Hoogovens Groep Bv Inrichting voor het koelen van een werkwals in een walstuig voor het walsen van metaalband.
    US4706480A (en) * 1985-10-11 1987-11-17 Svatos Joseph D Rolling mill cooling system
    JPS62173013A (ja) * 1986-01-25 1987-07-29 Kobe Steel Ltd 圧延機におけるク−ラントヘツダ−
    US4912955A (en) * 1988-12-05 1990-04-03 Norandal Usa Inc. Spray system for rolling mill
    US5212975A (en) * 1991-05-13 1993-05-25 International Rolling Mill Consultants, Inc. Method and apparatus for cooling rolling mill rolls and flat rolled products
    DE4134599C1 (fr) * 1991-10-18 1993-02-25 Thyssen Stahl Ag, 4100 Duisburg, De
    EP0776710B1 (fr) * 1995-11-20 2001-12-19 SMS Demag AG Dispositif pour influencer le profil d'une bande laminée
    JPH09267106A (ja) * 1996-03-29 1997-10-14 Kawasaki Steel Corp 熱間圧延機の圧延ロール冷却装置
    JP3495909B2 (ja) * 1998-03-30 2004-02-09 株式会社東芝 圧延ロールのプロフィール制御装置

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8966951B2 (en) 2009-02-02 2015-03-03 Siemens Vai Metals Technologies Sas Spraying method and device for a rolling plant

    Also Published As

    Publication number Publication date
    DE60111875D1 (de) 2005-08-18
    CN1247334C (zh) 2006-03-29
    FR2803548B1 (fr) 2002-04-19
    US20010007200A1 (en) 2001-07-12
    CN1308998A (zh) 2001-08-22
    EP1118395A1 (fr) 2001-07-25
    ES2241756T3 (es) 2005-11-01
    FR2803548A1 (fr) 2001-07-13
    DE60111875T2 (de) 2006-05-24
    US6490903B2 (en) 2002-12-10
    ATE299404T1 (de) 2005-07-15

    Similar Documents

    Publication Publication Date Title
    EP1118395B1 (fr) Procédé et dispositif de contrôle thermique du profil d'un cylindre dans un laminoir
    EP1601474B1 (fr) Procede de changement de configuration d'un laminoir et laminoir perfectionne pour la mise en oeuvre du procede
    EP1591190B1 (fr) Procédé de soudure de deux tôles métalliques
    FR2509649A1 (fr) Palette porte-ouvrages pour machine-outil
    EP1560667A1 (fr) PROCEDE POUR ELARGIR LA GAMME DE PRODUCTION D UNE INSTALLATI ON DE LAMINAGE DE PRODUITS METALLIQUES ET INSTALLATION POUR LA MISE EN ŒUVRE DU PROCEDE
    WO2015000766A1 (fr) Dispositif de déplacement d'un arrangement de découpe et de soudage de bandes métalliques
    FR2502990A1 (fr) Laminoir a plusieurs niveaux avec mecanisme de reglage de l'aplatissement du produit lamine
    EP0115735B1 (fr) Dispositif pour détecter des criques sur les brames d'acier sortant d'une coulée continue
    WO1998031489A1 (fr) Cylindre pour une installation de laminage ou de coulee continue des metaux
    EP0707902B1 (fr) Installation de laminage
    EP1552892B1 (fr) Machine de planage d'une bande metallique
    EP0569307A1 (fr) Dispositif permettant le formage d'ailettes hélicoidales sur la paroi extérieure de tubes
    CA2063237A1 (fr) Procede et dispositif d'ebavurage notamment d'une bande d'acier decoupee en brames
    EP3024602B1 (fr) Laminoir équipé d'au moins une buse de refroidissement
    FR2773508A1 (fr) Dispositif de finition de surfaces peripheriques de disques a came et de cames d'un arbre a cames
    EP1749603A1 (fr) Installation de coupe longitudinale d'une bande mince
    WO1999041026A1 (fr) Installation de laminage de produits plats
    CA2257192A1 (fr) Machine a cintrage de toles a rouleaux presseurs decales
    EP0952896B1 (fr) Machine a cintrer des tubes de faible diametre
    EP0738546B1 (fr) Laminoir à grande ouverture
    EP3743223A1 (fr) Laminoir avec dispositif de refroidissement ou lubrification
    FR2535426A1 (fr) Dispositif de deplacement avec precision d'un organe le long d'une trajectoire
    FR3078494A1 (fr) Procede de laminage avec etape de reajustement de l'inter-espace entre le cylindre d'appui lateral et le cylindre de soutien
    EP0688248A1 (fr) Support pour un dispositif de pulverisation d'un melange d'eau et d'air sous pression
    EP0176460B1 (fr) Machine pour générer des surfaces sphériques ou toriques, concaves ou convexes sur des verres optiques

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020125

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REF Corresponds to:

    Ref document number: 60111875

    Country of ref document: DE

    Date of ref document: 20050818

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051013

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051013

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051013

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2241756

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051219

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20050713

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060418

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: VAI CLECIM

    Effective date: 20060131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050713

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R409

    Ref document number: 60111875

    Country of ref document: DE

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60111875

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R074

    Ref document number: 60111875

    Country of ref document: DE

    Ref country code: DE

    Ref legal event code: R409

    Ref document number: 60111875

    Country of ref document: DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120319

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120125

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20130129

    Year of fee payment: 13

    Ref country code: ES

    Payment date: 20130228

    Year of fee payment: 13

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130801

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60111875

    Country of ref document: DE

    Effective date: 20110802

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60111875

    Country of ref document: DE

    Effective date: 20130801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140131

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20150407

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140109