EP1112614A1 - Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentswelligkeit - Google Patents

Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentswelligkeit

Info

Publication number
EP1112614A1
EP1112614A1 EP00954521A EP00954521A EP1112614A1 EP 1112614 A1 EP1112614 A1 EP 1112614A1 EP 00954521 A EP00954521 A EP 00954521A EP 00954521 A EP00954521 A EP 00954521A EP 1112614 A1 EP1112614 A1 EP 1112614A1
Authority
EP
European Patent Office
Prior art keywords
motor
signal
ref
control signal
drive arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00954521A
Other languages
English (en)
French (fr)
Inventor
Reinhold Elferich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP1112614A1 publication Critical patent/EP1112614A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Definitions

  • the invention relates to an electrical drive arrangement with a direct current motor, in particular with a permanent magnet excited air coil motor, with a control circuit with an electronic commutator.
  • Phase current shaping is a new development in the field of electronic commutation of motors for hard disk drives.
  • the phase current is modulated in the three individual phases with the purpose of achieving a certain - for example approximately sinusoidal - course of the phase currents.
  • the motor voltage is pulse-width modulated (PWM), otherwise the switching losses would be very high.
  • PWM duty cycle serves as a manipulated variable. Because of the difficult zero crossing detection of the induced voltage, this method generally requires a PLL-supported commutation control.
  • phase current shaping is not readily transferable to air coil motors (for example with a foil winding). Compared to the iron anchor types, these have considerably smaller electrical time constants (about a tenth) and require a correspondingly higher clock frequency of the PWM, which in turn can only be achieved with increased effort.
  • Another method for reducing the torque ripple solely by modifying the current in the intermediate circuit and while maintaining the conventional I20 ° block commutation, preferably by sensorless commutation (EMF commutation), is specified in EP 0773624.
  • EMF commutation sensorless commutation
  • the signal for this is obtained from the discharge process of an RC element.
  • the torque ripple can only be reduced to a certain extent in this way, since it is important to keep the product of current and flow chain change constant at all times. This requires constant adjustment of the current.
  • This method is not very suitable for motors with a very small electrical time constant.
  • a control signal is derived from an induced motor voltage detected by means of a measuring device and from a reference value which is used to regulate the speed of the DC motor, and in that the derived control signal is used by adjusting the motor currents (ia, ib , ic) to cause a substantially constant torque of the DC motor.
  • This motor control reduces the commutation-related torque ripple of low-inductivity DC small motors.
  • the 120 ° block commutation with zero crossing detection is maintained and only the intermediate circuit current is modulated, which means that the individual phase currents are not modulated and a conventional commutation method such as sensorless commutation (EMF commutation) can be used.
  • EMF commutation sensorless commutation
  • the embodiment according to claim 2 enables a simple determination of the reference value for the motor current at which the motor torque is constant.
  • the embodiment according to claim 3 enables a determination of the reference value for the motor current at which the motor torque is constant, even if the motor speed is not constant.
  • the embodiment according to claim 4 allows a simple setting of the intermediate circuit current by means of a series regulator and an actuator by the control signal.
  • the actuator can be dispensed with by directly controlling an inverter belonging to the commutator by the controller.
  • FIG. 1 shows a block diagram of an electric drive arrangement according to the invention
  • FIG. 2 shows the more precise structure of the reference value determination of the motor current in block 4,
  • FIG. 3a shows a basic circuit diagram and FIG. 3b shows a practical approximation of the signal processing which takes place in block 6 and FIGS. 4a to 4h the course of some signals in the engine control.
  • the entire drive consists of an inverter 1, a direct current motor 2, an EMF commutator 3 as well as a block 4 for obtaining the reference signal and a block 5 which converts this reference value for the intermediate circuit current with the aid of an actuating intervention to see.
  • the EMF commutator 3 works with 120 ° phase shift in block mode and with zero crossing detection, the abbreviation EMF (electro-motive force) stands for sensorless commutation, which measures the induced motor voltage in the currentless of the three phases Ea, Eb, Ec ,
  • EMF electro-motive force
  • Torque ripple which is why a block 4 is added with a new circuit.
  • FIG. 2 shows the structure of block 4 for reference value formation in detail. Its input variables are on the one hand the commutation signal V_FG, shown in FIG. 4b, the measured induced voltage E_sample, shown in FIG. 4a, where ⁇ denotes the electrical angle of rotation of the motor 2.
  • the EMF commutator provides these two sizes.
  • V_i_av which outputs a control circuit (not shown here) with which the speed of the motor 2 can be set.
  • the signal V_i_av is the reference value generated in a superordinate speed control for the time average of the motor current. Since the two signals V_FG and E sample are already available in the EMF commutator 3, only an additional new block 4 is required in order to minimize the torque ripple of the motor 2.
  • the reference value for the current motor current is now obtained in block 4, as shown in FIG. 2, by first doing E_sample in every second commutation period is inverted and the signal E_sample2 generated in this way is integrated, which results in the signal dFlux.
  • a filter can also be connected between inversion and integration in order to filter any DC component that may be present from the signal E_sample2.
  • the course of dFlux can be seen in Fig.4d.
  • the signal dFlux is then forwarded to block 6, the functioning of which is explained below.
  • the reference value V_i_ref for the instantaneous value of the motor current, which causes a constant motor torque, can be obtained from the signal dFlux by the relationship given in FIG. 3a.
  • the signal flux from FIG. 4e is obtained using the relationship 1 + cl * dFlux.
  • a normalization factor cl is set so that there is a ratio of the maximum value to the minimum value of the signal Flux, which corresponds to the ratio of the maximum value to the minimum value of the rectified induced voltage. For an ideal three-phase motor, this ratio is a factor of 2I-J3.
  • the factor cl must be adapted to the current speed, but this is possible via an arithmetic logic unit using the speed-dependent signal V_FG.
  • the algorithm described in FIGS. 2 and 3 can be implemented using either analog or digital signal processing.
  • the signal V_i_ref is the reference variable for the current i_dc of an intermediate circuit controller 8, which can be set with the aid of a target / actual value comparison with subsequent control intervention via an actuator 5. This can be done, for example, by a series regulator 8.
  • the intermediate circuit current i_dc is then commutated by the inverter 1 into the three phases.
  • the output of the controller 8 can also be used as a reference variable for a common actuation intervention on the inverter transistor 1, which is shown in broken lines in FIG. 1.
  • the supply voltage is v_bat and DC link voltage v_dc identical, since the actuator 5 is omitted in this embodiment.
  • the control of the inverter 1 turns out to be more complicated, since it no longer only takes over the commutation, but also has to regulate the torque ripple, which requires coordination of the two processes in an electronic circuit 7.
  • 4h shows the motor current ia of a phase Ea with minimal torque ripple, the other motor currents are then respectively out of phase by 120 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Rotational Drive Of Disk (AREA)

Abstract

Die Erfindung bezieht sich auf eine elektrische Antriebsanordnung mit einem Gleichstrommotor (2) mit einer Steuerschaltung mit einem elektronischen Kommutator (3). Die Erfindung zeichnet sich dadurch aus, dass eine Ableitung eines Stellsignals (V_i_ref) aus einer mittels einer Messvorrichtung erfassten induzierten Motorspannung (E_sample) und aus einem Referenzwert (V_i_av), welcher zur Drehzahlregulierung des Gleichstrommotors (2) dient, vorgesehen ist und dass das abgeleitete Stellsignal (V_i_ref) dazu dient, durch Einstellung der Motorströme (ia, ib, ic) ein im wesentlichen konstantes Drehmoment des Gleichstrommotors (2) zu bewirken.

Description

ELEKTRISCHE ANTRIEBSANORDNUNG MIT EINEM ELEKTRONISCH KOMMÜTTFRTFN GLEICHSTROMMOTOR ZUR VERMINDERUNG DER DREH^NTMELLIG^
Die Erfindung betrifft eine elektrische Antriebsanordnung mit einem Gleichstrommotor, insbesondere mit einem permanentmagnetisch erregten Luftspulenmotor, mit einer Steuerschaltung mit einem elektronischen Kommutator.
Elektronisch kommutierte, permanentmagnetisch erregte Gleichstromkleinmotoren mit geringer Induktivität, wie das bei Luftspulenmotoren der Fall ist, genügen hohen Anforderungen an die Laufruhe. Diese Eigenschaft wird zunehmend wichtig für Spindelantriebe in Laufwerken, da die erzielbaren Speicherdichten zunehmen. Luftspulenmotoren eignen sich hier besonders, da sie keine störenden Klebemomente und Radialkräfte erzeugen. Für bekannte Spindelantriebe werden ausschließlich genutete
Eisenankermotoren eingesetzt. Es gibt Vorschläge für Festplattenantriebe mit Luftspulenmotoren (Folienmotoren) mit innenliegendem Rotor, wie z.B. in US 5714 828 beschrieben. Eine neue Entwicklung auf dem Gebiet der elektronischen Kommutierung von Motoren für Festplattenantriebe ist das "phase current shaping". Hier wird der Phasenstrom in den drei einzelnen Phasen moduliert, mit dem Zweck, einen bestimmten - beispielsweise etwa sinusförmigen - Verlauf der Phasenströme zu erzielen. In der Regel wird hierbei die Motorspannung pulsweitenmoduliert (PWM), da sonst die Schaltverluste sehr hoch wären. Der PWM Tastgrad dient als Stellgröße. Dieses Verfahren erfordert wegen der erschwerten Nulldurchgangserkennung der induzierten Spannung in der Regel eine PLL-unterstützte Kommutierungssteuerung. Ferner ist ein solches "phase current shaping" nicht ohne weiteres auf Luftspulenmotoren (z.B. mit Folienwicklung) übertragbar. Diese weisen im Vergleich zu den Eisenankertypen erheblich kleinere elektrische Zeitkonstanten auf (etwa ein Zehntel) und erfordern eine entsprechend höhere Taktfrequenz der PWM, was wiederum nur mit erhöhtem Aufwand zu realisieren ist. Ein anderes Verfahren zur Verringerung der Drehmomentwelligkeit allein durch Modifikation des Stroms im Zwischenkreis und unter Beibehaltung der konventionellen I20°-Block-Kommutierung, vorzugsweise durch sensorlose Kommutierung (EMF-Kommutierung), wird in der EP 0773624 angegeben. Hier wird nach jedem Kommutierungszeitpunkt die Motorspannung erhöht, um so einen etwas gleichmäßigeren Zwischenkreisstrom zu erzielen, und darüber betriebs- und induktivitätsbedingte "Drehmomenteinbrüche" nach dem Umschalten zu vermeiden. Das Signal hierzu wird aus dem Entladevorgang eines RC-Glieds gewonnen. Tatsächlich lässt sich die Drehmomentwelligkeit auf diese Weise nur zu einem gewissen Grad reduzieren, da es ja gilt, das Produkt von Strom und Flussverkettungsänderung zu jeder Zeit konstant zu halten. Hierfür ist aber eine ständige Anpassung des Stroms notwendig. Für Motoren mit sehr kleiner elektrischer Zeitkonstante eignet sich dieses Verfahren wenig.
Es ist Aufgabe der Erfindung, kommutierungsbedingte Drehmomentschwankungen von permanentmagnetisch erregten Motoren mit Luftspulenwicklung zu verringern.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine Ableitung eines Stellsignals aus einer mittels einer Messvorrichtung erfassten induzierten Motorspannung und aus einem Referenzwert, welcher zur Drehzahlregulierung des Gleichstrommotors dient, vorgesehen ist und dass das abgeleitete Stellsignal dazu dient, durch Einstellung der Motorströme (ia, ib, ic) ein im wesentlichen konstantes Drehmoment des Gleichstrommotors zu bewirken. Durch diese Motorsteuerung wird die kommutierungsbedingte Drehmomentwelligkeit induktivitätsarmer Gleichstromkleinmotoren verringert. Hierzu wird die 120° Block-Kommutierung mit Nulldurchgangserkennung beibehalten und allein der Zwischenkreisstrom moduliert, wodurch auf eine Modulation der einzelnen Phasenströme verzichtet und ein herkömmliches Kommutierungsverfahren, wie sensorlose Kommutierung (EMF-Kommutierung) eingesetzt werden kann. Das hierfür notwendige Signal wird auf einfache Weise aus der induzierten Spannung gewonnen. Damit wird der Schaltungsaufwand gegenüber anderen Verfahren deutlich reduziert.
Die Ausgestaltung nach Anspruch 2 ermöglicht eine einfache Bestimmung des Referenzwerts für den Motorstrom, bei dem das Motordrehmoment konstant ist.
Die Ausgestaltung nach Anspruch 3 ermöglicht eine Bestimmung des Referenzwerts für den Motorstrom, bei dem das Motordrehmoment konstant ist, auch dann, wenn die Motordrehzahl nicht konstant ist.
Die Ausgestaltung nach Anspruch 4 erlaubt ein einfaches Einstellen des Zwischenkreisstroms mittels eines Längsreglers und eines Stellglieds durch das Stellsignal.
Bei der Ausgestaltung nach Anspruch 5 kann auf das Stellglied verzichtet werden, indem vom Regler direkt ein zum Kommutator gehörender Inverter angesteuert wird. Die vorliegende Erfindung wird an Hand mehrerer Figuren näher erläutert. Es zeigen:
Figur 1 ein Blockschaltbild einer erfindungsgemäßen elektrischen Antriebsanordnung, Figur 2 den genaueren Aufbau der Referenzwertbestimmung des Motorstroms in Block 4,
Figur 3a ein Prinzipschaltbild und Figur 3b eine praxisnahe Näherung der Signalverarbeitung, welche in Block 6 stattfindet und die Figuren 4a bis 4h den Verlauf einiger Signale in der Motorsteuerung.
In dem Blockschaltbild nach Fig.1 ist der gesamte Antrieb bestehend aus einem Inverter 1, einem Gleichstrommotor 2, einem EMF-Kommutator 3 sowie einem Block 4 zur Gewinnung des Referenzsignals und einem Block 5, der diesen Referenzwert für den Zwischenkreisstrom mit Hilfe eines Stelleingriffs umsetzt, zu sehen. Der EMF-Kommutator 3 arbeitet mit 120° Phasenverschiebung im Blockbetrieb und mit Nulldurchgangserkennung, wobei die Abkürzung EMF (electro-motive-force) für eine sensorlose Kommutierung steht, welche in der jeweils stromlosen der drei Phasen Ea, Eb, Ec die induzierte Motorspannung misst. Die alleinige Verwendung eines EMF-Kommutators 3 fuhrt allerdings bei Motoren 2 mit geringer Induktivität, insbesondere Luftspulenmotoren, zu Problemen bei der
Drehmomentwelligkeit, weshalb ein Block 4 mit einer neuen Schaltung hinzugefugt wird.
Fig.2 zeigt den Aufbau des Blocks 4 zur Referenzwertbildung im Einzelnen. Seine Eingangsgrößen sind zum einen das Kommutierungssignal V_FG, abgebildet in Fig.4b, die gemessene induzierte Spannung E_sample, dargestellt in Fig. 4a, wobei φ den elektrischen Drehwinkel des Motors 2 bezeichnet. Diese beiden Größen stellt der EMF- Kommutator zur Verfügung. Zum zweiten liegt noch ein Stellsignal V_i_av an, welches eine hier nicht gezeigte Regelungsschaltung ausgibt, mit der die Drehzahl des Motors 2 eingestellt werden kann.
Das Signal V_i_av ist der in einer übergeordneten Geschwindigkeitsregelung erzeugte Referenzwert für den zeitlichen Mittelwert des Motorstroms. Da die beiden Signale V_FG und E sample ohnehin im EMF-Kommutator 3 zur Verfügung stehen, ist so nur ein zusätzlicher neuer Block 4 nötig, um die Drehmomentwelligkeit des Motors 2 zu minimieren. Der Referenzwert für den momentanen Motorstrom wird nun, wie in Fig.2 dargestellt, in Block 4 gewonnen, indem zunächst in jeder zweiten Kommutierungsperiode E_sample invertiert und das so erzeugte Signal E_sample2 integriert wird, was das Signal dFlux ergibt. Zwischen Invertierung und Integration kann noch, wie in Fig. 2 gezeigt, ein Filter geschaltet sein, um einen eventuell vorhandenen Gleichspannungsanteil aus dem Signal E_sample2 zu filtern. Der Verlauf von dFlux ist in Fig.4d zu sehen. Das Signal dFlux wird dann an Block 6 weitergeleitet, dessen Funktionsweise nachfolgend erläutert wird.
Aus dem Signal dFlux lässt sich durch den in Fig.3 a angegebene Zusammenhang der Referenzwert V_i_ref für den Momentan wert des Motorstrom gewinnen, der ein konstantes Motordrehmoment bewirkt. Das Signal Flux aus Fig. 4e wird mit Hilfe der Beziehung l+cl *dFlux gewonnen. Dazu wird ein Normierungsfaktor cl so eingestellt, dass sich ein Verhältnis von Maximalwert zu Minimalwert des Signals Flux ergibt, welches dem Verhältnis Maximalwert zu Minimalwert der gleichgerichteten induzierten Spannung entspricht. Bei einem idealen dreiphasigen Motor beträgt dieses Verhältnis dem Faktor 2I-J3 .
In der Praxis kann die Beziehung aus Fig. 3a mit einer Schaltung 6 nach Fig.3b näherungsweise sehr einfach ausgewertet werden, indem das Signal dFlux nach einer Verstärkung um einen einzustellenden konstanten Faktor c2 von dem hier als konstant zu betrachtenden Referenzsignal für den zeitlichen Mittelwert des Motorstroms V_i_av subtrahiert wird. Dies funktioniert bei Motoren 2, die nur einen kleinen Drehzahlbereich abdecken müssen, wie z.B. mit konstanter Drehzahl laufende Antriebe für Festplattenlaufwerke, sehr gut, da hier das Referenzsignal V_i_av auf Grund der konstanten Drehzahl und der Faktor cl konstant sind. Das so entstehende Signal V_i_ref ist in Fig.4g abgebildet. Für einen drehzahl variablen Antrieb muss der Faktor cl an die momentane Drehzahl angepasst werden, was aber über ein Rechenwerk unter Verwendung des drehzahlabhängigen Signals V_FG möglich ist. Der in den Figuren 2 und 3 beschriebene Algorithmus kann entweder mit Hilfe analoger oder digitaler Signalverarbeitung realisiert werden.
Das Signal V_i_ref ist die Führungsgröße für den Strom i_dc eines Zwischenkreisreglers 8, welcher mit Hilfe eines Soll-Ist-Wert Vergleichs mit anschließendem Stelleingriff über ein Stellglied 5 eingestellt werden kann. Dies kann etwa durch einen Längsregler 8 erfolgen. Anschließend wird der Zwischenkreisstrom i_dc dann noch vom Inverter 1 in die drei Phasen kommutiert.
Alternativ kann der Ausgang des Reglers 8 auch als Führungsgröße für einen gemeinsamen Stelleingriff an den Invertertransistorenl genutzt werden, was in Fig. 1 gestrichelt eingezeichnet ist. In diesem Fall sind die Versorgungsspannung v_bat und die Zwischenkreisspannung v_dc identisch, da bei dieser Ausfuhrung das Stellglied 5 entfällt. Dafür fallt die Steuerung des Inverters 1 komplizierter aus, da dieser nicht mehr nur die Kommutierung übernimmt, sondern auch noch die Drehmomentwelligkeit ausregeln muss, wozu eine Koordination der beiden Vorgänge in einer elektronischen Schaltung 7 bedarf. In Fig. 4h ist beispielhaft der Motorstrom ia einer Phase Ea bei minimaler Drehmomentwelligkeit abgebildet, die übrigen Motorströme sind dann entsprechend um jeweils 120° phasenversetzt.

Claims

PATENTANSPRÜCHE:
1. Elektrische Antriebsanordnung mit einem Gleichstrommotor (2) mit einer Steuerschaltung mit einem elektronischen Kommutator (3), bei der eine Ableitung eines Stellsignals (V_i_ref) aus einer mittels einer Messvorrichtung erfassten induzierten Motorspannung (E_sample) und aus einem Referenzwert (V_i_av), welcher zur Drehzahlregulierung des Gleichstrommotors (2) dient, vorgesehen ist und bei der das abgeleitete Stellsignal (V_i_ref) dazu dient, durch Einstellung der Motorströme (ia, ib, ic) ein im wesentlichen konstantes Drehmoment des Gleichstrommotors (2) zu bewirken.
2. Elektrische Antriebsanordnung nach Anspruch 1 , dadurch gekennzeichnet. dass vorgesehen ist, in jeder zweiten Kommutierungsperiode die gemessene induzierte Spannung (E sample) des Kommutators (3) zu invertieren und anschließend zu integrieren und daraus ein Signal (dFlux) abzuleiten, welches nach einer Verstärkung und anschließender Subtraktion von dem Referenzwert (V_i_av) als Stellsignal (V_i_ref) zur Verfügung steht.
3. Elektrische Antriebsanordnung nach Anspruch 1 , dadurch gekennzeichnet. dass vorgesehen ist, in jeder zweiten Komniutierungsperiode die gemessene induzierte Spannung (E_sample) des Kommutators (3) zu invertieren und anschließend zu integrieren und daraus ein Signal (dFlux) abzuleiten, welches mit einem Faktor (cl) multipliziert nach Addition von 1 ein Signal (Flux) ergibt, durch welches der Referenzwert (V_i_av) dividiert wird, dass als Ergebnis der Division das Stellsignal (V_i_ref) zur Verfügung steht und dass vorgesehen ist, den Faktor (cl) mittels eines Rechenwerks so nachzuführen, dass das Verhältnis des Minimalwertes und des Maximalwertes des Signals (Flux) dem Verhältnis des Minimalwertes und des Maximalwertes der gleichgerichteten induzierten Spannung (E sample) entspricht.
4. Elektrische Antriebsanordnung nach Anspruch 1, dadurch gekennzeichnet. dass das abgeleitete Stellsignal (V_i_ref) zur Steuerung eines Reglers (8) und dieser zur Regelung eines Zwischenkreisstroms (i_dc) mittels eines Stellglieds (5) vorgesehen ist.
5. Elektrische Antriebsanordnung nach Anspruch 1 , dadurch gekennzeichnet. dass das abgeleitete Stellsignal (V_i_ref) zur Steuerung eines Reglers (8), welcher einen Steuereingriff am zum Kommutator (3) gehörenden Inverter (1) bewirkt, vorgesehen ist.
EP00954521A 1999-07-20 2000-07-17 Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentswelligkeit Withdrawn EP1112614A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19933156A DE19933156A1 (de) 1999-07-20 1999-07-20 Steuerschaltung für einen elektronisch kommutierten Gleichstrommotor
DE19933156 1999-07-20
PCT/EP2000/006809 WO2001006633A1 (de) 1999-07-20 2000-07-17 Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentwelligkeit

Publications (1)

Publication Number Publication Date
EP1112614A1 true EP1112614A1 (de) 2001-07-04

Family

ID=7914878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00954521A Withdrawn EP1112614A1 (de) 1999-07-20 2000-07-17 Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentswelligkeit

Country Status (7)

Country Link
US (1) US6408130B1 (de)
EP (1) EP1112614A1 (de)
JP (1) JP2003506002A (de)
KR (1) KR20010079870A (de)
CN (1) CN1318221A (de)
DE (1) DE19933156A1 (de)
WO (1) WO2001006633A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040018716A (ko) * 2002-08-26 2004-03-04 삼성전자주식회사 무정류자 직류모터의 속도제어장치 및 방법
US6801013B2 (en) * 2002-10-08 2004-10-05 Emerson Electric Co. PSC motor system for use in HVAC applications
US7272302B2 (en) * 2002-10-08 2007-09-18 Emerson Electric Co. PSC motor system for use in HVAC applications with field adjustment and fail-safe capabilities
NL1023532C2 (nl) * 2003-05-26 2004-11-29 Innosource B V Toerentalregeling voor een borstelloze gelijkstroommotor.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096419A (en) * 1975-09-12 1978-06-20 Plessey Handel Und Investments Ag. Electric motors
DE2900541B2 (de) * 1979-01-08 1981-07-16 Siemens AG, 1000 Berlin und 8000 München Steuersignalgeber für die Kommutierungseinrichtung eines elektronisch kommutierten Gleichstrommotors
US4645991A (en) * 1981-03-22 1987-02-24 Itsuki Ban Apparatus for removing torque ripples in direct-current motors
JP2911447B2 (ja) * 1986-04-01 1999-06-23 三菱電機株式会社 電動機の制御装置
DE3715939A1 (de) * 1986-05-14 1987-11-19 Matsushita Electric Ind Co Ltd Schaltungsanordnung zum regeln der drehzahl eines motors
US5202614A (en) * 1989-09-25 1993-04-13 Silicon Systems, Inc. Self-commutating, back-emf sensing, brushless dc motor controller
EP0670621B1 (de) 1994-03-04 2000-12-06 Philips Patentverwaltung GmbH Elektromotor mit einem Stator und einem Rotor
US5614797A (en) * 1995-02-28 1997-03-25 Sgs-Thomson Microelectronics, Inc. Stator coil driver circuit for a brushless DC motor
US5600218A (en) * 1995-09-11 1997-02-04 George H. Holling Sensorless commutation position detection for brushless motors
JPH09117186A (ja) * 1995-10-13 1997-05-02 Zexel Corp 直流ブラシレスモータ駆動装置
DE19541832A1 (de) 1995-11-10 1997-05-15 Thomson Brandt Gmbh Motorsteuerung für elektronisch kommutierende Gleichstrommotoren zur Kompensation von Drehmomenteinbrüchen
JPH09219990A (ja) * 1996-02-14 1997-08-19 Matsushita Electric Ind Co Ltd センサレスdcブラシレスモータの制御駆動装置
US5777449A (en) * 1996-12-31 1998-07-07 Sgs-Thomson Microelectronics, Inc. Torque ripple reduction using back-emf feedback
US6081087A (en) * 1997-10-27 2000-06-27 Matsushita Electric Industrial Co., Ltd. Motor control apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0106633A1 *

Also Published As

Publication number Publication date
JP2003506002A (ja) 2003-02-12
KR20010079870A (ko) 2001-08-22
DE19933156A1 (de) 2001-01-25
CN1318221A (zh) 2001-10-17
US6408130B1 (en) 2002-06-18
WO2001006633A1 (de) 2001-01-25

Similar Documents

Publication Publication Date Title
EP1499008B1 (de) Verfahren und Steuersystem zur elektronischen Kommutierung eines bürstenlosen Gleichstrommotors
EP0831580B1 (de) Einrichtung zur Antriebsstromsteuerung eines elektrisch kommutierten Permanentmagnet-Motors
DE69723913T2 (de) System und Verfahren zum Schutz eines Einphasenmotors vor Freilaufströmen
DE3686722T2 (de) Buerstenfreier gleichstrommotor.
EP1017159B2 (de) Verfahren zur Regelung eines spannungs-/frequenzumrichtergesteuerten Ein- oder Mehrphasen-Elektromotors
DE4310260C1 (de) Elektronische Steuervorrichtung für einen elektronisch kommutierten Gleichstrommotor (EC-Motor)
WO2009027326A1 (de) Verfahren zur ansteuerung eines elektrischen umrichters sowie zugehörige vorrichtung
EP2267882A1 (de) "Verfahren und Steuersystem zum Ansteuern eines bürstenlosen Elektromotors"
EP1284540A2 (de) Geschirrspüler-Pumpenantrieb
EP3213402A1 (de) Stellantrieb mit einem bürstenlosen zweiphasen-gleichstrommotor sowie verwendung eines derartigen gleichstrommotors
DE69724414T2 (de) Verfahren zum bearbeiten eines elektronisch kommutierten, variablen reluktanzmotors und stromversorgungs-schalkreis dafür
WO2012025904A2 (de) Verfahren zum ansteuern eines einphasigen bldc kleinmotors
DE69121697T2 (de) Gleichstrommotor
DE10332228B4 (de) Steuerungsverfahren für einen bürstenlosen Elektromotor, insbesonde Lüftermotor
EP3285381A1 (de) Verfahren zum betreiben einer elektrischen maschine und elektrische maschine
WO2001006633A1 (de) Elektrische antriebsanordnung mit einem elektronisch kommutierten gleichstrommotor zur verminderung der drehmomentwelligkeit
WO2013113540A2 (de) Wahlweise steuerung eines wechselstrommotors oder gleichstrommotors
DE4404889A1 (de) Elektrisches Antriebssystem für ein gleichstrombetriebenes Fahrzeug sowie Verfahren zum Steuern eines gleichstrombetriebenen Antriebs-Elektromotors
DE69610401T2 (de) Geräuscharmer Kommutierungsschaltkreis für einen elektrischen Motor
WO2022218819A1 (de) Verfahren zur feldorientierten regelung eines elektromotors
DE4404926A1 (de) Elektrisches Antriebssystem für ein gleichstrombetriebenes Fahrzeug sowie Verfahren zum Steuern eines gleichstrombetriebenen Antriebs-Elektromotors
DE4413802C2 (de) Verfahren und Vorrichtung zum Steuern der Drehzahl eines elektrischen Dreiphasen-Asynchronmotors
DE10127670A1 (de) Bürstenloser dreiphasiger Elektromotor und Verfahren zu dessen Ansteuerung
DE2452082A1 (de) Kollektorloser gleichstrommotor mit einstraengiger statorwicklung
BE1030973B1 (de) Antriebssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20011219

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.