EP1090419A1 - Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee - Google Patents

Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee

Info

Publication number
EP1090419A1
EP1090419A1 EP99925122A EP99925122A EP1090419A1 EP 1090419 A1 EP1090419 A1 EP 1090419A1 EP 99925122 A EP99925122 A EP 99925122A EP 99925122 A EP99925122 A EP 99925122A EP 1090419 A1 EP1090419 A1 EP 1090419A1
Authority
EP
European Patent Office
Prior art keywords
cover
support
fusible material
component
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99925122A
Other languages
German (de)
English (en)
Inventor
François Marion
Jean-Louis Pornin
Claude Massit
Patrice Caillat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1090419A1 publication Critical patent/EP1090419A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/002Aligning microparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • H01L2224/29013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Definitions

  • the present invention relates to a method of encapsulating components and forming a device having one or more components formed in one or more cavities with controlled atmosphere.
  • controlled atmosphere cavity is meant both a cavity in which a vacuum has been established and a cavity containing a gas of controlled composition and / or pressure.
  • Such a cavity defined for example by a cover fitted onto a substrate, makes it possible to accommodate sensitive components such as electronic, electro-optical components or micro-mechanical components.
  • the invention finds applications for the hermetic encapsulation of electronic chips, pressure or acceleration sensors, or even electromagnetic sensors such as bolometric sensors.
  • a first operation consists in positioning a cover 10 on a support 12, such as a substrate, in a region comprising a component 14.
  • the cover 10 has a depression 16, turned towards the support 12 and intended to house the component 14.
  • the depression 16 is surrounded by an edge 18.
  • the mutual positioning of the cover 10 and the support 12 is achieved by alignment means shown very schematically with the reference 22. These means make it possible to make the depression 16 of the cover coincide with the component 14 and to have the edge 18 facing the sealing bead 20.
  • Figure 1 shows that all of the parts to be assembled, as well as the alignment means, are arranged in an enclosure 24 in which the desired controlled atmosphere is established.
  • FIG. 2 The actual sealing step, carried out after positioning the cover, is illustrated in FIG. 2.
  • the cover 10 is applied to the support so that the sealing bead tightly connects the border 18 on the upper surface of substrate 12.
  • the assembly of the support and of the cover can be brought to a temperature sufficient to melt the fusible material.
  • the heating of the cover and of the support which always takes place in the enclosure 24 with a controlled atmosphere, is implemented, for example, by means of a heating hearth 28 on which the support 12 rests. example support
  • the reference 10a designates a first cover already sealed on the support 12.
  • the reference 10b designates a second cover applied against the support 2, in the sealing phase.
  • a third cover 10c which is not yet applied to the support is positioned above a component 14.
  • the positioning of the covers and their sealing takes place successively.
  • the means 22 for aligning the covers although bulky and bulky, must be housed in the enclosure 24 with a controlled atmosphere.
  • the method described with reference to FIG. 3 therefore poses problems of housing the alignment means and proves to be ill-suited to the installation of a large number of covers on a support.
  • a partial solution to the problems mentioned above is provided by a hood transfer system as illustrated in FIG. 4.
  • This system uses an intermediate holding part 26 on which the covers 10a, 10b, 10c are transferred by their face which does not come into contact with the final support 12.
  • the intermediate part 26, equipped with covers is introduced with the support 12 in an enclosure with controlled atmosphere and the sealing or the edge of the covers can take place collectively.
  • the method of FIG. 4 however requires means of alignment 22 of the intermediate piece 24 with the support.
  • the intermediate part must be removed after the covers have been transferred.
  • the object of the present invention is to propose a method of encapsulating one or more components which does not present the difficulties and constraints mentioned above.
  • the method is intended to be encapsulated components that can be either reported in advance on a substrate, 'either directly integrated in the substrate (chip, integrated sensors, ...)
  • An object of the invention is in particular to propose such a method which can be implemented in an enclosure with a controlled atmosphere devoid of means for aligning hoods on the components. Another object is to propose such a method making it possible to align with precision and to collectively seal a large number of covers above corresponding components.
  • the invention more specifically relates to a process for encapsulation under a controlled atmosphere of at least one component by sealing at least one cover on at least one zone of a support comprising the component.
  • at least one of the cover and support is fitted with sealing means surrounding an area corresponding to said component, and at least one shim made of a fusible material,
  • the cover and the substrate are positioned mutually so that the cover is arranged substantially opposite a zone corresponding to the component
  • the assembly formed by the cover and the support is heated in an enclosure with controlled atmosphere at a temperature sufficient to melt the shim of fusible material.
  • the shim of fusible material is produced with an initial height before fusion sufficient to prevent the sealing means from sealingly connecting the cover to the support, and so as to have a height after fusion sufficiently low to allow tight contact of the sealing means both with the cover and the support. Thanks to the shims of fusible material, it is possible to set up and position the covers on the support before introducing the support into the enclosure with controlled atmosphere.
  • the shims prevent the space between the cover and the support from forming a closed and insulated cavity before the final sealing.
  • the controlled atmosphere such as a vacuum for example, can therefore be established around the component.
  • the shims can also be used as an electrical connection between the support and the cover, for example for the transmission of electrical signals.
  • the mutual positioning of the cover and the support which can be produced under an ambient atmosphere is not very critical. Indeed, the final and exact positioning of the cover can be obtained automatically by surface tension forces exerted in the fusible material when the latter is melted.
  • the method of the invention can be implemented for a single cover but is particularly advantageous when a large number of covers have to be transferred to the same substrate.
  • the sealing means may comprise a bead of fusible material capable of melting during heating.
  • the fusible material of the cord is preferably the same material as that of the wedges or a material having a melting point close to that of the wedges.
  • materials such as AuSn, SnPb or CuSn can be selected. These materials allow hybridization without flow from the cover to the support.
  • the fusible material melts and forms a tight seal between the cover and the support.
  • the sealing means may also include a bead of another material such as a bead of screen-printed glue.
  • this bead can be designed so as to have an initial height before fusion less than the initial height of the wedges of fusible material and a height after fusion, called hybridization height , greater than the height of hybridization of the holds.
  • Such an embodiment is particularly suitable when the cord and the shims are arranged in the same plane between the facing surfaces of the cover and the support.
  • the height of hybridization of an element of fusible material is understood to mean the height that this element would have between the cover and the support after being melted and in the absence of external constraints.
  • the height of hybridization of the wedges is defined independently of that of the cord and vice versa.
  • the hybridization height of the shims or that of the cord depends on the quantity of fusible material used for the production of these elements and on the adhesion surface of these elements to the cover and to the support.
  • the surfaces of the reception areas can be adjusted according to a desired hybridization height.
  • the invention also relates to a device comprising a support and at least one cover capable of being sealed to the support to form with the support at least one cavity with controlled atmosphere around at least one component.
  • a device comprising a support and at least one cover capable of being sealed to the support to form with the support at least one cavity with controlled atmosphere around at least one component.
  • at least one of the covers and supports is fitted with shims of fusible material and a sealing bead formed around the component.
  • the shims of fusible material have a sufficient thickness to prevent the sealing bead from coming into contact with both the cover and the support when these are assembled.
  • FIGS. 1 and 2 already described, are simplified schematic sections of a substrate and a cover, illustrating successive steps of a known method of encapsulating a component.
  • FIG. 3 is a simplified schematic section of a substrate and covers, illustrating an implementation of the encapsulation process applied to several components of the substrate.
  • - Figure 4 already described, is a schematic section of a substrate and an intermediate support piece illustrating a known improvement of the encapsulation process.
  • - Figure 5 is a simplified schematic section of a support substrate and a cover illustrating the device, and the encapsulation method of the invention.
  • FIG. 6 is a simplified schematic view of an upper face of the substrate of the support, facing the cover.
  • FIG. 7 is a simplified schematic section of the substrate and the cover of Figure 5, after sealing.
  • - Figures 8 and 9 are also simplified schematic sections of the substrate and the cover and show possible uses of shims of fusible material as an electrical connection.
  • the reference 100 in FIG. 5 indicates a support substrate, such as for example a wafer of. semiconductor material, on which a component 102 is made.
  • Component 102 can be an electronic circuit, a micromechanical sensor, such as an accelerometer or even the sensitive element of a bolometer, for example.
  • a cover 104 is intended to protect the component 102 from external aggressions and to maintain the component in a controlled atmosphere.
  • the cover 104 is shown in a state where it is transferred to the support 100 so as to cover the component 102, but where it is not yet sealed on the support.
  • the cover is equipped with pads 106a, 108a whose surface is made of a material wettable by a fusible material, and which correspond to similar pads 106b, 108b of the support.
  • the pads 106a, 106b, 108a, 108b are formed for example by photolithography in a stack of thin layers of titanium-nickel-gold type.
  • the pads 106b of the support are, for example, in the form of circular pads and are intended to accommodate balls of fusible material 110.
  • the pads 106b have for example a diameter of 80 ⁇ m to accommodate balls of a diameter of 140 ⁇ m .
  • the area 108b of the support is in the form of a strip which forms a frame around the area comprising the component 102.
  • This strip is intended to receive a cord 112 of fusible material.
  • the strip has for example a width of 40 ⁇ m to accommodate a bead with a section width of 50 ⁇ m.
  • the shape of the wettable material areas 106b, 108b of the support 100 is also visible in FIG. 6 which shows an upper face of the support facing the cover.
  • the wettable areas 106a and 108a of the cover are similar in shape and substantially superimposable on the corresponding areas 106b and 108b of the support. However, it is observed that the pellets forming the pads 106a of the cover have a diameter greater than that of the pellets forming the pads 106b on the support.
  • the role of the upper diameter of the hood discs is explained in the following text.
  • the balls of fusible material 110 and the cord 112 are arranged on the support.
  • the fusible material may be an AuSn weld deposit formed through a mask, not shown, according to a screen printing, evaporation or electrolytic growth technique, for example.
  • the cord and / or balls of fusible material can also be initially placed on the cover.
  • the diameter of the pellets for receiving the balls on the cover is preferably less than that of the corresponding pads of the support.
  • FIG. 5 shows that the diameter of the balls of fusible material 110 is chosen to be sufficient to prevent the bead from being in contact with the area 108b of wettable material of the cover. The balls 110 thus form shims for supporting the cover.
  • a space noted h is provided between the bead
  • This spacing makes it possible to establish a controlled atmosphere in a cavity 114 defined around the component by the cover, the support and the cord.
  • the balls and the bead can be designed to present respectively initial heights before welding of 70 ⁇ m and 28 ⁇ m.
  • the cover can be placed on the support before the introduction of the entire structure into an enclosure with controlled atmosphere.
  • Figure 7 shows the state of the device after sealing the cover on the substrate.
  • the sealing is carried out by bringing the fusible material to a temperature greater than or equal to its melting temperature, for example of the order of 300 ° C.
  • the melting temperature can be further reduced by replacing AuSn with SnPb.
  • the cover collapses and the seal 112, also melted, comes to weld on the range of wettable material 108a of the cover.
  • the cavity 114 is sealed.
  • the balls 110 also come to be welded on the pellets forming the areas of wettable material 106a of the cover.
  • the diameter of these pellets can be chosen so that the height of hybridization of the balls 110 is less than the height of hybridization of the cord 112.
  • the diameter of the pads 106a of the cover is, for this purpose, chosen to be greater than the diameter of the pads 106b of the support 100.
  • a surface tension effect in the meltable fusible material makes it possible to perfect the alignment of the cover by support. So a initial positioning of the fast and relatively imprecise cover ( ⁇ 10 ⁇ m) may be authorized.
  • the foregoing description relates, for example, to the transfer of a single cover over a single component.
  • the invention advantageously applies to the transfer of a plurality of covers of equal or different sizes on a substrate comprising a plurality of identical or different components.
  • These covers can be put in place and positioned before the introduction of the support into an enclosure with controlled atmosphere.
  • the enclosure can thus be devoid of means for positioning and aligning the covers.
  • the cover may be made of a transparent material, in particular to infrared radiation.
  • the method of the invention is suitable for the simultaneous processing of a plurality of substrates.
  • FIG. 8 shows a device similar to the device of FIG. 7, in which the shims 110, made of an electrically conductive fusible material, are used as elements of electrical connection between the support 100 and the cover 104.
  • the wedges 110 are formed on pads 106b made of a wettable material, also electrically conductive, and connected by means of electrical connections 118 to components of the support 100. In the example of FIG. 8, the connection pads are connected to the component 102.
  • connection pads 106a of the cover are connected to external contact pads 122 flush with a free upper surface of the cover.
  • the electrical connection between the connection pads 106a and the pads 122 is provided by metallized tracks 124, or "vias" passing through the cover.
  • FIG. 9 shows another possible embodiment of the device in which the shims of fusible material are used to connect components located on the support with components located on the cover.
  • the component 102 of the support is connected to another component 130 located on the face of the cover facing the support 100.
  • the connection is ensured successively by an internal link 118, a connection pad for the support 106b , a wedge 110, a connection pad 106a of the cover and a metal layer 132 deposited on the surface of the cover facing the support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fuses (AREA)

Abstract

Dispositif comprenant un support (100) et au moins un capot (104) susceptible d'être scellé au support pour former avec le support au moins une cavité (114) à atmosphère contrôlée autour d'au moins un composant (102). Conformément à l'invention, au moins l'un des capot et support est équipé d'au moins une cale (110) de matériau fusible et d'un cordon d'étanchéité (112) formé autour du composant, et avant scellement, la cale de matériau fusible présente une épaisseur suffisante pour empêcher que le cordon d'étanchéité (112) ne vienne en contact à la fois avec le capot et le support lorsque ceux-ci sont assemblés. Application notamment à l'encapsulation de composants électroniques, mécaniques ou électromagnétiques.

Description

DISPOSITIF ET PROCEDE DE FORMATION D'UN DISPOSITIF PRESENTANT UNE CAVITE A ATMOSPHERE CONTROLEE
Domaine technique La présente invention concerne un procédé d'encapsulation de composants et de formation d'un dispositif présentant un ou plusieurs composants ménagés dans une ou plusieurs cavités à atmosphère contrôlée. On entend par cavité à atmosphère contrôlée aussi bien une cavité dans laquelle on a établi un vide qu'une cavité contenant un gaz de composition et/ou de pression contrôlée.
Une telle cavité, définie par exemple par un capot reporté sur un substrat, permet de loger des composants sensibles tels que des composants électroniques, électro-optiques ou des composants de micro-mécanique .
En particulier, l'invention trouve des applications pour 1 ' encapsulation hermétique de puces électroniques, de capteurs de pression ou d'accélération, ou encore de capteurs électromagnétiques tels que des capteurs bolométriques.
Etat de la technique antérieure
On connaît différentes techniques permettant de sceller un capot sur un support. On peut citer par exemple les techniques de scellement par verre, de scellement de type métal sur métal ou encore de scellement anodique. Au sujet de ces techniques, bien connues en soi, on peut se reporter aux documents (1) , (2) et (3) dont les références sont précisées à la fin de la présente description. La mise en oeuvre du scellement d'un capot sur un support en vue de former une cavité à atmosphère contrôlée est décrite en référence aux figures 1 à 4.
Une première opération, illustrée à la figure 1, consiste à positionner un capot 10 sur un support 12, tel qu'un substrat, dans une région comportant un composant 14.
On observe que le capot 10 présente une dépression 16, tournée vers le support 12 et destinée à loger le composant 14. La dépression 16 est entourée par une bordure 18.
Un cordon d'étanchéité 20, en un matériau approprié tel qu'un matériau fusible est disposé à la surface du support 12, de façon à entourer le composant 14 et de façon à correspondre à la forme de la bordure
18 du capot 10.
Le positionnement mutuel du capot 10 et du support 12 est réalisé par des moyens d'alignement représentés très schématiquement avec la référence 22. Ces moyens permettent de faire coïncider la dépression 16 du capot avec le composant 14 et de disposer la bordure 18 en face du cordon d'étanchéité 20.
La figure 1 montre que l'ensemble des pièces à assembler, de même que les moyens d'alignement, sont disposés dans une enceinte 24 dans laquelle on établit l'atmosphère contrôlée souhaitée.
L'étape de scellement proprement dite, effectuée après le positionnement du capot, est illustrée à la figure 2. Comme le montre une flèche, le capot 10 est appliqué sur le support de telle façon que le cordon d'étanchéité relie de façon étanche la bordure 18 à la surface supérieure du substrat 12. Eventuellement, lorsque le cordon est en un matériau fusible, l'ensemble du support et du capot peut être porté à une température suffisante pour faire fondre le matériau fusible. Le chauffage du capot et du support, qui a toujours lieu dans l'enceinte 24 à atmosphère contrôlée, est mis en oeuvre, par exemple, au moyen d'une sole chauffante 28 sur laquelle repose le support 12. La figure 3 montre à titre d'exemple un support
12 sur lequel sont reportés trois capots 10a, 10b, 10c.
La référence 10a désigne un premier capot déjà scellé sur le support 12. La référence 10b désigne un deuxième capot appliqué contre le support 2, en phase de scellement.
Enfin, un troisième capot 10c qui n'est pas encore appliqué sur le support est positionné au-dessus d'un composant 14.
On constate que le positionnement des capots et leur scellement a lieu de façon successive. De plus, comme dans l'exemple de la figure 1, les moyens 22 d'alignement des capots, bien que volumineux et encombrants, doivent être logés dans l'enceinte 24 à atmosphère contrôlée. Le procédé décrit en référence à la figure 3 pose donc des problèmes de logement des moyens d'alignement et s'avère peu adapté à la mise en place d'un nombre important de capots sur un support.
Il convient de préciser qu'il n'est pas possible avec l'équipement de la figure 3 d'aligner et de déposer sur le support l'ensemble des capots hors de l'enceinte 24, et de réaliser ensuite l'opération de scellement ou de soudure sous atmosphère contrôlée. En effet, lorsque le capot est préalablement déposé sur le support, le passage de gaz entre le capot et le support est entravé et il n'est plus possible de contrôler avec précision l'atmosphère qui s'établit dans la cavité formée par le capot et par le support. Ceci est particulièrement le cas lorsque la cavité doit être mise sous vide.
Une solution partielle aux problèmes mentionnés ci-dessus est apportée par un système de report de capots tel qu'illustré par la figure 4.
Ce système fait appel à une pièce de maintien intermédiaire 26 sur laquelle sont reportés les capots 10a, 10b, 10c par leur face qui ne vient pas en contact avec le support final 12. La pièce intermédiaire 26, équipée des capots est introduite avec le support 12 dans une enceinte à atmosphère contrôlée et le scellement ou la bordure des capots peut avoir lieu de façon collective.
Le procédé de la figure 4 nécessite cependant des moyens d'alignement 22 de la pièce intermédiaire 24 avec le support. De plus, la pièce intermédiaire doit être éliminée après le report des capots.
Une autre solution partielle au problème d'encapsulation d'une pluralité de composants, consiste à ne reporter sur le support qu'un unique capot, suffisamment grand pour recouvrir tous les composants et de découper ensuite le capot individuellement autour de chaque composant. Cette solution, qui n'est pas représentée sur les figures, nécessite cependant une mise en forme particulière du support et/ou du capot pour former des cavités individuelles autour des composants et fait appel à des opérations de découpage délicates. Exposé de 1 ' invention
La présente invention a pour but de proposer un procédé d'encapsulation d'un ou de plusieurs composants ne présentant pas les difficultés et contraintes mentionnées ci-dessus.
Le procédé est destiné à encapsuler des composants qui peuvent être soit rapportés au préalable sur un substrat, 'soit directement intégrés dans le substrat (puces électroniques, capteurs intégrés, ...)
Un but de l'invention est en particulier de proposer un tel procédé qui puisse être mis en oeuvre dans une enceinte à atmosphère contrôlée dépourvue de moyens d'alignement de capots sur les composants. Un autre but est de proposer un tel procédé permettant d'aligner avec précision et de sceller de façon collective un grand nombre de capots au-dessus de composants correspondants.
Pour atteindre ces buts, l'invention a plus précisément pour objet un procédé d'encapsulation sous atmosphère contrôlée d'au moins un composant par scellement d'au moins un capot sur au moins une zone d'un support comprenant le composant. Conformément au procédé de 1 ' invention : - on équipe au moins l'un des capot et support de moyens de scellement entourant une zone correspondant audit composant, et d'au moins une cale en un matériau fusible,
- on positionne mutuellement le capot et le substrat de sorte que le capot soit disposé sensiblement en face d'une zone correspondant au composant,
- on chauffe l'ensemble formé par le capot et le support dans une enceinte à atmosphère contrôlée à .une température suffisante pour faire fondre la cale de matériau fusible.
De plus, on réalise la cale de matériau fusible avec une hauteur initiale avant fusion suffisante pour empêcher les moyens de scellement de relier de façon étanche le capot au support, et de façon à présenter une hauteur après fusion suffisamment faible pour permettre un contact étanche des moyens de scellement à la fois avec le capot et le support. Grâce aux cales de matériau fusible, il est possible de mettre en place et de positionner les capots sur le support avant d'introduire le support dans l'enceinte à atmosphère contrôlée.
En effet, les cales évitent que l'espace entre le capot et le support ne forment une cavité fermée et isolée avant le scellement final. L'atmosphère contrôlée, telle qu'un vide par exemple, peut donc être établie autour du composant.
Les cales peuvent également être mises à profit comme liaison électrique entre le support et le capot, par exemple pour la transmission de signaux électriques .
Par ailleurs, grâce au procédé de l'invention, le positionnement mutuel du capot et du support qui peut être réalisé sous atmosphère ambiante n'est pas très critique. En effet, le positionnement final et exact du capot peut être obtenu automatiquement par des forces de tension superficielle s 'exerçant dans le matériau fusible lorsque celui-ci est fondu. Le procédé de l'invention peut être mis en oeuvre pour un seul capot mais s'avère particulièrement avantageux lorsqu'un grand nombre de capots doivent être reportés sur un même substrat. Selon une mise en oeuvre particulière du procédé, les moyens de scellement peuvent comporter un cordon de matériau fusible susceptible de fondre lors du chauffage. Le matériau fusible du cordon est de préférence le même matériau que celui des cales ou un matériau présentant un point de fusion voisin de celui des cales.
A titre d'exemple, des matériaux tels que AuSn, SnPb ou CuSn peuvent être sélectionnés. Ces matériaux permettent une hybridation sans flux du capot sur le support .
Ainsi, lors du chauffage du capot et du support, le matériau fusible fond et forme un joint étanche entre le capot et le support.
Selon une variante, les moyens de scellement peuvent également comporter un cordon en un autre matériau tel qu'un cordon de colle sérigraphié.
Dans le cas où les moyens de scellement comportent un cordon de matériau fusible, ce cordon peut être conçu de façon à présenter une hauteur initiale avant fusion inférieure à la hauteur initiale des cales de matériau fusible et une hauteur après fusion, appelée hauteur d'hybridation, supérieure à la hauteur d'hybridation des cales.
Une telle réalisation est adaptée en particulier lorsque le cordon et les cales sont disposés dans un même plan entre les surfaces en regard du capot et du support. On entend par hauteur d'hybridation d'un élément de matériau fusible la hauteur qu'aurait cet élément entre le capot et le support après avoir été fondu et en l'absence de contraintes extérieures. Ainsi, la hauteur d'hybridation des cales est définie indépendamment de celle du cordon et réciproquement.
- La hauteur d'hybridation des cales ou celle du cordon dépend de la quantité de matériau fusible mis en oeuvre pour la réalisation de ces éléments et de la surface d'adhésion de ces éléments au capot et au support .
A cet égard, on peut équiper le capot et le support, de plages de réception du matériau fusible en un matériau mouillable par le matériau fusible.
Les surfaces des plages de réception peuvent être ajustées en fonction d'une hauteur d'hybridation souhaitée.
L'invention concerne également un dispositif comprenant un support et au moins un capot susceptible d'être scellé au support pour former avec le support au moins une cavité à atmosphère contrôlée autour d'au moins un composant. Conformément à l'invention, au moins l'un des capots et supports est équipé de cales de matériau fusible et d'un cordon d'étanchéité formé autour du composant. De plus, avant scellement, les cales de matériau fusible présentent une épaisseur suffisante pour empêcher que le cordon d'étanchéité ne vienne en contact à la fois avec le capot et le support lorsque ceux-ci sont assemblés.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif. Brève description des figures
- Les figures 1 et 2, déjà décrites, sont des coupes schématiques simplifiées d'un substrat et d'un capot, illustrant des étapes successives d'un procédé connu d'encapsulation d'un composant.
- La figure 3, déjà décrite, est une coupe schématique simplifiée d'un substrat et de capots, illustrant une mise en oeuvre du procédé d'encapsulation appliqué à plusieurs composants du substrat.
- La figure 4, déjà décrite, est une coupe schématique d'un substrat et d'une pièce de support intermédiaire illustrant un perfectionnement connu du procédé d'encapsulation. - La figure 5 est une coupe schématique simplifiée d'un substrat de support et d'un capot illustrant le dispositif, et le procédé d'encapsulation de l'invention.
- La figure 6 est une vue schématique simplifiée d'une face supérieure du substrat du support, tournée vers le capot.
- La figure 7 est une coupe schématique simplifiée du substrat et du capot de la figure 5, après scellement. - Les figures 8 et 9 sont également des coupes schématiques simplifiées du substrat et du capot et montrent des utilisations possibles de cales de matériau fusible comme liaison électrique.
Description détaillée d'un mode de mise en oeuyre de 1 'invention
La référence 100 de la figure 5 indique un substrat de support, tel que par exemple une plaquette de. matériau semi-conducteur, sur lequel est réalisé un composant 102.
Le composant 102 peut être un circuit électronique, un capteur micromécanique, tel qu'un accéléromètre ou encore l'élément sensible d'un bolomètre, par exemple.
Un capot 104 est destiné à protéger le composant 102 des agressions extérieures et à maintenir le composant dans une atmosphère contrôlée. Sur la figure 5, le capot 104 est représenté dans un état où il est reporté sur le support 100 de manière à recouvrir le composant 102, mais où il n'est pas encore scellé sur le support.
Le capot est équipé de plages 106a, 108a dont la surface est en un matériau mouillable par un matériau fusible, et qui correspondent à des plages similaires 106b, 108b du support. Les plages 106a, 106b, 108a, 108b sont formées par exemple par photolithographie dans un empilement de couches minces de type titane-nickel-or.
Les plages 106b du support sont, par exemple, sous la forme de pastilles circulaires et sont destinées à accueillir des billes de matériau fusible 110. Les plages 106b présentent par exemple un diamètre de 80 μm pour accueillir des billes d'un diamètre de 140 μm.
La plage 108b du support se présente sous la forme d'une bande qui forme un cadre autour de la zone comprenant le composant 102. Cette bande est destinée à accueillir un cordon 112 de matériau fusible. La bande présente par exemple une largeur de 40 μm pour accueillir un cordon d'une largeur en section de 50 μm. La forme des plages de matériau mouillable 106b, 108b du support 100 est également visible sur la figure 6 qui montre une face supérieure du support tournée vers le capot. Les plages mouillables 106a et 108a du capot sont de forme similaire et sensiblement superposables aux plages correspondantes 106b et 108b du support. On observe toutefois que les pastilles formant les plages 106a du capot présentent un diamètre supérieur à celui des pastilles formant les plages 106b sur le support. Le rôle du diamètre supérieur des pastilles du capot est expliqué dans la suite du texte.
Dans l'exemple de la figure, les billes de matériau fusible 110 et le cordon 112 sont disposés sur le support. Le matériau fusible peut être un dépôt de soudure AuSn formé à travers un masque, non représenté, selon une technique de sérigraphie, d' évaporâtion ou de croissance électrolytique, par exemple.
A titre de variante, le cordon et/ou des billes de matériau fusible peuvent également être disposés initialement sur le capot. Dans ce cas toutefois, le diamètre des pastilles de réception des billes sur le capot est de préférence inférieur à celui des pastilles correspondantes du support. La figure 5 montre que le diamètre des billes de matériau fusible 110 est choisi suffisant pour empêcher le cordon d'être en contact avec la plage 108b de matériau mouillable du capot. Les billes 110 forment ainsi des cales de support du capot. Un espacement noté h est ménagé entre le cordon
112 et le capot. Cet espacement permet d'établir une atmosphère contrôlée dans une cavité 114 définie autour du composant par le capot, le support et le cordon. A titre d'exemple, les billes et le cordon peuvent être conçus pour présenter respectivement des hauteurs initiales avant soudure de 70 μm et 28 μm. L'espacement h est alors de h= (70-28) =42 μm. Ainsi le capot peut être mis en place sur le support avant l'introduction de l'ensemble de la structure dans une enceinte à atmosphère contrôlée.
La figure 7 montre l'état du dispositif après le scellement du capot sur le substrat. Le scellement est réalisé en portant le matériau fusible à une température supérieure ou égale à sa température de fusion, par exemple de l'ordre de 300°C.
La température de fusion peut encore être réduite en remplaçant AuSn par SnPb. Lorsque les billes 110 fondent sous l'effet de la chaleur, le capot s'affaisse et le joint 112, également fondu, vient se souder sur la plage de matériau mouillable 108a du capot. Ainsi, la cavité 114 est scellée. Les billes 110 viennent également se souder sur les pastilles formant les plages de matériau mouillable 106a du capot. Le diamètre de ces pastilles peut être choisi de telle façon que la hauteur d'hybridation des billes 110 soit inférieure à la hauteur d'hybridation du cordon 112. Ainsi, il est possible de garantir avec une meilleure sécurité l'étanchéité de la cavité 114. Dans l'exemple illustré, le diamètre des pastilles 106a du capot est, à cet effet, choisi supérieur au diamètre des pastilles 106b du support 100. Un effet de tension superficielle dans le matériau fusible fondu permet de parfaire l'alignement du capot par rapport au support. Ainsi, un positionnement initial du capot rapide et relativement peu précis (±10 μm) peut être autorisé.
La description qui précède concerne, à titre d'exemple, le report d'un seul capot au-dessus d'un seul composant.
Toutefois, l'invention s'applique avantageusement au report d'une pluralité de capots de tailles égales ou différentes sur un substrat comprenant une pluralité de composants identiques ou différents. Ces capots peuvent être mis en place et positionnés avant l'introduction du support dans une enceinte à atmosphère contrôlée. L'enceinte peut ainsi être dépourvue de moyens de positionnement et d'alignement des capots. Dans un exemple particulier où le composant est un capteur de bolometrie, le capot peut être en un matériau transparent, notamment au rayonnement infrarouge.
De plus, le procédé de l'invention est adapté au traitement simultané d'une pluralité de substrats.
La figure 8 montre un dispositif semblable au dispositif de la figure 7, dans lequel les cales 110, en un matériau fusible conducteur électrique, sont utilisées comme des éléments de liaison électrique entre le support 100 et le capot 104.
Les cales 110 sont formées sur des plages 106b réalisées en un matériau mouillable, également conducteur électrique, et connectées au moyen de liaisons électriques 118 à des composants du support 100. Dans l'exemple de la figure 8, les plages de connexion sont reliées au composant 102.
Par ailleurs, les plages de connexion 106a du capot, électriquement conductrices, sont connectées à des plots de contact externes 122 affleurant sur une surface supérieure libre du capot. La liaison électrique entre les plages de connexion 106a et les plots 122 est assurée par des voies métallisées 124, ou "vias" traversant le capot.
Les plots de contact externes 122 peuvent ainsi être utilisés comme bornes d'alimentation de composants du support ou comme bornes d'entrée/sortie d' informations . A titre de variante, la figue 9 montre une autre réalisation possible du dispositif dans lequel les cales de matériau fusible sont utilisées pour connecter des composants situés sur le support avec des composants situés sur le capot. Dans l'exemple de la figure, le composant 102 du support est relié à un autre composant 130 situé sur la face du capot tournée vers le support 100. La connexion est assurée successivement par une liaison interne 118, une plage de connexion du support 106b, une cale 110, une plage de connexion 106a du capot et une couche métallique 132 déposée à la surface du capot tournée vers le support.
DOCUMENTS CITES (1)
L. Ristic,
"Sensor technology and Device", pages 207-215, Edité par : ARTECH HOUSE - Boston - London (2) M. Esashi et K. Minami,
"Packaged Micromechanical Semiconductor", pages 30- 37, 1994, IEEE Symposium on Energing Technologies & Factory Automation (3)
R . Tummala
"Microelectronic packaging handbood", pages 736- 755, Edité par : VAN NOSTRAND REINHOLD

Claims

REVENDICATIONS
1. Procédé d'encapsulation sous atmosphère contrôlée d'au moins un composant (102) par scellement d'au moins un capot (104) sur au moins une zone d'un support (100) comprenant le composant, caractérisé en ce que :
- on équipe au moins l'un des capot et support de moyens de scellement (112) entourant une zone correspondant audit composant, et d'au moins une cale (110) en un matériau fusible,
- on positionne mutuellement, sous atmosphère ambiante, le capot et le substrat de sorte que le capot soit disposé sensiblement en face d'une zone correspondant au composant, - on chauffe l'ensemble formé par le capot et le support dans une enceinte à atmosphère contrôlée à une température suffisante pour faire fondre la cale de matériau fusible, et dans lequel on réalise la cale de matériau fusible (110) avec une hauteur initiale avant fusion suffisante pour empêcher les moyens de scellement (112) de relier de façon étanche le capot au support, et avec une hauteur après fusion suffisamment faible pour permettre un contact étanche des moyens de scellement (112) à la fois avec le capot et le support.
2. Procédé selon la revendication 1, dans lequel les moyens de scellement (112) comportent un cordon de matériau fusible susceptible de fondre lors du chauffage.
3. Procédé selon la revendication 2, dans lequel le cordon de matériau fusible présente une hauteur initiale avant fusion inférieure à la hauteur initiale de la cale de matériau fusible et une hauteur après fusion, appelée hauteur d'hybridation, supérieure à une hauteur d'hybridation de la cale.
4. Procédé selon la revendication 3, dans lequel on équipe le capot et le support de plages (106a, 106b, 108a, 108b) de réception du matériau fusible, en un matériau mouillable par le matériau fusible.
5. Procédé selon la revendication 1 ou 2, dans lequel le matériau fusible est choisi parmi AuSn, SnPb, CuSn.
6. Procédé selon la revendication 1, appliqué à la réalisation d'un dispositif comprenant sur un même substrat des capots de tailles différentes.
7. Procédé selon la revendication 1, dans lequel le composant est un composant électronique.
8. Procédé selon la revendication 1, dans lequel le composant est un détecteur bolométrique et dans lequel le capot est en un matériau transparent au rayonnement infrarouge.
9. Procédé selon la revendication 1, dans lequel on traite simultanément une pluralité de supports associés chacun à au moins un capot.
10. Dispositif comprenant un support (100) et au moins un capot (104) susceptible d'être scellé au support pour former avec le support au moins une cavité (114) à atmosphère contrôlée autour d'au moins un composant (102), caractérisé en ce qu'au moins l'un des capot et support est équipé d'au moins une cale (110) de matériau fusible et d'un cordon d'étanchéité (112) formé autour du composant, et dans lequel, avant scellement, la cale de matériau fusible présente une épaisseur suffisante pour empêcher que le cordon d'étanchéité (112) ne vienne en contact à la fois avec le capot et le support lorsque ceux-ci sont assemblés.
11. Dispositif selon la revendication 10, dans lequel au moins une cale est en un matériau fusible électriquement conducteur et utilisée comme élément de liaison électrique entre le support et le capot.
EP99925122A 1998-06-22 1999-06-17 Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee Ceased EP1090419A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9807841 1998-06-22
FR9807841A FR2780200B1 (fr) 1998-06-22 1998-06-22 Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee
PCT/FR1999/001457 WO1999067818A1 (fr) 1998-06-22 1999-06-17 Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee

Publications (1)

Publication Number Publication Date
EP1090419A1 true EP1090419A1 (fr) 2001-04-11

Family

ID=9527670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925122A Ceased EP1090419A1 (fr) 1998-06-22 1999-06-17 Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee

Country Status (4)

Country Link
US (1) US6566170B1 (fr)
EP (1) EP1090419A1 (fr)
FR (1) FR2780200B1 (fr)
WO (1) WO1999067818A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384353B1 (en) * 2000-02-01 2002-05-07 Motorola, Inc. Micro-electromechanical system device
EP1272422A2 (fr) * 2000-02-02 2003-01-08 Raytheon Company Fabrication avec encapsulation sous vide de dispositifs de systeme mecanique microelectrique comprenant des composants de circuits integres
US6521477B1 (en) 2000-02-02 2003-02-18 Raytheon Company Vacuum package fabrication of integrated circuit components
US6479320B1 (en) 2000-02-02 2002-11-12 Raytheon Company Vacuum package fabrication of microelectromechanical system devices with integrated circuit components
US6690014B1 (en) * 2000-04-25 2004-02-10 Raytheon Company Microbolometer and method for forming
CA2312646A1 (fr) * 2000-06-28 2001-12-28 Institut National D'optique Microconditionnement hybride de microdispositifs
US6686653B2 (en) 2000-06-28 2004-02-03 Institut National D'optique Miniature microdevice package and process for making thereof
FR2816447B1 (fr) 2000-11-07 2003-01-31 Commissariat Energie Atomique Dispositif de detection de rayonnements electromagnetiques tridimensionnel et procede de realisation de ce dispositif
US6512300B2 (en) 2001-01-10 2003-01-28 Raytheon Company Water level interconnection
US6777681B1 (en) 2001-04-25 2004-08-17 Raytheon Company Infrared detector with amorphous silicon detector elements, and a method of making it
US7061100B2 (en) * 2002-04-03 2006-06-13 Matsushita Electric Industrial Co., Ltd. Semiconductor built-in millimeter-wave band module
US20040016995A1 (en) * 2002-07-25 2004-01-29 Kuo Shun Meen MEMS control chip integration
FR2843756B1 (fr) 2002-08-26 2005-04-22 Commissariat Energie Atomique Procede de soudage d'une surface polymere avec une surface conductrice ou semi-conductrice et ses applications
US6800946B2 (en) * 2002-12-23 2004-10-05 Motorola, Inc Selective underfill for flip chips and flip-chip assemblies
JP4342174B2 (ja) * 2002-12-27 2009-10-14 新光電気工業株式会社 電子デバイス及びその製造方法
EP1460037A1 (fr) * 2003-03-18 2004-09-22 SensoNor asa Dispositif multicouche et son procédé de fabrication
US7183622B2 (en) * 2004-06-30 2007-02-27 Intel Corporation Module integrating MEMS and passive components
TWM271321U (en) * 2004-09-10 2005-07-21 Aiptek Int Inc Flip-chip packaging device
US20060081983A1 (en) * 2004-10-14 2006-04-20 Giles Humpston Wafer level microelectronic packaging with double isolation
US7274050B2 (en) * 2004-10-29 2007-09-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Packaging and manufacturing of an integrated circuit
DE102005015109B4 (de) * 2005-04-01 2007-06-21 Robert Bosch Gmbh Verfahren zum Montieren von Halbleiterchips auf einem Substrat und entsprechende Anordnung
CN100444357C (zh) * 2005-07-18 2008-12-17 台达电子工业股份有限公司 芯片封装结构
FR2890067B1 (fr) * 2005-08-30 2007-09-21 Commissariat Energie Atomique Procede de scellement ou de soudure de deux elements entre eux
FR2890065B1 (fr) * 2005-08-30 2007-09-21 Commissariat Energie Atomique Procede d'encapsulation d'un composant, notamment electrique ou electronique au moyen d'un cordon de soudure ameliore
US20070114643A1 (en) * 2005-11-22 2007-05-24 Honeywell International Inc. Mems flip-chip packaging
WO2007074846A1 (fr) * 2005-12-26 2007-07-05 Kyocera Corporation Machine microélectronique et procédé de fabrication de celle-ci
US7462831B2 (en) 2006-01-26 2008-12-09 L-3 Communications Corporation Systems and methods for bonding
US7655909B2 (en) 2006-01-26 2010-02-02 L-3 Communications Corporation Infrared detector elements and methods of forming same
US7459686B2 (en) 2006-01-26 2008-12-02 L-3 Communications Corporation Systems and methods for integrating focal plane arrays
WO2007119206A2 (fr) 2006-04-13 2007-10-25 Nxp B.V. Procédé pour fabriquer un assemblage électronique; assemblage électronique, couvercle et substrat
US7718965B1 (en) 2006-08-03 2010-05-18 L-3 Communications Corporation Microbolometer infrared detector elements and methods for forming same
US8153980B1 (en) 2006-11-30 2012-04-10 L-3 Communications Corp. Color correction for radiation detectors
US7737513B2 (en) * 2007-05-30 2010-06-15 Tessera, Inc. Chip assembly including package element and integrated circuit chip
US20080308922A1 (en) * 2007-06-14 2008-12-18 Yiwen Zhang Method for packaging semiconductors at a wafer level
US8035219B2 (en) 2008-07-18 2011-10-11 Raytheon Company Packaging semiconductors at wafer level
FR2938704B1 (fr) * 2008-11-19 2011-03-04 Commissariat Energie Atomique Systeme et procede de positionnement et d'alignement passif d'un element optique au plus pres d'un detecteur de rayonnement electromagnetique
JP4793496B2 (ja) * 2009-04-06 2011-10-12 株式会社デンソー 半導体装置およびその製造方法
FR2949172B1 (fr) 2009-08-13 2011-08-26 Commissariat Energie Atomique Assemblage hermetique de deux composants et procede de realisation d'un tel assemblage
CA2776781A1 (fr) * 2009-10-05 2011-04-14 Inova Lisec Technologiezentrum Gmbh Element sous vide et procede de production
FR2956205B1 (fr) * 2010-02-11 2013-03-01 Commissariat Energie Atomique Interferometre imageur micro-usine
US8393526B2 (en) * 2010-10-21 2013-03-12 Raytheon Company System and method for packaging electronic devices
US8765514B1 (en) 2010-11-12 2014-07-01 L-3 Communications Corp. Transitioned film growth for conductive semiconductor materials
US8969176B2 (en) 2010-12-03 2015-03-03 Raytheon Company Laminated transferable interconnect for microelectronic package
US8647535B2 (en) 2011-01-07 2014-02-11 International Business Machines Corporation Conductive metal and diffusion barrier seed compositions, and methods of use in semiconductor and interlevel dielectric substrates
JP6236929B2 (ja) * 2012-09-26 2017-11-29 日本電気株式会社 気密封止パッケージ及びその製造方法
JP6044227B2 (ja) * 2012-09-26 2016-12-14 日本電気株式会社 気密封止パッケージおよびその製造方法
CN102923638B (zh) * 2012-11-08 2016-02-03 姜利军 气密封装组件以及封装方法
JP6384081B2 (ja) * 2014-03-26 2018-09-05 日本電気株式会社 気密封止パッケージの製造方法、および赤外線検知器の製造方法
FR3043671A1 (fr) * 2015-11-12 2017-05-19 Commissariat Energie Atomique Procede de preparation d'un support

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831507B1 (fr) * 1969-07-10 1973-09-29
US3591839A (en) * 1969-08-27 1971-07-06 Siliconix Inc Micro-electronic circuit with novel hermetic sealing structure and method of manufacture
JPS61276237A (ja) * 1985-05-31 1986-12-06 Hitachi Ltd 半導体パツケ−ジの気密封止方法およびその装置
US5168344A (en) * 1990-08-15 1992-12-01 W. R. Grace & Co. Conn. Ceramic electronic package design
JPH0637143A (ja) * 1992-07-15 1994-02-10 Toshiba Corp 半導体装置および半導体装置の製造方法
FR2705832B1 (fr) * 1993-05-28 1995-06-30 Commissariat Energie Atomique Procédé de réalisation d'un cordon d'étanchéité et de tenue mécanique entre un substrat et une puce hybridée par billes sur le substrat.
US5559373A (en) * 1994-12-21 1996-09-24 Solid State Devices, Inc. Hermetically sealed surface mount diode package
US6070321A (en) * 1997-07-09 2000-06-06 International Business Machines Corporation Solder disc connection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9967818A1 *

Also Published As

Publication number Publication date
WO1999067818A1 (fr) 1999-12-29
US6566170B1 (en) 2003-05-20
FR2780200B1 (fr) 2003-09-05
FR2780200A1 (fr) 1999-12-24

Similar Documents

Publication Publication Date Title
EP1090419A1 (fr) Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee
FR2791811A1 (fr) Composant electrique ou electronique encapsule de maniere etanche
FR2705832A1 (fr) Procédé de réalisation d'un cordon d'étanchéité et de tenue mécanique entre un substrat et une puce hybridée par billes sur le substrat.
EP1108677B1 (fr) Procédé d'encapsulation hermétique in situ de microsystèmes
EP1630531B1 (fr) Composant de détection de rayonnements électromagnétiques, et notamment infrarouge, bloc optique d'imagerie infrarouge intégrant un tel composant et procédé pour sa réalisation
EP1093159A1 (fr) Procédé d'encapsulation de composants électroniques
FR2865575A1 (fr) Procede pour emballer des pastilles semi-conductrices et structure de pastille semi-conductrice ainsi obtenue
FR2616995A1 (fr) Procede de fabrication de modules electroniques
FR2948928A1 (fr) Structure a microcavite et structure d'encapsulation d'un dispositif microelectronique
FR2491259A1 (fr) Dispositif a semi-conducteurs et son procede de fabrication
FR2967302A1 (fr) Structure d'encapsulation d'un micro-dispositif comportant un matériau getter
EP0803729B1 (fr) Dispositif comprenant deux substrats micro-usinés destinés à former un microsystème ou une partie d'un microsystème et procédé d'assemblage de deux substrats micro-usinés
US7772041B2 (en) Method of sealing or welding two elements to one another
EP1760041A2 (fr) Procédé d'encapsulation d'un composant, notamment électrique ou électronique au moyen d'un cordon de soudure amélioré
EP2507825B1 (fr) Procede d'assemblage hermetique d'un boîtier electronique hermetique
FR2748849A1 (fr) Systeme de composants a hybrider et procede d'hybridation autorisant des dilatations thermiques
FR2483282A1 (fr) Procede de fixation d'une preforme de soudure a un couvercle pour boitiers hermetiquement fermes
EP1557394B1 (fr) Dispositif et procédé pour assurer l'herméticité d'une cavité dans laquelle débouche un passage
FR2785449A1 (fr) Systeme d'assemblage de substrats a zones d'accrochage pourvues de cavites
EP1824779B1 (fr) Dispositif et procede de fermeture hermetique d'une cavite d'un compose electronique
US8031319B1 (en) Hermetic liquid crystal cell and sealing technique
EP1746072A2 (fr) Conditionnement d'un composant électronique
EP1192592A1 (fr) Dispositif et procede de fabrication de dispositifs electroniques comportant au moins une puce fixee sur un support
EP3031775B1 (fr) Procede de realisation d'une connexion electrique dans un via borgne
FR2692719A1 (fr) Senseur pyroélectrique et procédé de fabrication.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150123