EP1114967B1 - Method and device for suppressing whirls in a combustion chamber of a turbo-engine - Google Patents

Method and device for suppressing whirls in a combustion chamber of a turbo-engine Download PDF

Info

Publication number
EP1114967B1
EP1114967B1 EP01810007A EP01810007A EP1114967B1 EP 1114967 B1 EP1114967 B1 EP 1114967B1 EP 01810007 A EP01810007 A EP 01810007A EP 01810007 A EP01810007 A EP 01810007A EP 1114967 B1 EP1114967 B1 EP 1114967B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion chamber
mass flow
flow
shear layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01810007A
Other languages
German (de)
French (fr)
Other versions
EP1114967A1 (en
Inventor
Ephraim Prof. Dr. Gutmark
Christian Olivier Dr. Paschereit
Wolfgang Weisenstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1114967A1 publication Critical patent/EP1114967A1/en
Application granted granted Critical
Publication of EP1114967B1 publication Critical patent/EP1114967B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a method according to the preamble of claim 4 and to a device according to the preamble of claim 1 for the suppression flow vortexes within a combustion chamber of a flow force engine.
  • thermoacoustic oscillations which arise at the burner as fluid mechanical instability waves and lead to flow vortices. These strongly influence the entire combustion process and lead to undesirable periodic heat releases within the combustion chamber, which are associated with strong pressure fluctuations.
  • the high pressure fluctuations are associated with high vibration amplitudes, which can lead to undesirable effects, such as a high mechanical load of the combustion chamber, increased NO x emissions by inhomogeneous combustion and even to extinguish the flame within the combustion chamber.
  • Thermoacoustic oscillations are based at least in part on flow instabilities burner flow, which manifests itself in coherent flow structures, and which influence the mixing processes between air and fuel.
  • cooling air In conventional Combustion chambers is cooling air in the manner of a cooling air film over the combustion chamber walls directed.
  • the cooling air film In addition to the cooling effect, the cooling air film also has a sound-absorbing effect and contributes to the reduction of thermoacoustic vibrations.
  • the cooling air flow significantly reduced in the combustion chamber and all the air is through the Burner passed is the sound-absorbing cooling air film is reduced, whereby the sound-absorbing effect is reduced and those with the unwanted Vibrations associated problems again occur increasingly.
  • thermoacoustic vibration amplitudes involves the disadvantage that the injection of fuel at the head stage may be accompanied by an increase in NO x emission.
  • thermoacoustic vibrations have shown that such unwanted coherent structures arise in mixing operations. Of particular importance here are those between two mixing Flow forming shear layers formed within the coherent structures become. Further details can be found in the following publications: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid Mechanics, Vol. 123, 91-130; Paschereit et al. 1995, “Experimental investigation of subharmonic resonance in an axisymmetric jet ", Journal of Fluid Mechanics, Vol. 283, 365-407).
  • Document EP-A2-0 754 908 discloses a method and apparatus for suppression Flame / pressure fluctuations in a furnace. Usually, in such Firings pressure fluctuations occur due to the outer or peripheral areas the flame or the fuel / air flow rolling up ring vortices excited and amplified become. To prevent this ring vortex, it is proposed to use a flame Coat of gas to surround. This jacket has a higher flow velocity in the flame direction, as the peripheral area of the flame. This results in a boundary layer acceleration and the vortex formation can no longer occur.
  • a gas turbine plant which is a special fuel lance having.
  • the fuel lance which is located in a premix tube, comprises a cylindrical Lance body with a number of internal lines. Lead these internal lines via radial extensions for axial fuel injection and at the same time oblique injection openings at the top of the lance. This purge air is in a recirculation zone injected, which increases in size and so to improved flame stability leads.
  • the invention is based on the object, a method for the suppression of thermoacoustic vibrations and Flow vortices within a combustion chamber of a turbomachine, in particular a gas turbine plant, to create, so that unwanted flow vortex, which form as coherent pressure fluctuation structures, efficient and extinguished without much additional energy.
  • a turbomachine in particular a gas turbine plant
  • the invention is based on the recognition that the place of origin of the coherent Structures the boundary or shear layer is directly at the burner outlet. Unlike the principle of anti-sound, in which an existing sound field through Insertion of a phase-shifted sound field of the same energy extinguished
  • the invention is based on the direct influence of the shear layer itself, in which the thermoacoustic vibrations form. Due to the direct influence, in the form of a targeted injection of a mass flow, preferably a gaseous mass flow, such as air, nitrogen or natural gas, in the shear layer can, acting in the shear layer, the pressure fluctuations amplifying mechanisms are used to target the extinguish unwanted pressure fluctuations.
  • thermoacoustic vibrations are extinguished.
  • additional Energy sources as they are known from the anti-sound technology, are not required in the process according to the invention.
  • the inventive method allows a direct excitation of the shear layer at the place of their formation, i. at the burner outlet.
  • the burner has at least two hollow, in the flow direction of the Hot gases nested part body on whose center axes to each other offset, so that adjacent walls of the body part tangential Air inlet ducts for the inflow of combustion air into one of the partial bodies form predetermined interior, and wherein the burner at least one Has fuel nozzle.
  • Such types of burners also known as cone burners, have at their burner outlet on a circular trained tear-off, on the burner side immediately adjacent an outlet channel is provided through the mass flow is injected into the, at the spoiler edge forming shear layer can be.
  • the outlet channel is on the inside of the burner outlet provided directly at its trailing edge.
  • the mass flow inflow is constant or preferably pulsed into the shear layer to be subsequently to mix with the hot gases.
  • vibration damping is the pulsation frequency of the mass flow on the training behavior the undesirable one forming within the shear layer
  • the unwanted flow vortex at a pulsation frequency between 1 Hz and 5 kHz, preferably between 50 Hz and 300 Hz, effectively suppressed become.
  • thermoacoustic Vibrations characteristic signal is supplied, and in dependence of which generates an excitation signal through which in the boundary layer mass flow to be introduced is modulated. It is with known techniques possible for the training of thermoacoustic oscillations within the Boundary layer characteristic signal to capture, filter accordingly and phase-rotated and reinforces another control unit, which, in accordance with the above described closed loop works to supply.
  • Fig. 1 is a schematic device shown for targeted suppression thermoacoustic oscillations within a combustion chamber 2.
  • a cone burner 1 is shown with one in the flow direction immediately subsequent combustion chamber 2.
  • the cone burner 1 has a circular design Burner outlet 3, which in particular formed as a sharp tear-off edge is.
  • a mass flow preferably air, Nitrogen or natural gas can be applied specifically (see arrows).
  • a liquid fuel can be used.
  • a boundary or shear layer is formed 5 out, within the unwanted thermoacoustic vibrations arise.
  • a controllable Valve 6 ensures that the mass flow is both continuous and also in the shear layer 5 can be fed.
  • thermoacoustic vibrations it is possible to choose a fixed pulse rate, the in no fixed phase relation to those forming within the shear layer 5 thermoacoustic vibrations.
  • the valve 6 under a closed loop specify a pulse rate that in a certain Relationship to the training behavior of the thermoacoustic vibrations within the shear layer 5 is. So can by suitable choice of a correct phase difference between the pulsation of the mass flow and a measured Excitation signal representing the thermoacoustic oscillations within the shear layer characterized, the coherence of the developing instability waves disturbed be, whereby the pulsation amplitudes are significantly reduced can.
  • the excitation mechanism according to the invention In contrast to the acoustic stimulation using the anti-sounding technique are no high demands on the excitation mechanism according to the invention especially because of thermal conditions and functionality the damping mechanism is not significantly affected.
  • the mode of action of the method according to the invention for the suppression of Flow vortices within combustion chambers of fluid engines is also from the diagram as shown in FIG. 2.
  • To juxtapose an undamped Flow case (see the dashed line) compared to a damped Flow case (see solid line) is the diagram according to Fig. 2 serve that at a suppression of a pressure oscillation in the 100 Hz range has been recorded.
  • the excitation of the mass flow is antisymmetric to the forming within the shear layer thermoacoustic Vibrations. Nitrogen was used as the mass flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Gas Burners (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf ein Verfahren gemäss dem Oberbegriff des Anspruchs 4 sowie auf eine Vorrichtung gemäss dem Oberbegriff des Anspruchs 1 zur Unterdrückung von Strömungswirbeln innerhalb einer Brennkammer einer Strömungskraftmaschnine.The invention relates to a method according to the preamble of claim 4 and to a device according to the preamble of claim 1 for the suppression flow vortexes within a combustion chamber of a flow force engine.

Stand der TechnikState of the art

Beim Betrieb von Strömungskraftmaschinen, wie beispielsweise Gasturbinenanlagen, treten in den Brennkammern häufig unerwünschte, so genannte thermoakustische Schwingungen auf, die am Brenner als strömungsmechanische Instabilitätswellen entstehen und zu Strömungswirbeln führen. Diese beeinflussen den gesamten Verbrennungsvorgang stark und führen zu unerwünschten periodischen Wärmefreisetzungen innerhalb der Brennkammer , die mit starken Druckschwankungen verbunden sind. Mit den hohen Druckschwankungen sind hohe Schwingungsamplituden verknüpft, die zu unerwünschten Effekten, wie etwa zu einer hohen mechanischen Belastung des Brennkammergehäuses, einer erhöhten NOx-Emission durch eine inhomogene Verbrennung und sogar zu einem Erlöschen der Flamme innerhalb der Brennkammer führen können.In the operation of turbomachines, such as gas turbine plants, often occur in the combustion chambers undesirable, so-called thermoacoustic oscillations, which arise at the burner as fluid mechanical instability waves and lead to flow vortices. These strongly influence the entire combustion process and lead to undesirable periodic heat releases within the combustion chamber, which are associated with strong pressure fluctuations. The high pressure fluctuations are associated with high vibration amplitudes, which can lead to undesirable effects, such as a high mechanical load of the combustion chamber, increased NO x emissions by inhomogeneous combustion and even to extinguish the flame within the combustion chamber.

Thermoakustische Schwingungen beruhen zumindest teilweise auf Strömungsinstabilitäten der Brennerströmung, die sich in kohärenten Strömungsstrukturen äußern, und die die Mischungsvorgänge zwischen Luft und Brennstoff beeinflussen. Bei herkömmlichen Brennkammern wird Kühlluft in Art eines Kühlluftfilm über die Brennkammerwände geleitet. Neben dem Kühleffekt wirkt der Kühlluftfilm auch schalldämpfend und trägt zur Verminderung von thermoakustischen Schwingungen bei. In modernen Gasturbinenbrennkammem mit hohen Wirkungsgraden, niedrigen Emissionen und einer konstanten Temperaturverteilung am Turbineneintritt ist der Kühlluftstrom in die Brennkammer deutlich reduziert und die gesamte Luft wird durch den Brenner geleitet. Jedoch reduziert sich zugleich auch der schalldämpfende Kühlluftfilm, wodurch die schalldämpfende Wirkung herabgesetzt wird und die mit den unerwünschten Schwingungen verbundenen Probleme wieder verstärkt auftreten.Thermoacoustic oscillations are based at least in part on flow instabilities burner flow, which manifests itself in coherent flow structures, and which influence the mixing processes between air and fuel. In conventional Combustion chambers is cooling air in the manner of a cooling air film over the combustion chamber walls directed. In addition to the cooling effect, the cooling air film also has a sound-absorbing effect and contributes to the reduction of thermoacoustic vibrations. In modern gas turbine combustors with high efficiencies, low emissions and a constant temperature distribution at the turbine inlet is the cooling air flow significantly reduced in the combustion chamber and all the air is through the Burner passed. However, at the same time the sound-absorbing cooling air film is reduced, whereby the sound-absorbing effect is reduced and those with the unwanted Vibrations associated problems again occur increasingly.

Eine weitere Möglichkeit der Schalldämpfung besteht im Ankoppeln so genannter Helmholtz-Dämpfern im Bereich der Brennkammer oder der Kühlluftzufuhr. Jedoch ist bei modernen Brennkammerkonstruktionen das Vorsehen derartiger Helmholtz-Dämpfer aufgrund enger Platzverhältnisse mit großen Schwierigkeiten verbunden.Another possibility of soundproofing is the coupling of so-called Helmholtz dampers in the area of the combustion chamber or the cooling air supply. however is the provision of such Helmholtz dampers in modern combustion chamber designs due to tight space conditions associated with great difficulties.

Daneben ist es bekannt dass den im Brenner auftretenden strömungsmechanischen Instabilitäten und den damit verbundenen Druckschwankungen dadurch entgegengetreten werden kann, indem die Flamme durch zusätzliche Eindüsung von Brennstoff stabilisiert werden kann. Eine derartige Eindüsung von zusätzlichem Brennstoff erfolgt über die Kopfstufe des Brenners, in der eine auf der Brennerachse liegende Düse für die Pilot-Brennstoffgaszuführung vorgesehen ist, sie führt zu einer Anfettung der zentralen Flammstabilisierungszone. Diese Methode der Verminderung von thermoakustischen Schwingungsamplituden ist jedoch mit dem Nachteil verbunden, dass die Eindüsung von Brennstoff an der Kopfstufe mit einer Erhöhung der NOx-Emission einhergehen kann.In addition, it is known that the fluid mechanical instabilities occurring in the burner and the associated pressure fluctuations can be counteracted by the flame being stabilized by additional injection of fuel. Such injection of additional fuel takes place via the head stage of the burner, in which a nozzle for the pilot fuel gas feed located on the burner axis is provided, which leads to an enrichment of the central flame stabilization zone. However, this method of reducing thermoacoustic vibration amplitudes involves the disadvantage that the injection of fuel at the head stage may be accompanied by an increase in NO x emission.

Nähere Untersuchungen zur Ausbildung thermoakustischer Schwingungen haben gezeigt, dass derartig unerwünschte kohärente Strukturen bei Mischvorgängen entstehen. Von besonderer Bedeutung sind hierbei die sich zwischen zwei mischenden Strömungen ausbildenden Scherschichten, innerhalb der kohärente Strukturen gebildet werden. Nähere Ausführungen hierzu sind folgenden Druckschriften zu entnehmen: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid mechanics, Vol. 123, 91-130; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet", Journal of Fluid Mechanics, Vol. 283, 365-407).Further studies on the formation of thermoacoustic vibrations have have shown that such unwanted coherent structures arise in mixing operations. Of particular importance here are those between two mixing Flow forming shear layers formed within the coherent structures become. Further details can be found in the following publications: Oster & Wygnanski 1982, "The forced mixing layer between parallel streams", Journal of Fluid Mechanics, Vol. 123, 91-130; Paschereit et al. 1995, "Experimental investigation of subharmonic resonance in an axisymmetric jet ", Journal of Fluid Mechanics, Vol. 283, 365-407).

Wie aus den vorstehenden Artikeln hervorgeht, ist es möglich, die sich innerhalb der Scherschichten ausbildenden kohärenten Strukturen durch gezieltes Einbringen einer akustischen Anregung derart zu beeinflussen, dass Ihre Entstehung verhindert wird. Eine weitere Methode ist das Einbringen eines akustischen Gegenschallfeldes, so dass das vorhandene unerwünschte Schallfeld durch ein gezielt eingebrachtes, phasenverschobenes Schallfeld regelrecht ausgelöscht wird. Diese Antischall-Technik, benötigt jedoch verhältnismäßig viel Energie, die entweder extern dem Brennersystem zur Verfügung gestellt werden muss oder die dem gesamten System an einer anderen Stelle abzuzweigen ist. Dies führt jedoch zu einer, wenn auch geringen, aber dennoch vorhandenen Wirkungsgradeinbuße.As can be seen from the above articles, it is possible that within the Shear layers forming coherent structures by targeted introduction of a To influence acoustic stimulation in such a way that prevents their formation becomes. Another method is the introduction of an acoustic counter-field, so that the existing unwanted sound field by a deliberately introduced, phase-shifted sound field is virtually extinguished. This anti-noise technique, but requires a relatively large amount of energy, the either externally made available to the burner system or the to divert the whole system to another place. However, this leads to a, although low, but still existing loss of efficiency.

Die Schrift EP-A2-0 754 908 offenbart ein Verfahren und eine Vorrichtung zur Unterdrückung von Flammen-/Druckschwankungen bei einer Feuerung. Üblicherweise können bei solchen Feuerungen Druckschwankungen auftreten, die durch sich an den Aussen- bzw. Randbereichen der Flamme oder der Brennstoff/Luftströmung aufrollende Ringwirbel angeregt und verstärkt werden. Um diese Ringwirbel zu unterbinden, wird vorgeschlagen, die Flamme mit einem Mantel aus Gas zu umgeben. Dieser Mantel weist eine höhere Strömungsgeschwindigkeit in Flammenrichtung auf, als der Randbereich der Flamme. Hierdurch erfolgt eine Grenzschichtbeschleunigung und die Wirbelbildung kann nicht mehr auftreten.Document EP-A2-0 754 908 discloses a method and apparatus for suppression Flame / pressure fluctuations in a furnace. Usually, in such Firings pressure fluctuations occur due to the outer or peripheral areas the flame or the fuel / air flow rolling up ring vortices excited and amplified become. To prevent this ring vortex, it is proposed to use a flame Coat of gas to surround. This jacket has a higher flow velocity in the flame direction, as the peripheral area of the flame. This results in a boundary layer acceleration and the vortex formation can no longer occur.

Aus US-A-5,408,830 ist eine Gasturbinenanlage bekannt, die eine spezielle Brennstofflanze aufweist. Die Brennstofflanze, die sich in einem Vormischrohr befindet, umfasst einen zylindrischen Lanzenkörper mit einer Anzahl von internen Leitungen. Diesen intemen Leitungen führen über radiale Erweiterungen zur einer axialen Brennstoffeindüsung und gleichzeitig zu schrägen Eindüsungsöffnungen an der Spitze der Lanze. Diese Spülluft wird in eine Rezirkulationszone eingedüst, die sich vergrössert und so zu einer verbesserten Flammenstabilität führt.From US-A-5,408,830 a gas turbine plant is known, which is a special fuel lance having. The fuel lance, which is located in a premix tube, comprises a cylindrical Lance body with a number of internal lines. Lead these internal lines via radial extensions for axial fuel injection and at the same time oblique injection openings at the top of the lance. This purge air is in a recirculation zone injected, which increases in size and so to improved flame stability leads.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zur Unterdrückung von thermoakustischen Schwingungen und Strömungswirbeln innerhalb einer Brennkammer einer Strömungskraftmaschine, insbesondere einer Gasturbinenanlage, zu schaffen, so dass unerwünschte Strömungswirbel, die sich als kohärente Druckschwankungsstrukturen ausbilden, effizient und ohne großen zusätzlichen Energieaufwand ausgelöscht werden. Die hierzu notwendigen Maßnahmen sollen einen geringen konstruktiven Aufwand verursachen und kostengünstig in ihrer Realisierung sein.The invention is based on the object, a method for the suppression of thermoacoustic vibrations and Flow vortices within a combustion chamber of a turbomachine, in particular a gas turbine plant, to create, so that unwanted flow vortex, which form as coherent pressure fluctuation structures, efficient and extinguished without much additional energy. The This necessary measures should cause a small design effort and be cost effective in their realization.

Die Lösung der der Erfindung zu Grunde liegenden Aufgabe ist in den Ansprüchen 1 und 14 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind den Unteransprüchen zu entnehmen. The solution of the problem underlying the invention is in the claims 1 and 14 indicated. The concept of the invention advantageously further-forming features are the dependent claims refer to.

Erfindungsgemäß sieht das Verfahren gemäß dem Oberbegriff des Anspruchs 1 vor, den Massenstrom unmittelbar am Brenneraustritt an einer Abrisskante des Brenners in eine Scherschnicht einer bringen.According to the invention, the method according to the preamble of claim 1, the mass flow directly at the burner outlet at a spoiler lip of the burner in a Scherschnicht one bring.

Der Erfindung liegt die Erkenntnis zu Grunde, dass der Ort der Entstehung der kohärenten Strukturen die Grenz- bzw. Scherschicht unmittelbar am Brenneraustritt ist. Anders als das Prinzip des Antischalls, bei dem ein vorhandenes Schallfeld durch Einbringen eines phasenverschobenen Schallfeldes gleicher Energie ausgelöscht wird, basiert die Erfindung auf der unmittelbaren Beeinflussung der Scherschicht selbst, in der sich die thermoakustischen Schwingungen ausbilden. Durch die direkte Einflussnahme, in Form einer gezielten Injektion eines Massenstromes, vorzugsweise eines gasförmigen Massenstromes, wie Luft, Stickstoff oder Erdgas, in die Scherschicht können die, in der Scherschicht wirkenden, die Druckschwankungen verstärkenden Mechanismen genutzt werden, um gezielt die unerwünschten Druckschwankungen auszulöschen. So werden bereits kleinste, von außen in die Scherschicht eingrebrachte Störungen, in Form einer gezielten Injektion eines Massenstroms, verstärkt, wodurch die sich innerhalb der Scherschicht ausbildenden thermoakustischen Schwingungen ausgelöscht werden. Auf diese Weise ist man in der Lage, mit kleinen, extern induzierten Störsignalen die thermoakustischen Schwingungen gänzlich zu unterdrücken. Zusätzliche Energiequellen, wie sie von der Antischalltechnik her bekannt sind, sind beim erfindungsgemäßen Verfahren nicht erforderlich.The invention is based on the recognition that the place of origin of the coherent Structures the boundary or shear layer is directly at the burner outlet. Unlike the principle of anti-sound, in which an existing sound field through Insertion of a phase-shifted sound field of the same energy extinguished The invention is based on the direct influence of the shear layer itself, in which the thermoacoustic vibrations form. Due to the direct influence, in the form of a targeted injection of a mass flow, preferably a gaseous mass flow, such as air, nitrogen or natural gas, in the shear layer can, acting in the shear layer, the pressure fluctuations amplifying mechanisms are used to target the extinguish unwanted pressure fluctuations. Thus even the smallest interferences introduced from outside into the shear layer become, in the form of a targeted injection a mass flow, amplified, causing the inside of the shear layer forming thermoacoustic vibrations are extinguished. In this way one is able to deal with small, externally induced Interference signals to completely suppress the thermoacoustic vibrations. additional Energy sources, as they are known from the anti-sound technology, are not required in the process according to the invention.

Auf diese weise erlaubt das erfindungsgemäße Verfahren eine direkte Anregung der Scherschicht am Ort ihrer Entstehung, d.h. am Brenneraustritt.In this way, the inventive method allows a direct excitation of the shear layer at the place of their formation, i. at the burner outlet.

Typischerweise weist der Brenner mindestens zwei hohle, in Strömungsrichtung der Heißgase ineinander geschachtelte Teilkörper auf, deren Mittelachsen zueinander versetzt verlaufen, sodass benachbarte Wandungen der Teilkörper tangentiale Lufteintrittskanäle für die Einströmung von Verbrennungsluft in einen von den Teilkörpern vorgegebenen Innenraum bilden, und wobei der Brenner zumindest eine Brennstoffdüse aufweist. Derartige, auch als Kegelbrenner bezeichnete Brennertypen, weisen an ihrem Brenneraustritt eine kreisrund ausgebildete Abrisskante auf, an der Brennerseitig unmittelbar angrenzend ein Austrittskanal vorgesehen ist, durch den der Massenstrom in die, sich an der Abrisskante ausbildende Scherschicht injiziert werden kann. Vorzugsweise ist der Austrittskanal an der Innenseite des Brenneraustritts unmittelbar an seiner Abrisskante vorgesehen.Typically, the burner has at least two hollow, in the flow direction of the Hot gases nested part body on whose center axes to each other offset, so that adjacent walls of the body part tangential Air inlet ducts for the inflow of combustion air into one of the partial bodies form predetermined interior, and wherein the burner at least one Has fuel nozzle. Such types of burners, also known as cone burners, have at their burner outlet on a circular trained tear-off, on the burner side immediately adjacent an outlet channel is provided through the mass flow is injected into the, at the spoiler edge forming shear layer can be. Preferably, the outlet channel is on the inside of the burner outlet provided directly at its trailing edge.

Neben der Verwendung eines gasförmigen Massenstromes, wie vorstehend aufgezeigt, ist es auch möglich, einen flüssigen Massenstrom den Heißgasen beizumischen, beispielsweise in Form flüssigen Brennstoffs.In addition to the use of a gaseous mass flow, as indicated above, it is also possible to mix a liquid mass flow with the hot gases, for example in the form of liquid fuel.

Um gezielt die sich innerhalb der Scherschicht am Brenneraustritt ausbildenden thermoakustischen Schwingungen zu unterdrücken, ist der Massenstromzufluss konstant oder vorzugsweise gepulst in die Scherschicht einzubringen, um sich nachfolgend mit den Heißgasen zu vermischen. Für optimale Ergebnisse in der Schwingungsdämpfung ist die Pulsationsfrequenz des Massenstromes auf das Ausbildungsverhalten der sich innerhalb der Scherschicht ausbildenden, unerwünschten Strömungswirbel bzw. thermoakustischen Schwingungen abzustimmen. Erfahrungswerte zeigen, dass die unerwünschten Strömungswirbel bei einer Pulsationsfrequenz zwischen 1 Hz und 5 kHz, vorzugsweise zwischen 50 Hz und 300 Hz, effektiv unterdrückt werden.To specifically form within the shear layer at Brenner exit suppressing thermoacoustic oscillations, the mass flow inflow is constant or preferably pulsed into the shear layer to be subsequently to mix with the hot gases. For optimum results in vibration damping is the pulsation frequency of the mass flow on the training behavior the undesirable one forming within the shear layer To tune flow vortex or thermoacoustic oscillations. experience show that the unwanted flow vortex at a pulsation frequency between 1 Hz and 5 kHz, preferably between 50 Hz and 300 Hz, effectively suppressed become.

Von besonderem Vorteil ist es, wenn die Massenstromeinspeisung als Antwortsignal auf die sich innerhalb der Scherschicht ausbildenden thermoakustischen Schwingungen erfolgt. Dies setzt voraus, dass das Ausbildungsverhalten der Strömungswirbel innerhalb der Scherschicht erfasst wird und dass in Abhängigkeit davon ein entsprechendes Antwort- bzw. Anregungssignal generiert wird. Dies erfolgt vorzugsweise innerhalb eines geschlossenen Regelkreises, dem ein für die Ausbildung thermoakustischer Schwingungen charakteristisches Signal zugeführt wird, und der in Abhängigkeit davon ein Anregungssignal generiert, durch das der in die Grenzschicht einzubringende Massenstrom moduliert wird. Mit an sich bekannten Techniken ist es möglich, das für die Ausbildung von thermoakustischen Schwingungen innerhalb der Grenzschicht charakteristische Signal zu erfassen, entsprechend zu filtern und phasengedreht und verstärkt einer weiteren Regeleinheit, die nach Maßgabe des vorstehend geschilderten geschlossenen Regelkreises arbeitet, zuzuführen.It is particularly advantageous if the mass current feed in as a response signal to the forming within the shear layer thermoacoustic vibrations he follows. This assumes that the training behavior of the flow vortex is detected within the shear layer and that depending on a corresponding Response or excitation signal is generated. This is preferably done within a closed loop, the one for the formation of thermoacoustic Vibrations characteristic signal is supplied, and in dependence of which generates an excitation signal through which in the boundary layer mass flow to be introduced is modulated. It is with known techniques possible for the training of thermoacoustic oscillations within the Boundary layer characteristic signal to capture, filter accordingly and phase-rotated and reinforces another control unit, which, in accordance with the above described closed loop works to supply.

Demgegenüber kann aus Gründen geringen Aufwandes das die Massenstromeinspeisung bestimmende Anregungssignal auch von einer Steuereinheit geliefert werden, das in keiner bestimmten Phasenbeziehung zu den sich innerhalb der Scherschicht ausbildenden thermoakustischen Schwingungen steht. Dennoch kann auf diese Weise eine höchst effiziente Schwingungsunterdrückung erzielt werden.In contrast, for reasons of little effort that the mass flow feed determining excitation signal are also supplied by a control unit, that in no particular phase relationship to those within the shear layer forming thermoacoustic vibrations. Still, you can This way a highly efficient vibration suppression can be achieved.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung exemplarisch. Es zeigen:

Fig. 1
schematische Darstellung der erfindungsgemäß ausgebildeten Anregungsvorrichtung, sowie
Fig. 2
Diagrammdarstellung zur Unterdrückungseffizienz mit Hilfe eines geschlossenen Regelkreises.
The invention will be exemplified below without limiting the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1
schematic representation of the inventively designed excitation device, as well
Fig. 2
Diagram depiction of the suppression efficiency by means of a closed loop.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

In Fig. 1 ist eine schematisierte Vorrichtung dargestellt zur gezielten Unterdrückung thermoakustischer Schwingungen innerhalb einer Brennkammer 2. Stark schematisiert ist ein Kegelbrenner 1 dargestellt, mit einer in Strömungsrichtung unmittelbar anschließenden Brennkammer 2. Der Kegelbrenner 1 weist einen kreisförmig ausgebildeten Brenneraustritt 3 auf, der insbesondere als scharfe Abrisskante ausgebildet ist. An der Innenseite des Brenneraustritts 2 mündet, die Abrisskante zirkular umlaufend, ein Austrittskanal 4, durch den ein Massenstrom, vorzugsweise Luft, Stickstoff oder Erdgas gezielt ausgebracht werden kann (siehe Pfeile). Auch ein flüssiger Brennstoff kann verwendet werden. Unmittelbar in Strömungsrichtung am Brenneraustritt 3 anschließend, bildet sich eine Grenz- bzw. Scherschicht 5 aus, innerhalb der die unerwünschten thermoakustischen Schwingungen entstehen. Um diese effizient zu unterdrücken, erfolgt durch den Austrittskanal 4 eine Eindüsung eines Massenstroms in die Scherschicht 5, innerhalb der Strömungswirbel verstärkende Mechanismen wirken. Infolge dessen verstärken sich auch die durch den Massenstrom in die Scherschichts induzierten Störungen entsprechend. Ein ansteuerbares Ventil 6 sorgt dafür, dass der Massenstrom sowohl kontinuierlich als auch in die Scherschicht 5 eingespeist werden kann.In Fig. 1 is a schematic device shown for targeted suppression thermoacoustic oscillations within a combustion chamber 2. Highly schematic a cone burner 1 is shown with one in the flow direction immediately subsequent combustion chamber 2. The cone burner 1 has a circular design Burner outlet 3, which in particular formed as a sharp tear-off edge is. On the inside of the burner outlet 2 opens, the trailing edge circularly circulating, an outlet channel 4, through which a mass flow, preferably air, Nitrogen or natural gas can be applied specifically (see arrows). Also, a liquid fuel can be used. Immediately in the flow direction Subsequently, at the burner outlet 3, a boundary or shear layer is formed 5 out, within the unwanted thermoacoustic vibrations arise. In order to suppress this efficiently, takes place through the outlet channel 4 a Injection of a mass flow into the shear layer 5, within the flow vortex reinforcing mechanisms act. As a result, the mass flow also increases in the shear layer induced disorders accordingly. A controllable Valve 6 ensures that the mass flow is both continuous and also in the shear layer 5 can be fed.

Grundsätzlich ist es möglich, eine fest vorgegebene Pulsfrequenz zu wählen, die in keinem festen Phasenbezug zu den sich innerhalb der Scherschicht 5 ausbildenden thermoakustischen Schwingungen steht. Jedoch kann das Ventil 6 im Rahmen eines geschlossenen Regelkreises eine Pulsfrequenz vorgeben, die in einem bestimmten Verhältnis zum Ausbildungsverhalten der thermoakustischen Schwingungen innerhalb der Scherschicht 5 steht. So kann durch geeignete Wahl einer korrekten Phasendifferenz zwischen der Pulsation des Massenstromes sowie eines gemessenen Anregungssignals, das die thermoakustischen Schwingungen innerhalb der Scherschicht charakterisiert, die Kohärenz der sich entwickelnden Instabilitätswellen gestört werden, wodurch die Pulsationsamplituden entscheidend verringert werden können. Im Gegensatz zur akustischen Anregung unter Verwendung der Antischalltechnik sind an dem erfindungsgemäßen Anregungsmechanismus keine hohen Anforderungen zu stellen, zumal auch thermische Rahmenbedingungen die Funktionalität des Dämpfungsmechanismus nicht wesentlich beeinträchtigt.Basically, it is possible to choose a fixed pulse rate, the in no fixed phase relation to those forming within the shear layer 5 thermoacoustic vibrations. However, the valve 6 under a closed loop specify a pulse rate that in a certain Relationship to the training behavior of the thermoacoustic vibrations within the shear layer 5 is. So can by suitable choice of a correct phase difference between the pulsation of the mass flow and a measured Excitation signal representing the thermoacoustic oscillations within the shear layer characterized, the coherence of the developing instability waves disturbed be, whereby the pulsation amplitudes are significantly reduced can. In contrast to the acoustic stimulation using the anti-sounding technique are no high demands on the excitation mechanism according to the invention especially because of thermal conditions and functionality the damping mechanism is not significantly affected.

Die Wirkungsweise des erfindungsgemäßen Verfahrens zur Unterdrückung von Strömungswirbeln innerhalb von Brennkammern von Strömungskraftmaschinen ist auch aus dem Diagramm gemäß Fig. 2 zu entnehmen. Zur Gegenüberstellung eines nichtgedämpften Strömungsfalls (siehe hierzu die gestrichelte Linie) gegenüber eines gedämpften Strömungsfalles (siehe hierzu durchgezogenen Linienzug) soll das Diagramm gemäß Fig. 2 dienen, das bei einer Unterdrückung einer Druckschwingung im 100 Hz-Bereich aufgenommen worden ist. Die Anregung des Massenstromes erfolgt antisymmetrisch zu den sich innerhalb der Scherschicht ausbildenden thermoakustischen Schwingungen. Als Massenstrom wurde Stickstoff verwandt. The mode of action of the method according to the invention for the suppression of Flow vortices within combustion chambers of fluid engines is also from the diagram as shown in FIG. 2. To juxtapose an undamped Flow case (see the dashed line) compared to a damped Flow case (see solid line) is the diagram according to Fig. 2 serve that at a suppression of a pressure oscillation in the 100 Hz range has been recorded. The excitation of the mass flow is antisymmetric to the forming within the shear layer thermoacoustic Vibrations. Nitrogen was used as the mass flow.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Brennerburner
22
Brennkammercombustion chamber
33
Brenneraustrittburner outlet
44
Austrittskanaloutlet channel
55
Scherschichtshear layer
66
VentilValve

Claims (19)

  1. Method of suppressing thermoacoustic vibrations and flow eddies within a combustion chamber (2) of a turbomachine, wherein
    a fuel/air mixture is provided in a burner (1) and is introduced into the combustion chamber (2) and
    the fuel/air mixture inside the combustion chamber (2) is caused to ignite and hot gases are formed,
    the combustion chamber (2) being supplied with an additional mass flow,
    characterized in that
    the mass flow is introduced directly at the burner outlet (3) into a shear layer (5) forming at a separation edge of the burner (1).
  2. Method according to Claim 1, characterized in that the fuel/air mixture is generated in a burner (1), which consists of at least two hollow partial bodies nested one within the other in the flow direction of the fuel/air mixture, the centre lines of which partial bodies are offset relative to one another in such a way that adjacent walls of the partial bodies form tangential air inlet ducts for the flow of combustion air into an internal space specified by the partial bodies, the burner (1) having at least one fuel nozzle.
  3. Method according to Claim 1 or 2, characterized in that the mass flow is introduced into the shear layer(s) on the inside of the burner outlet (3).
  4. Method according to one of Claims 1 to 3, characterized in that a gaseous mass flow of air, nitrogen or natural gas is introduced into the shear layer (s).
  5. Method according to one of Claims 1 to 3, characterized in that a liquid fuel is introduced as the mass flow into the shear layer (5).
  6. Method according to Claims 1 to 5, characterized in that the mass flow is intoduced continuously into the shear layer(s).
  7. Method according to one of Claims 1 to 5, characterized in that the mass flow is intoduced in pulse fashion into the shear layer(s).
  8. Method according to Claim 7, characterized in that the pulsed mixing of the mass flow takes place by means of a control unit (6).
  9. Method according to Claim 8, characterized in that the control unit (6) is operated with an open-chain or a closed-loop control circuit.
  10. Method according to one of Claims 7 to 9, characterized in that the mass flow is introduced into the shear layer(s) with a pulsation frequency between 1 Hz and 5 kHz, preferably with a frequency between 50 Hz and 300 Hz.
  11. Method according to Claim 10, characterized in that an open-chain control circuit generates an excitation signal which has no specified phase relationship to a measured signal which characterizes the thermoacoustic vibrations and flow eddies occurring within the combustion chamber (2).
  12. Method according to Claim 10, characterized in that a signal is supplied to a closed-loop control circuit which characterizes the thermoacoustic vibrations and flow eddies occurring in the combustion chamber (2), and which is used as the excitation signal for the pulsed mass flow.
  13. Method according to Claim 12, characterized in that the signal supplied to the closed-loop control circuit is measured, filtered, phase-shifted and amplified.
  14. Appliance for suppressing thermoacoustic vibrations and flow eddies within a combustion chamber (2) of a turbomachine, which comprises
    a burner (1),
    a combustion chamber (2) arranged following the burner (1) and
    at least one outlet duct (4) for introducing an additional mass flow, which outlet duct (4) discharges into the combustion chamber (2),
    characterized in that
    the at least one outlet duct (4) discharges into the combustion chamber (2) at the burner outlet (3) at a separation edge of the burner (1).
  15. Appliance according to Claim 14, characterized in that the at least one outlet duct (4) discharges into the combustion chamber (2) on the inner side of the burner outlet (3).
  16. Appliance according to Claim 14 or 15, characterized in that the burner (1) is a conical burner whose burner outlet (3) has a substantially circular contour along which, at least in part, the outlet duct (4) discharges.
  17. Appliance according to one of Claims 14 to 16, characterized in that a control unit, by means of which the mass flow can be introduced into the combustion chamber (2) in pulses, is provided in the feed region of the outlet duct (4).
  18. Appliance according to Claim 17, characterized in that the control unit is a valve (6).
  19. Appliance according to one of Claims 14 to 18, characterized in that the turbomachine is a gas turbine installation.
EP01810007A 2000-01-07 2001-01-04 Method and device for suppressing whirls in a combustion chamber of a turbo-engine Expired - Lifetime EP1114967B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10000415A DE10000415A1 (en) 2000-01-07 2000-01-07 Method and device for suppressing flow vortices within a fluid power machine
DE10000415 2000-01-07

Publications (2)

Publication Number Publication Date
EP1114967A1 EP1114967A1 (en) 2001-07-11
EP1114967B1 true EP1114967B1 (en) 2005-11-16

Family

ID=7626921

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810007A Expired - Lifetime EP1114967B1 (en) 2000-01-07 2001-01-04 Method and device for suppressing whirls in a combustion chamber of a turbo-engine

Country Status (4)

Country Link
US (1) US6698209B1 (en)
EP (1) EP1114967B1 (en)
JP (1) JP4898004B2 (en)
DE (2) DE10000415A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759424B2 (en) * 2008-10-29 2017-09-12 United Technologies Corporation Systems and methods involving reduced thermo-acoustic coupling of gas turbine engine augmentors
US10036266B2 (en) 2012-01-17 2018-07-31 United Technologies Corporation Method and apparatus for turbo-machine noise suppression
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016866A (en) * 1983-07-06 1985-01-28 品川白煉瓦株式会社 Graphite-containing refractories
GB8329218D0 (en) * 1983-11-02 1983-12-07 Ffowcs Williams J E Reheat combustion system for gas turbine engine
US4770626A (en) * 1986-03-06 1988-09-13 Sonotech, Inc. Tunable pulse combustor
JPS62294815A (en) * 1986-06-13 1987-12-22 Toshiba Corp Gas turbine combustor
JPH0772616B2 (en) * 1989-05-24 1995-08-02 株式会社日立製作所 Combustor and operating method thereof
CH680084A5 (en) * 1989-06-06 1992-06-15 Asea Brown Boveri
CH680467A5 (en) * 1989-12-22 1992-08-31 Asea Brown Boveri
JPH04203710A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Combustor of gas turbine
JP3197103B2 (en) * 1993-03-08 2001-08-13 三菱重工業株式会社 Premixed air combustion method
JP3435833B2 (en) * 1993-09-17 2003-08-11 株式会社日立製作所 Combustor
DE4339094A1 (en) * 1993-11-16 1995-05-18 Abb Management Ag Damping of thermal-acoustic vibrations resulting from combustion of fuel
US5408830A (en) * 1994-02-10 1995-04-25 General Electric Company Multi-stage fuel nozzle for reducing combustion instabilities in low NOX gas turbines
JPH08278028A (en) * 1995-04-06 1996-10-22 Hitachi Ltd Gas turbine combustor
ATE170968T1 (en) * 1995-07-20 1998-09-15 Dvgw Ev METHOD AND DEVICE FOR SUPPRESSING FLAME/PRESSURE VIBRATIONS DURING A FIRING
DE19542918A1 (en) * 1995-11-17 1997-05-22 Asea Brown Boveri Device for damping thermoacoustic pressure vibrations
EP0789193B1 (en) * 1996-02-07 2002-04-10 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Method and apparatus for suppressing flame and pressure vibrations in a furnace
JPH09236261A (en) * 1996-02-28 1997-09-09 Hitachi Ltd Gas turbine combustor
DE19636093B4 (en) * 1996-09-05 2004-07-29 Siemens Ag Method and device for acoustic modulation of a flame generated by a hybrid burner
DE19704540C1 (en) * 1997-02-06 1998-07-23 Siemens Ag Method for actively damping a combustion oscillation and combustion device
JPH10300088A (en) * 1997-04-23 1998-11-13 Hitachi Ltd Flame holding structure of combustor
EP0931979A1 (en) * 1998-01-23 1999-07-28 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Method and apparatus for supressing flame and pressure fluctuations in a furnace
EP0987495B1 (en) * 1998-09-16 2003-10-29 ALSTOM (Switzerland) Ltd Method for minimizing thermo-acoustic vibrations in gas turbine combustion chambers
EP0987491B1 (en) * 1998-09-16 2005-07-20 ALSTOM Technology Ltd Method for preventing flow instabilities in a burner
DE59811961D1 (en) * 1998-11-09 2004-10-21 Alstom Technology Ltd Baden burner
DE19855034A1 (en) * 1998-11-28 2000-05-31 Abb Patent Gmbh Method for charging burner for gas turbines with pilot gas involves supplying pilot gas at end of burner cone in two different flow directions through pilot gas pipes set outside of burner wall

Also Published As

Publication number Publication date
EP1114967A1 (en) 2001-07-11
US6698209B1 (en) 2004-03-02
DE50108042D1 (en) 2005-12-22
DE10000415A1 (en) 2001-09-06
JP2001248833A (en) 2001-09-14
JP4898004B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
EP1336800B1 (en) Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
EP1004823B1 (en) Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner
DE10040869A1 (en) Method and device for suppressing flow vortices within a fluid power machine
WO1999037951A1 (en) Device for suppressing flame/pressure oscillations in a furnace, especially of a gas turbine
DE102013108725A1 (en) System and method for reducing combustion dynamics
DE10325691A1 (en) Reheat combustion system for a gas turbine
DE102013108985A1 (en) System for reducing combustion dynamics in gas turbine utilized for e.g. industrial operations, has fuel injection device extending through pipes, where fourth axial spacing in burner is different from fourth axial spacing in another burner
EP0925472B1 (en) Method for the suppression of combustion oscillations and device for combustion of fuel with air
EP0754908B1 (en) Method and apparatus for suspressing flame and pressure vibrations in a furnace
DE4339094A1 (en) Damping of thermal-acoustic vibrations resulting from combustion of fuel
EP1279898A2 (en) Premix burner with high flame stability
EP0987495B1 (en) Method for minimizing thermo-acoustic vibrations in gas turbine combustion chambers
DE19948674B4 (en) Combustion device, in particular for the drive of gas turbines
EP0971172B1 (en) Gas turbine combustion chamber with silencing wall structure
EP0974788B1 (en) Device for directed noise attenuation in a turbomachine
WO1999006767A1 (en) Burner
DE4336096A1 (en) Device for redn. of vibrations in combustion chamber for gas turbine systems - has equal number of burners in flow direction of gases displaced by specific distance which is determined by formula
EP1114967B1 (en) Method and device for suppressing whirls in a combustion chamber of a turbo-engine
DE102007025051A1 (en) Cabin gas burner
EP1137899B1 (en) Combustion device and method for burning a fuel
EP1182399A2 (en) Process for reducing the thermoacoustic oscillations in a turbo-engine using a combustion system
EP1429004B1 (en) Method and device for affecting thermoacoustic oscillations in combustion systems
DE102004009226A1 (en) Burn control for gas turbine engine has a lean mixture input burn chamber linked to the main burn chamber via a double walled porous element
EP0789193B1 (en) Method and apparatus for suppressing flame and pressure vibrations in a furnace
DE102005059184B3 (en) Apparatus and method for damping thermoacoustic resonances in combustion chambers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17P Request for examination filed

Effective date: 20011214

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17Q First examination report despatched

Effective date: 20030310

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR SUPPRESSING WHIRLS IN A COMBUSTION CHAMBER OF A TURBO-ENGINE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108042

Country of ref document: DE

Date of ref document: 20051222

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50108042

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50108042

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170119

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108042

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180104