EP1086499A1 - Dispositif d'entrainement - Google Patents

Dispositif d'entrainement

Info

Publication number
EP1086499A1
EP1086499A1 EP00903616A EP00903616A EP1086499A1 EP 1086499 A1 EP1086499 A1 EP 1086499A1 EP 00903616 A EP00903616 A EP 00903616A EP 00903616 A EP00903616 A EP 00903616A EP 1086499 A1 EP1086499 A1 EP 1086499A1
Authority
EP
European Patent Office
Prior art keywords
drive device
spring
switch
resonance frequency
piezo actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00903616A
Other languages
German (de)
English (en)
Inventor
Hans Ritchter
Franz Peyr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1086499A1 publication Critical patent/EP1086499A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/065Large signal circuits, e.g. final stages
    • H02N2/067Large signal circuits, e.g. final stages generating drive pulses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes

Definitions

  • the invention relates to a drive device according to the preamble of claim 1.
  • the starting point of the invention is an electroactic motor according to EP 0 552 346 B1 and DE 94 19 802 Ul.
  • the piezo actuators used there and the mechanical drive components they move form a first spring-mass system, the drive components of which drive a second spring-mass system.
  • Each of these spring-mass systems has a natural frequency, the spring-mass system comprising the piezo actuators having a relatively high resonance frequency in comparison to the other spring-mass system. It is assumed that the spring-mass system comprising the piezo actuator has the highest efficiency in resonance mode.
  • the piezo actuators constantly operate at the resonance frequency of their spring-mass system, but the drive components only drive the driven spring-mass system for a relatively short time, the efficiency of the drive device is thereby relatively low. Since the frequency difference between the two resonance frequencies is considerable, there is also the effect that the spring-mass system comprising the piezo actuators goes out of resonance and thus the advantages of resonance operation are canceled.
  • FIG. 1 shows a driving and driven spring-mass system with the piezo actuators contracted
  • FIG. 1 shows the device of Figure 1 expanding
  • FIG. 4 shows a first embodiment of a circuit
  • FIG. 5 shows a second embodiment of a circuit
  • FIG. 6 shows a third embodiment of a circuit
  • FIGS. 7 to 10 different possible embodiments of the Hull curves
  • FIGS 11 to 15 further embodiments of the circuit
  • FIG. 16 shows a diagram to explain the mode of operation of the circuit according to FIG. 11
  • a first arch spring 3 is arranged on a rigid foundation 7, between which a stack 4 is held taut by piezo actuators.
  • a further arch spring 2 is arranged on the foundation, which carries a mass 1.
  • the arch spring 3 has a contact surface 9 on the end face, which has a contact surface 9 'the mass 1 stands opposite Stack 4 is supplied with current via lines 5, 6 by an oscillation circuit (not shown).
  • the bow spring 3 and the stack 4 form a first driving spring-mass system, while the bow spring 2 and the mass 1 form a second driven spring-mass system.
  • the mass 1 moves in the direction of the double arrow 10 to the left.
  • the stack 4 of the piezo actuators is drawn in here, that is to say without a power supply.
  • energy is supplied to the stack 4 so that it expands to the right.
  • the contact surface 9 ' is moved to the right, i. H. mass 1 moves in the direction of the double arrow to the right.
  • the stack 4 of the piezo actuators is put out of operation. After the maximum amplitude of mass 1 to the right is reached, mass 1 moves to the left again, repeating the procedure described.
  • the first spring-mass system oscillates in its natural frequency.
  • the stack 4 can be switched on and off by a sensor 8 which is arranged on one of the contact surfaces 9, 9 '.
  • the capacitors C1 and C2, the inductance L1 and the resistor R1 represent the equivalent circuit diagram of the first spring-mass system, which comprises the piezo actuator. Cl is inversely proportional to the spring constant of the arc spring 3, the inductance L1 is proportional to the moving mass of the first spring-mass system and Resistance R1 is proportional to the mechanical active power of the drive device.
  • the second capacitance C2 essentially represents the static piezo capacitance plus external switching capacitances.
  • the first spring-mass system is illustrated by M.
  • an inductor L2 is connected in parallel to the piezo actuator.
  • C2 and L2 thus form a parallel resonant circuit E with a predetermined resonance frequency.
  • This resonance frequency is chosen so that it corresponds to the resonance frequency of the second spring-mass system.
  • C2 and L2 generate a sinusoidal envelope 10 for the high-frequency vibrations 11 of the first spring-mass system.
  • the frequency of the oscillating circuit E consisting of C2 and L2 corresponds approximately to the resonance frequency of the second spring-mass system in the exemplary embodiment according to FIGS. 1 and 2 formed by the mass 1 and the arc spring 2.
  • the resonance frequency of the oscillating circuit M can be 50 kHz, for example amount, while that of the resonant circuit E is, for example, 5 kHz.
  • the inductance L2 is formed by a transformer T, the side of which can be connected to a DC voltage source V via a switch S1.
  • the switch S1 is controlled by a control circuit 12, to which the current actual amplitudes of the high-frequency oscillation 11 and the desired amplitude of the low-frequency oscillation 10 are supplied.
  • the actual and target amphtudes are compared with one another and, depending on this comparison, the switches S1 are opened or closed.
  • the energy supplied to the resonant circuit E and thus the shape of the envelope 10 are thus determined. This is illustrated by the different shape of the envelopes 10 m in FIGS. 7, 8 and 9.
  • the energy supply to the resonant circuit E by closing the switch S1 takes place when the envelope curve 10 has its amplitude minimum If an amount of energy 12 is fed in, an envelope 10 is obtained. If a larger amount of energy 12 'is added, an envelope 10' of greater amplitude results.
  • the actual amplitude is tapped directly at the piezo actuator itself.
  • a further piezo element C3 can be attached to and isolated from the piezo actuator, to which the vibrations of the piezo actuator are pressed and which thus supplies the control circuit 12 with a value that is proportional to the actual amplitude.
  • FIG. 11 corresponds to that of FIG. 4, but with the difference that a switch S2 is additionally connected in the resonant circuit E. Its mode of operation is discussed in connection with FIG. 16.
  • the circuit according to FIG. 12 differs from that according to FIG. 11 in that several piezo actuators C2], C2 2 , C2 3 and C2 are connected in parallel, which can be a stack 4 in each case. These are preferably the feed actuators and the spread actuators according to EP 0 552 346 B1.
  • the circuit according to FIG. 13 differs from that according to FIG. 11 in that four piezo actuators or four stacks of such actuators are connected in series.
  • these actuators are connected in a star connection.
  • both the frequency of the resonant circuit E and that of the resonant circuit M can be changed.
  • the secondary winding of the transformer T has a number of taps which can be switched separately into the resonant circuit E via switches S2j, S2 2 ,..., S2 m , which means that the size of the inductance L2 can be changed.
  • the frequency of the envelope 10 can be changed.
  • the change in the size of the inductance L2 takes place gradually.
  • a continuous change in the inductance L2 is shown in FIG. 6, where an inductor D is additionally arranged on the transformer T.
  • the current flow through the choke D can be changed by means of a stepless switch S3, represented here by a transistor which is controlled by the control circuit 12.
  • 16 has a sinusoidal rising edge 14, a rectilinear section 15 and a sinusoidal falling edge 16.
  • the switch S2 is closed and the sinusoidal curve is determined by the desired amplitude. If the maximum amplitude of the envelope 10 is reached, the switch S2 is opened, whereby the resonant circuit M is interrupted and all the energy of this resonant circuit is stored in the capacitance C2.
  • the switch S2 is closed and the sinusoidal falling edge 16 results from the specification of the target amplitude.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

L'invention concerne un dispositif d'entraînement dans lequel les actionneurs piézo-électriques (4) sont entraînés par un circuit oscillant. Les actionneurs (4) forment, avec les éléments d'entraînement mécaniques qu'ils entraînent, un premier système ressort-masse qu'ils font vibrer dans une première fréquence de résonance. Les éléments d'entraînement entraînent un second système ressort-masse (1, 2) ayant une seconde fréquence de résonance, inférieure à la première. La seconde fréquence de résonance détermine une enveloppante de même fréquence, durant laquelle les actionneurs (4) de la première fréquence sont entraînés. Les actionneurs piézo-électriques (4) sont mis en circuit quand la masse (1) du second système ressort-masse (1, 2) entre en contact mécanique avec les éléments d'entraînement du second système.
EP00903616A 1999-01-29 2000-01-22 Dispositif d'entrainement Withdrawn EP1086499A1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE19903484 1999-01-29
DE19903484 1999-01-29
DE19905191 1999-02-06
DE19905191 1999-02-06
DE19937209 1999-08-06
DE19937209A DE19937209A1 (de) 1999-01-29 1999-08-06 Antriebsvorrichtung
PCT/EP2000/000495 WO2000045444A1 (fr) 1999-01-29 2000-01-22 Dispositif d'entrainement

Publications (1)

Publication Number Publication Date
EP1086499A1 true EP1086499A1 (fr) 2001-03-28

Family

ID=27218941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00903616A Withdrawn EP1086499A1 (fr) 1999-01-29 2000-01-22 Dispositif d'entrainement

Country Status (6)

Country Link
EP (1) EP1086499A1 (fr)
JP (1) JP2002536146A (fr)
CN (1) CN1300447A (fr)
AU (1) AU2543400A (fr)
DE (1) DE19937209A1 (fr)
WO (1) WO2000045444A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009833B3 (de) * 2015-08-03 2017-01-19 Kocks Technik Gmbh & Co Kg "Lager für einen Walzenzapfen einer Walze oder für eine Walzenwelle eines Walzgerüsts und Walzgerüst"

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50204033D1 (de) 2001-06-06 2005-09-29 Miniswys Sa Biel Piezoelektrischer antrieb
DE10245324A1 (de) * 2002-09-27 2004-04-08 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
DE10260363A1 (de) * 2002-12-20 2004-07-08 Robert Bosch Gmbh Aktormodul mit einem piezoelektrischen, elektrostriktiven oder magnetostriktiven Aktor
US7224099B2 (en) 2004-04-20 2007-05-29 Elliptec Resonant Actuator Aktiengesellschaft Molded piezoelectric apparatus
DE102010063001A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Schallwandler mit zumindest einem Piezoelement
JP6503764B2 (ja) * 2015-02-02 2019-04-24 セイコーエプソン株式会社 圧電素子駆動回路、及び、ロボット
CN106618776B (zh) * 2016-12-02 2018-12-14 上海携福电器有限公司 电动清洁护理器具、用于该器具的压力报警方法及装置
CN111472921B (zh) * 2020-03-04 2022-01-18 温州大学 基于质量弹簧系统的波浪能压电发电浮标

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0045444A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009833B3 (de) * 2015-08-03 2017-01-19 Kocks Technik Gmbh & Co Kg "Lager für einen Walzenzapfen einer Walze oder für eine Walzenwelle eines Walzgerüsts und Walzgerüst"

Also Published As

Publication number Publication date
WO2000045444A1 (fr) 2000-08-03
JP2002536146A (ja) 2002-10-29
AU2543400A (en) 2000-08-18
WO2000045444A8 (fr) 2001-04-05
DE19937209A1 (de) 2000-08-10
CN1300447A (zh) 2001-06-20

Similar Documents

Publication Publication Date Title
EP0054703B1 (fr) Circuit pour organe de positionnement piézo-électrique et analogue
DE69937587T2 (de) Aktuator-Treiberschaltkreis
DE4435832C2 (de) Schaltungsanordnung zur schnellen und verlustfreien Ladung und Entladung kapazitiver Lasten
DE60115766T2 (de) Selbstkompensierender piezoelektrischer Aktuator für ein Steuerventil
DE102004024656A1 (de) Piezoelektrischer Ultraschallmotor
EP1430592A2 (fr) Piezomoteur avec guidage
EP3231079B1 (fr) Procédé et appareil d'activation d'un moteur piezoéléctrique
DE102004059429A1 (de) Linearer Ultraschall-Piezomotor
EP3172826B1 (fr) Moteur ultrasonique
EP1086499A1 (fr) Dispositif d'entrainement
DE3048631A1 (de) Stellglied mit piezokeramischem koerper
DE4408618B4 (de) Verstellantrieb aus Bimorphelementen
DE102020132196B4 (de) Vorrichtung umfassend ein bewegliches Objekt und eine Einrichtung zur Erfassung einer Bewegung des Objekts, Eingabegerät mit dieser Vorrichtung und Verfahren zum Betreiben dieser Vorrichtung
DE102007021338A1 (de) Piezoelektrische Antriebsvorrichtung
DE102006042695B4 (de) Selbsterregender PWM-Controller für einen Einphasenultraschallmotor
WO1991016762A1 (fr) Circuit pour cavite resonante de sortie d'un etage final emetteur fonctionnant par manipulation de frequence
DE19806127B4 (de) Verfahren zur elektrischen Ansteuerung von piezoelektrischen oder elektrostriktiven Aktuatoren in Antrieben für eine schrittweise Bewegung
WO2008151766A1 (fr) Convertisseur piézoélectrique à régulation primaire et à transformateur piézoélectrique associé
DE102013203836B4 (de) Piezoelektrisches Ultraschall-Vibrationselement und seine Verwendung
DE102013101020B4 (de) Ultraschallaktor und Ultraschallmotor mit einem solchen Ultraschallaktor
WO2012084957A1 (fr) Actionneur, système d'actionneur et commande d'actionneur
DE102006041017A1 (de) Schaltungsanordnung zur Steuerung eines in der Richtung umkehrbaren Einphasen-Ultraschallmotors
DE102004057423B4 (de) Stimmbarer Konverter
EP1520338B1 (fr) Piezomoteur
WO2011020613A2 (fr) Résonateur pouvant être syntonisé en fréquence et procédé pour le faire fonctionner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020801

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT